JPH0787164B2 - Method for manufacturing solid electrolytic capacitor - Google Patents

Method for manufacturing solid electrolytic capacitor

Info

Publication number
JPH0787164B2
JPH0787164B2 JP2174878A JP17487890A JPH0787164B2 JP H0787164 B2 JPH0787164 B2 JP H0787164B2 JP 2174878 A JP2174878 A JP 2174878A JP 17487890 A JP17487890 A JP 17487890A JP H0787164 B2 JPH0787164 B2 JP H0787164B2
Authority
JP
Japan
Prior art keywords
solid electrolytic
leakage current
capacitor element
electrolytic capacitor
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2174878A
Other languages
Japanese (ja)
Other versions
JPH0462913A (en
Inventor
泰世 西嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Original Assignee
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd filed Critical Elna Co Ltd
Priority to JP2174878A priority Critical patent/JPH0787164B2/en
Publication of JPH0462913A publication Critical patent/JPH0462913A/en
Publication of JPH0787164B2 publication Critical patent/JPH0787164B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体電解コンデンサの製造方法に関し、さらに
詳しく言えば、その製造工程中において吸湿による漏れ
電流を測定して予め不良品を除去するようにした固体電
解コンデンサの製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a solid electrolytic capacitor, and more specifically, to measure a leakage current due to moisture absorption during the manufacturing process to remove defective products in advance. The present invention relates to a method for manufacturing the solid electrolytic capacitor described above.

〔従来の技術〕[Conventional technology]

タンタル固体電解コンデンサを例にとって説明すると、
まず、タンタルのペレット(粉末焼結体)に設けられて
いる陽極リードを溶接によりフープ材(支持材)に取付
ける。このようにして、多数のペレットを同フープ材に
担持させた状態で、化成、再化成を行なって例えば二酸
化マンガン(MnO2)よりなる酸化被膜を形成した上で、
カーボン・銀ペーストなどにて陰極層を形成してコンデ
ンサ素子を得る。しかるのち、このコンデンサ素子をフ
ープ材から切り離し、チップ型にあっては、同コンデン
サ素子の陽極リードをリードフレームの陽極リード端子
に溶接するとともに、陰極層を接着銀などの導電性接着
材にて陰極リード端子に取付ける。そして、金型内にお
いて樹脂モールドにて樹脂外装体を形成する。
Taking a tantalum solid electrolytic capacitor as an example,
First, the anode lead provided on the tantalum pellet (sintered powder) is attached to the hoop material (support material) by welding. In this way, with a large number of pellets carried on the same hoop material, chemical conversion and re-chemical conversion are performed to form an oxide film made of, for example, manganese dioxide (MnO 2 ),
A capacitor layer is obtained by forming a cathode layer with carbon / silver paste or the like. After that, the capacitor element was separated from the hoop material, and for the chip type, the anode lead of the capacitor element was welded to the anode lead terminal of the lead frame, and the cathode layer was made of a conductive adhesive material such as adhesive silver. Attach to the cathode lead terminal. Then, a resin exterior body is formed by resin molding in the mold.

以上はチップ型の場合であるが、ディップ型の場合に
は、コンデンサ素子をフープ材から切り離したのち、陽
極リードに例えばCP線(鉄線に銅下地メッキ−ハンダメ
ッキしたもの)からなる陽極リード線を溶接するととも
に、陰極層に導電性接着材を介して同じくCP線からなる
陰極リード線を取付ける。そして、例えばエポキシ樹脂
液中に浸漬して樹脂外装体を形成する。
The above is the case of the chip type, but in the case of the dip type, after separating the capacitor element from the hoop material, the anode lead consisting of, for example, CP wire (copper base plating-solder plating on iron wire) While welding, the cathode lead wire also made of CP wire is attached to the cathode layer via a conductive adhesive. Then, for example, it is immersed in an epoxy resin liquid to form a resin exterior body.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

チップ型、ディップ型のいずれにしても、従来では製品
出荷前にその静電容量や損失角の正接(tanδ)および
漏れ電流測定を行ない、その良否を判定するようにして
いる。しかしながら、これはいわば乾燥状態でのテスト
であるため、特に漏れ電流については、樹脂外装体を通
して水分が浸入した場合、それによりどの程度影響を受
けるかは不明で、信頼性の面で問題があった。
In both the chip type and the dip type, conventionally, the tangent (tan δ) of the capacitance and the loss angle and the leakage current are measured before the product is shipped, and the quality is judged. However, since this is a test in a dry state, it is unclear how much the leak current will be affected by the ingress of water through the resin outer casing, and there is a problem in terms of reliability. It was

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は上記従来の欠点を解消するためになされたもの
で、その構成上の特徴は、弁作用金属の粉末焼結体から
なるペレットの周りに化成被膜を形成するとともに、同
化成被膜上にカーボン・銀ペーストなどよりなる陰極層
を形成したのち、ペレットの陽極リードと陰極層に陽極
端子部材と陰極端子部材を取付けてコンデンサ素子と
し、同コンデンサ素子に樹脂外装体を形成してなる固体
電解コンデンサの製造方法において、樹脂外装体の形成
前に、所定の電解液中においてコンデンサ素子の漏れ電
流を測定し、吸湿による漏れ電流の増加を検査すること
にある。この場合において、漏れ電流測定用電解液に
は、HNO3、H3PO4、CH3COOHなどが用いられるが、その電
導度は5×10-3μS以上で、しかも乾燥で完全に除去さ
れるものが好ましい。
The present invention has been made in order to eliminate the above-mentioned conventional drawbacks, and its structural feature is that a chemical conversion film is formed around a pellet made of a powdered sintered body of a valve metal, and a chemical conversion film is formed on the same chemical conversion film. Solid electrolyte formed by forming a cathode layer made of carbon / silver paste, etc., and then attaching an anode terminal member and a cathode terminal member to the anode lead of the pellet and the cathode layer to form a capacitor element, and forming a resin exterior body on the capacitor element. In the method of manufacturing a capacitor, the leakage current of the capacitor element is measured in a predetermined electrolytic solution before the resin outer package is formed, and an increase in the leakage current due to moisture absorption is inspected. In this case, HNO 3 , H 3 PO 4 , CH 3 COOH, etc. are used as the leakage current measuring electrolyte, but their conductivity is 5 × 10 −3 μS or more and they are completely removed by drying. One is preferable.

〔作用〕[Action]

上記のように電解液中で漏れ電流を測定すると、酸化被
膜に欠陥があるものは、吸湿により漏れ電流が増加す
る。したがって、製造工程中で予めそのような素子を除
去することにより、高湿度中に長時間放置しても漏れ電
流が規定値以上増加しない信頼性の高い製品が得られ
る。
When the leakage current is measured in the electrolytic solution as described above, if the oxide film has a defect, the leakage current increases due to moisture absorption. Therefore, by removing such an element in advance during the manufacturing process, it is possible to obtain a highly reliable product in which the leakage current does not increase more than the specified value even if it is left in high humidity for a long time.

〔実施例〕〔Example〕

(1)CH3COOH0.01Vol%水溶液中に樹脂外装体形成前の
コンデンサ素子を浸漬し、サージ電圧44Vを印加して、
その漏れ電流が1μA以下のもの選別したのち樹脂液中
へ浸漬して、耐電圧35V,静電容量10μFのディップ型固
体電解コンデンサを100個製造した。この実施例1に係
る製品と従来品各100個を40℃、相対湿度95%の雰囲気
中に500時間放置した。
(1) Immerse the capacitor element before the resin outer casing is formed in 0.01 vol% CH 3 COOH aqueous solution, apply a surge voltage of 44V,
After selecting those having a leakage current of 1 μA or less, they were immersed in a resin solution to manufacture 100 dip-type solid electrolytic capacitors having a withstand voltage of 35 V and a capacitance of 10 μF. The product according to Example 1 and 100 conventional products were allowed to stand for 500 hours in an atmosphere of 40 ° C. and 95% relative humidity.

その結果、不良品は同実施例1の場合「0/100」であっ
たのに対し、従来品は「2/100」であった。また、漏れ
電流値の分布を見ると、同実施例1の場合、0.5〜0.7μ
A内に納まったが、従来品の場合は0.3〜6μAの範囲
で大きなばらつきがあった。
As a result, the defective product was "0/100" in the case of Example 1, while the defective product was "2/100". Further, looking at the distribution of the leakage current value, in the case of the first embodiment, 0.5 to 0.7 μ
Although the value was within A, the conventional product had a large variation in the range of 0.3 to 6 μA.

(2)H3PO40.0001Vol%水溶液中に樹脂外装体形成前の
コンデンサ素子を浸漬し、サージ電圧44Vを印加して、
その漏れ電流が0.5μA以下のもの選別したのち、樹脂
モールドにて樹脂外装体を形成し、耐電圧35V,静電容量
1μFのチップ型固体電解コンデンサを100個製造し
た。この実施例2に係る製品と従来品各100個を60℃、
相対湿度95%の雰囲気中に500時間放置した。
(2) Immerse the capacitor element before forming the resin outer casing in a 0.0001 Vol% H 3 PO 4 aqueous solution and apply a surge voltage of 44 V,
After selecting the leakage current of 0.5 μA or less, a resin outer package was formed by resin molding, and 100 chip type solid electrolytic capacitors having a withstand voltage of 35 V and an electrostatic capacity of 1 μF were manufactured. The product according to Example 2 and the conventional product, 100 each, at 60 ° C,
It was left for 500 hours in an atmosphere of 95% relative humidity.

その結果、不良品は同実施例2の場合も「0/100」であ
ったのに対し、従来品は「3/100」であった。また、漏
れ電流値の分布を見ると、同実施例2の場合、0.03〜0.
05μA内に納まったが、従来品の場合は0.03〜1.5μA
の範囲で大きくばらついた。
As a result, the defective product was "0/100" also in the case of Example 2, whereas the conventional product was "3/100". Further, looking at the distribution of the leakage current value, in the case of the second embodiment, it is 0.03 to 0.
It was within 05 μA, but 0.03 to 1.5 μA for conventional products
It varied greatly in the range of.

(3)NH4NO30.01Vol%水溶液中に樹脂外装体形成前の
コンデンサ素子を浸漬し、サージ電圧44Vを印加して、
その漏れ電流が2.5μA以下のもの選別したのち、樹脂
モールドにて樹脂外装体を形成し、耐電圧25V,静電容量
10μFのチップ型固体電解コンデンサを100個製造し
た。この実施例3に係る製品と従来品各100個を60℃、
相対湿度95%の雰囲気中に500時間放置した。
(3) Immerse the capacitor element before forming the resin outer casing in 0.01 vol% NH 4 NO 3 aqueous solution, apply a surge voltage of 44 V,
After selecting the leakage current of 2.5μA or less, form the resin outer casing with resin mold, and withstand voltage 25V, capacitance
100 10 μF chip type solid electrolytic capacitors were manufactured. The product according to Example 3 and the conventional product, 100 each, at 60 ° C,
It was left for 500 hours in an atmosphere of 95% relative humidity.

その結果、不良品は同実施例3の場合「0/100」であっ
たのに対し、従来品は「5/100」であった。また、漏れ
電流値の分布は、同実施例3の場合0.5〜0.6μAであっ
たが、これに対して従来品の場合は0.5〜5.0μAの範囲
で大きくばらついた。
As a result, the defective product was "0/100" in the case of Example 3, whereas the defective product was "5/100". Further, the distribution of the leakage current value was 0.5 to 0.6 μA in the case of Example 3, whereas it was greatly varied in the range of 0.5 to 5.0 μA in the conventional product.

(4)HNO30.0001Vol%の水溶液中に樹脂外装体形成前
のコンデンサ素子を浸漬し、サージ電圧44Vを印加し
て、その漏れ電流が0.5μA以下のもの選別したのち、
樹脂モールドにて樹脂外装体を形成し、耐電圧4V,静電
容量10μFのチップ型固体電解コンデンサを100個製造
した。この実施例4に係る製品と従来品各100個をPCT
(プレッシャー・クッカー・テスト)121℃,2気圧の雰
囲気中に96時間放置した。
(4) Immerse the capacitor element before forming the resin sheath in a 0.0001 Vol% HNO 3 solution, apply a surge voltage of 44 V, and select a leak current of 0.5 μA or less.
A resin outer package was formed by resin molding, and 100 chip-type solid electrolytic capacitors having a withstand voltage of 4 V and a capacitance of 10 μF were manufactured. PCT for each of the product according to this Example 4 and the conventional product
(Pressure cooker test) The sample was left for 96 hours in an atmosphere of 121 ° C and 2 atm.

その結果、不良品は同実施例4の場合「0/100」であっ
たのに対し、従来品は「5/100」であった。また、漏れ
電流値の分布は、同実施例4の場合0.3〜0.4μAであっ
たが、これに対して従来品の場合は0.4〜3.0μAの範囲
で大きくばらついた。
As a result, the defective product was "0/100" in the case of Example 4, while the defective product was "5/100". Further, the distribution of the leakage current value was 0.3 to 0.4 μA in the case of Example 4, whereas it was greatly varied in the range of 0.4 to 3.0 μA in the conventional product.

〔発明の効果〕〔The invention's effect〕

以上説明したように、この発明によれば、樹脂外装体形
成前のコンデンサ素子を電解液中に浸漬してその漏れ電
流を測定し、その段階で不良品を除去するようにしたこ
とにより、特に耐湿特性が良好で高信頼性を有する固体
電解コンデンサが提供される。
As described above, according to the present invention, the capacitor element before forming the resin outer package is immersed in the electrolytic solution to measure the leakage current, and the defective product is removed at that stage. A solid electrolytic capacitor having good humidity resistance and high reliability is provided.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】弁作用金属の粉末焼結体からなるペレット
の周りに化成被膜を形成するとともに、同化成被膜上に
カーボン・銀ペーストなどよりなる陰極層を形成したの
ち、上記ペレットの陽極リードと上記陰極層に陽極端子
部材と陰極端子部材を取付けてコンデンサ素子とし、同
コンデンサ素子に樹脂外装体を形成してなる固体電解コ
ンデンサの製造方法において、上記樹脂外装体の形成前
に、所定の電解液中において上記コンデンサ素子の漏れ
電流を測定し、吸湿による漏れ電流の増加を検査するこ
とを特徴とする固体電解コンデンサの製造方法。
1. An anode lead of the pellet after forming a conversion coating around a pellet made of a powdered sintered body of valve metal and forming a cathode layer made of carbon / silver paste or the like on the conversion coating. In the method of manufacturing a solid electrolytic capacitor, wherein the anode terminal member and the cathode terminal member are attached to the cathode layer to form a capacitor element, and a resin outer package is formed on the capacitor element, before the resin outer package is formed, a predetermined A method for producing a solid electrolytic capacitor, which comprises measuring a leakage current of the capacitor element in an electrolytic solution and inspecting an increase in leakage current due to moisture absorption.
【請求項2】上記電解液の電導度は5×10-3μS以上で
ある請求項1に記載の固体電解コンデンサの製造方法。
2. The method for producing a solid electrolytic capacitor according to claim 1, wherein the electric conductivity of the electrolytic solution is 5 × 10 −3 μS or more.
JP2174878A 1990-07-02 1990-07-02 Method for manufacturing solid electrolytic capacitor Expired - Lifetime JPH0787164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2174878A JPH0787164B2 (en) 1990-07-02 1990-07-02 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2174878A JPH0787164B2 (en) 1990-07-02 1990-07-02 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH0462913A JPH0462913A (en) 1992-02-27
JPH0787164B2 true JPH0787164B2 (en) 1995-09-20

Family

ID=15986241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2174878A Expired - Lifetime JPH0787164B2 (en) 1990-07-02 1990-07-02 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0787164B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2231301C (en) * 1997-03-27 2007-07-03 Honda Giken Kogyo Kabushiki Kaisha Method of, and apparatus for, mounting vehicular window glass

Also Published As

Publication number Publication date
JPH0462913A (en) 1992-02-27

Similar Documents

Publication Publication Date Title
JPH0584661B2 (en)
US6515848B1 (en) Solid electrolytic capacitors and method for manufacturing the same
JP3087654B2 (en) Method for manufacturing solid electrolytic capacitor using conductive polymer
JP2615712B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0787164B2 (en) Method for manufacturing solid electrolytic capacitor
CA1041620A (en) Cathode electrode for an electrical device and method
JPH0434915A (en) Manufacture of solid electrolytic capacitor
JPH04225512A (en) Manufacture of solid electrolytic capacitor
JPS6132808B2 (en)
JPH05326341A (en) Manufacture of solid electrolytic capacitor
CN112490004B (en) Method for manufacturing electrolytic capacitor
JP3391364B2 (en) Manufacturing method of tantalum solid electrolytic capacitor
JPS6132807B2 (en)
KR920001311B1 (en) Making method of solid condenser of tantalium
JPH02186617A (en) Solid electrolytic capacitor and manufacture thereof
JPH0756860B2 (en) Tantalum solid electrolytic capacitor
JPH0684712A (en) Manufacture of chip type solid electrolytic capacitor
JPH0469805B2 (en)
JPH06252001A (en) Solid electrolytic capacitor and its manufacture
JPH0756861B2 (en) Tantalum solid electrolytic capacitor
JPH03151622A (en) Manufacture of solid electrolytic capacitor
JPS5934122Y2 (en) solid electrolytic capacitor
JPH0350712A (en) Electrolyte coating to electric conductor on which insulating thin film is formed
JPH0682586B2 (en) Tantalum solid electrolytic capacitor
JPH02256224A (en) Manufacture of electrolytic capacitor