JPH0786424A - Semiconductor device and its manufacture - Google Patents
Semiconductor device and its manufactureInfo
- Publication number
- JPH0786424A JPH0786424A JP5185599A JP18559993A JPH0786424A JP H0786424 A JPH0786424 A JP H0786424A JP 5185599 A JP5185599 A JP 5185599A JP 18559993 A JP18559993 A JP 18559993A JP H0786424 A JPH0786424 A JP H0786424A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- region
- well
- deep
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は半導体装置およびその製
造方法に関し、特に高エネルギ−イオン注入により形成
された埋込みウェル層を有する半導体装置およびその製
造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device having a buried well layer formed by high energy ion implantation and a manufacturing method thereof.
【0002】[0002]
【従来の技術】近年、集積回路装置においては、高いノ
イズマージンならびに低消費電力などの利点から、CM
OS型の半導体装置の重要度が増している。ところが、
微細化に伴い、構成要素であるNMOS型トランジスタ
とPMOS型トランジスタの隣接部分で形成される寄生
サイリスタに起因するラッチアップが重大な問題となっ
てきている。そこで、この問題解決のため、ウェル底部
に高濃度領域をもついわゆるレトログレードウェルを形
成することで、寄生のバイポーラトランジスタの増幅率
を下げ、これによりラッチアップの低減をはかる方法が
提案されている。例えば、特開平2−305468号に
開示されている方法では、図4(a)に示すように素子
分離のため通常の選択酸化法により、シリコン基板1に
フィールド酸化膜2を形成し、続いて、同図に示すよう
に、フィールド酸化膜下の部分4aにフィールド反転防
止のため、ボロンの場合フィールド酸化膜厚に応じて1
00〜200KeV、リンの場合300〜600KeV
のエネルギーで1012〜1013cm-2程度のイオン注入を
行なう。次に図4(b)に示すように、レトログレード
ウェルに特有な底部の高濃度領域3を形成するため、ボ
ロンの場合2MeV、リンの場合3MeVの高エネルギ
ーで2〜4μm程度の深さにイオン注入を行なう。その
後、上記不純物層4と高濃度領域3の中間領域5、さら
に不純物層4より浅い領域6に適宜イオン注入を行な
う。2. Description of the Related Art In recent years, in integrated circuit devices, CMs have been used because of their advantages such as high noise margin and low power consumption.
The importance of OS type semiconductor devices is increasing. However,
Along with the miniaturization, latch-up caused by a parasitic thyristor formed in a portion adjacent to the constituent NMOS type transistor and PMOS type transistor has become a serious problem. Therefore, in order to solve this problem, a method has been proposed in which a so-called retrograde well having a high-concentration region at the bottom of the well is formed to reduce the amplification factor of a parasitic bipolar transistor and thereby reduce latch-up. . For example, in the method disclosed in Japanese Patent Laid-Open No. 2-305468, a field oxide film 2 is formed on a silicon substrate 1 by a normal selective oxidation method for element isolation as shown in FIG. As shown in the same figure, in order to prevent field inversion in the portion 4a below the field oxide film, in the case of boron, depending on the field oxide film thickness, 1
00-200 KeV, phosphorous 300-600 KeV
Ion implantation of about 10 12 to 10 13 cm -2 is performed with the energy of. Next, as shown in FIG. 4B, in order to form a high-concentration region 3 at the bottom peculiar to the retrograde well, a high energy of 2 MeV for boron and 3 MeV for phosphorus is formed at a depth of about 2 to 4 μm. Ion implantation is performed. After that, appropriate ion implantation is performed on the impurity layer 4 and the intermediate region 5 between the high concentration region 3 and the region 6 shallower than the impurity layer 4.
【0003】[0003]
【発明が解決しようとする課題】上述した従来のレトロ
グレードウェル形成工程は、フィールド反転電圧を上げ
るための不純物層4と、深い高濃度層3は、1017cm3
以上の不純物濃度を有するが、前記両イオン注入層の中
間領域は、1016cm-3程度の低濃度層が残存する構造と
なっている。このため、ウェル底部の抵抗は下がるもの
の、ウェル電位の取出し電極が形成される基板表面と、
深い高濃度層3の間に前記低不純物領域5が高抵抗層と
して挿入されることになり、基板の深い領域のウェル抵
抗を下げた効果が相殺されるという問題が生じた。この
対策として、前述の中間領域5の濃度をウェル領域全面
に濃くすることが考えられるがこの方法はトランジスタ
のソース、ドレイン拡散層下の不純物濃度も増大するた
め、余分な寄生容量が激増するという欠点がある。In the conventional retrograde well formation process described above, the impurity layer 4 for increasing the field inversion voltage and the deep high-concentration layer 3 have a concentration of 10 17 cm 3
Although it has the above-mentioned impurity concentration, the intermediate region between the both ion-implanted layers has a structure in which a low-concentration layer of about 10 16 cm -3 remains. Therefore, although the resistance at the bottom of the well is lowered, the substrate surface on which the extraction electrode for the well potential is formed,
The low-impurity region 5 is inserted as a high-resistance layer between the deep high-concentration layers 3, which causes a problem that the effect of lowering the well resistance in the deep region of the substrate is offset. As a countermeasure against this, it is conceivable to increase the concentration of the intermediate region 5 over the entire well region, but since this method also increases the impurity concentration under the source and drain diffusion layers of the transistor, it is said that the extra parasitic capacitance increases dramatically. There are drawbacks.
【0004】[0004]
【課題を解決するための手段】本発明は、相補型MOS
電界効果トランジスタを有する半導体装置において、N
チャネル,Pチャネルそれぞれのトランジスタ形成部に
あらかじめ高濃度の深いP型イオン注入層ならびに深い
N型イオン注入層から成る埋込みウェル層が形成され、
少なくとも、前記両イオン注入層により構成された各ウ
ェルとのコンタクトを取る領域の前記半導体基板には、
前記深いイオン注入層と基板表面との間に、素子形成領
域よりも高濃度の前記深いイオン注入層と同一導電型の
不純物層が設けられた構造を有する半導体装置である。
また、MOS構造を有する半導体装置の製造方法におい
て、半導体基板の所望の領域にフィールド酸化膜を形成
する工程と、基板の深い領域にイオン注入を用いて埋込
みウェル層を形成する工程と、少なくとも前記ウェル領
域のウェル電位を取る領域には、前記深い埋込みウェル
層と、基板表面との間に素子形成領域よりも高濃度の前
記埋込みウェル層と同一導電型の不純物層を形成する工
程とを含む半導体装置の製造方法である。SUMMARY OF THE INVENTION The present invention is a complementary MOS.
In a semiconductor device having a field effect transistor, N
A buried well layer composed of a high-concentration deep P-type ion implantation layer and a deep N-type ion implantation layer is formed in advance in the transistor formation portions of the channel and P-channel, respectively.
At least the region of the semiconductor substrate in contact with each well formed by the both ion-implanted layers,
The semiconductor device has a structure in which an impurity layer having the same conductivity type as that of the deep ion implantation layer having a higher concentration than that of the element formation region is provided between the deep ion implantation layer and the surface of the substrate.
In a method of manufacturing a semiconductor device having a MOS structure, a step of forming a field oxide film in a desired region of a semiconductor substrate, a step of forming a buried well layer using ion implantation in a deep region of the substrate, A region of the well region where the well potential is applied includes the deep buried well layer and a step of forming an impurity layer having the same conductivity type as that of the buried well layer having a higher concentration than that of the element formation region between the deep buried well layer and the substrate surface. It is a method of manufacturing a semiconductor device.
【0005】[0005]
【作用】本発明においては、高エネルギー注入による埋
込みウェル層を有し、少なくともウェルコンタクトを取
る領域に、素子形成領域よりも高濃度の不純物層を、埋
込みウェル層と基板表面との間に配置した構造を有して
いるもので、レトログレードウェル層と基板表面の間に
残存する高抵抗層の抵抗を下げられ、ラッチアップに強
くなるものである。In the present invention, there is a buried well layer formed by high energy implantation, and an impurity layer having a higher concentration than that of the element forming region is disposed between the buried well layer and the substrate surface in at least the well contact region. With this structure, the resistance of the high-resistance layer remaining between the retrograde well layer and the substrate surface can be lowered, and the latch-up can be strengthened.
【0006】[0006]
【実施例】本発明の実施例について、図面を参照して説
明する。なお、以下の説明では簡単のため同一図面を用
いて両導電型のウェル構造を説明する。図1は本発明の
一実施例によるレトログレードウェルの構造を示す。ウ
ェル領域に深いイオン注入層から成る埋込みウェル層3
が形成され、かつウェルコンタクトを取る領域5には、
前記の埋込みウェル層3と基板表面との間に中間の不純
物層4が形成されている。この場合、深い埋込みウェル
層3は、Nチャネル領域では深いP型イオン注入層で、
Pチャネル領域では、深いN型イオン注入層で形成され
各々のウェルの中間の不純物層4は、各埋込みウェル層
3と同一導電型で形成される。次に、本発明の製造方法
について、図2(a)〜(b)を用いて説明する。ま
ず、図2(a)に示すように、シリコン基板1上にフィ
ールド酸化膜2を形成した後、Nチャネルの場合、例え
ばボロンを200KeV以上、Pチャネルの場合、リン
を400KeV以上のエネルギーで、各々の領域に10
12〜1013cm-2程度イオン注入し、埋込みウェル層3を
形成する。なお、各ウェル形成予定領域へのイオン注入
は、通常のフォトリソグラフィ等によって形成したレジ
ストマスク(図示せず)を用いて、所望の領域にのみ行
う。Embodiments of the present invention will be described with reference to the drawings. In the following description, for the sake of simplicity, the well structure of both conductivity types will be described with reference to the same drawing. FIG. 1 shows the structure of a retrograde well according to one embodiment of the present invention. Buried well layer 3 composed of a deep ion implantation layer in the well region
Are formed and the well contact is made in the region 5,
An intermediate impurity layer 4 is formed between the buried well layer 3 and the substrate surface. In this case, the deep buried well layer 3 is a deep P-type ion implantation layer in the N channel region,
In the P channel region, the impurity layer 4 formed of a deep N type ion implantation layer and in the middle of each well is formed to have the same conductivity type as that of each buried well layer 3. Next, the manufacturing method of the present invention will be described with reference to FIGS. First, as shown in FIG. 2A, after forming the field oxide film 2 on the silicon substrate 1, in the case of N-channel, for example, boron is 200 KeV or more, and in the case of P-channel, phosphorus is energy of 400 KeV or more. 10 in each area
Ions are implanted at about 12 to 10 13 cm -2 to form a buried well layer 3. The ion implantation into each well formation planned region is performed only in a desired region using a resist mask (not shown) formed by ordinary photolithography or the like.
【0007】次に図2(b)に示すように、フォトリソ
グラフィ等を用い、ウェルコンタクト領域近傍および素
子分離領域以外をマスクするレジスト層7を形成、これ
をマスクに前記埋込みウェル形成時の注入エネルギー以
下で、1012cm-2程度のイオン注入を行ない、埋込みウ
ェル層上に中間不純物層4を形成する。その後前記イオ
ン注入不純物層の活性化アニールを行ない、以下通常の
工程で、素子形成予定領域には、必要なチャネルドープ
等を行ない素子を完成する。この方法で得られる素子形
成予定領域6およびウェルコン形成予定領域5の不純物
プロファイルを図3(a),(b)に示す。本実施例で
はウェルコン領域の中間不純物濃度が、従来例に比べて
低減でき、かつ素子形成領域の基板濃度は、埋込みウェ
ル層まで、低濃度にできるため、トランジスタのチャネ
ル層の不純物散乱が少なく、かつ基板バイアス効果の小
さい高性能なトランジスタが得られる。なお、上記の実
施例において、中間不純物層4を形成する際のレジスト
マスク7を図2(c)に示すように、ウェルコン形成領
域とトランジスタのチャネル領域を合せて開口するパタ
−ンに形成すると、1回のリソグラフィ工程で、ウェル
コン中間層の形成とトランジスタのチャネルド−プが行
なえるという利点がある。こうして得られたデバイス断
面を図2(d)に示す。また同図(d)のA-A'断面と
B-B'断面に沿っての不純物プロファイルを図5(a)
(b)に示す。この実施例では、ソ−ス、ドレインのn
+層9の基板不純物濃度を図5(a)に示すように低く
できるため、寄生拡散層容量の小さいトランジスタを簡
略化された工程で得ることができる。Next, as shown in FIG. 2B, a resist layer 7 for masking the vicinity of the well contact region and the region other than the element isolation region is formed by using photolithography or the like, and this is used as a mask to perform the implantation for forming the buried well. Ion implantation of about 10 12 cm -2 is performed at an energy level lower than the energy to form the intermediate impurity layer 4 on the buried well layer. After that, activation annealing of the ion-implanted impurity layer is performed, and then, in the usual process, necessary elemental channel doping or the like is performed in the element formation planned region to complete the element. Impurity profiles of the device formation planned region 6 and the wellcon formation planned region 5 obtained by this method are shown in FIGS. 3 (a) and 3 (b). In this embodiment, the intermediate impurity concentration in the well contact region can be reduced as compared with the conventional example, and the substrate concentration in the element forming region can be made low until the buried well layer, so that the impurity scattering in the channel layer of the transistor is small, Moreover, a high-performance transistor with a small substrate bias effect can be obtained. In the above-described embodiment, when the resist mask 7 for forming the intermediate impurity layer 4 is formed in a pattern in which the well contact forming region and the channel region of the transistor are formed together as shown in FIG. 2C. There is an advantage that the wellcon intermediate layer can be formed and the channel doping of the transistor can be performed in one lithography process. The device cross section thus obtained is shown in FIG. Further, FIG. 5A shows the impurity profile along the AA ′ cross section and the BB ′ cross section of FIG. 5D.
It shows in (b). In this embodiment, the source and drain n
Since the substrate impurity concentration of the + layer 9 can be lowered as shown in FIG. 5A, a transistor having a small parasitic diffusion layer capacitance can be obtained in a simplified process.
【0008】[0008]
【発明の効果】以上説明したように本発明によれば、高
エネルギー注入により形成した埋込みウェル層を有する
半導体装置において、少なくともウェルコンタクトを取
る領域に素子形成領域よりも高濃度の不純物層を、埋込
みウェル層と、基板表面との間に配置することにより、
埋込みウェル層と設置電極間の寄生抵抗を、素子特性に
悪影響を与えることなく低下させることができ、ラッチ
アップに強い高速半導体装置を提供することができると
いう効果を有するものである。As described above, according to the present invention, in a semiconductor device having a buried well layer formed by high-energy implantation, an impurity layer having a higher concentration than that of an element forming region is formed in at least a well contact region. By placing it between the buried well layer and the substrate surface,
The parasitic resistance between the buried well layer and the installation electrode can be reduced without adversely affecting the device characteristics, and a high-speed semiconductor device that is resistant to latch-up can be provided.
【図1】本発明の一実施例を示す断面図FIG. 1 is a sectional view showing an embodiment of the present invention.
【図2】本発明の製造方法を示す工程断面図FIG. 2 is a process cross-sectional view showing the manufacturing method of the present invention.
【図3】図1に従って形成した場合の不純物濃度プロフ
ァイルFIG. 3 is an impurity concentration profile when formed according to FIG.
【図4】従来例を示す断面図FIG. 4 is a sectional view showing a conventional example.
【図5】図2の工程断面図の不純物プロファイル5 is an impurity profile of the process sectional view of FIG. 2;
1 シリコン基板 2 フィールド酸化膜 3 埋込みウェル層 4 中間不純物層 1 Silicon Substrate 2 Field Oxide Film 3 Buried Well Layer 4 Intermediate Impurity Layer
Claims (2)
する半導体装置において、Nチャネル,Pチャネルそれ
ぞれのトランジスタ形成部にそれぞれ高濃度の深いP型
イオン注入層および深いN型イオン注入層が形成され、
少なくとも、前記深いイオン注入層により構成された各
ウェルとのコンタクトを取る領域の前記半導体基板に
は、前記深いイオン注入層と基板表面との間に、素子形
成領域よりも高濃度の前記深いイオン注入層と同一導電
型の不純物層が設けられた構造を有することを特徴とす
る半導体装置。1. In a semiconductor device having a complementary MOS field effect transistor, a high-concentration deep P-type ion implantation layer and a high-concentration deep N-type ion implantation layer are formed in N-channel and P-channel transistor forming portions, respectively.
At least in the region of the semiconductor substrate in contact with each well formed by the deep ion implantation layer, between the deep ion implantation layer and the substrate surface, the deep ions having a higher concentration than the element formation region are formed. A semiconductor device having a structure in which an impurity layer having the same conductivity type as the injection layer is provided.
する半導体装置の製造方法において、半導体基板の所望
の領域にフィールド酸化膜を形成する工程と、Nチャネ
ル、Pチャネル各々のウェル形成予定領域に、イオン注
入により、基板の深い領域にそれぞれP型不純物層およ
びN型不純物層から成る埋込みウェル層を形成する工程
と、少なくとも前記ウェル領域のウェル電位を取る領域
には、前記深い埋込みウェル層と、基板表面との間に素
子形成領域よりも高濃度の前記埋込みウェル層と同一導
電型の不純物層を形成する工程とを含むことを特徴とす
る半導体装置の製造方法。2. A method of manufacturing a semiconductor device having a complementary MOS field effect transistor, wherein a step of forming a field oxide film in a desired region of a semiconductor substrate and an ion formation in a well formation planned region of each of N channel and P channel are performed. Forming a buried well layer made of a P-type impurity layer and an N-type impurity layer in a deep region of the substrate by implantation, and forming the deep buried well layer and the substrate in at least a well potential region of the well region. A step of forming an impurity layer having the same conductivity type as that of the buried well layer having a higher concentration than that of the element forming region between the surface and the surface of the element forming region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5185599A JPH0786424A (en) | 1993-06-29 | 1993-06-29 | Semiconductor device and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5185599A JPH0786424A (en) | 1993-06-29 | 1993-06-29 | Semiconductor device and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0786424A true JPH0786424A (en) | 1995-03-31 |
Family
ID=16173625
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5185599A Pending JPH0786424A (en) | 1993-06-29 | 1993-06-29 | Semiconductor device and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0786424A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6332960A (en) * | 1986-07-25 | 1988-02-12 | Mitsubishi Electric Corp | Semiconductor device |
JPH03173172A (en) * | 1989-11-30 | 1991-07-26 | Mitsubishi Electric Corp | Complementary field-effect element and manufacture thereof |
JPH0456164A (en) * | 1990-06-21 | 1992-02-24 | Mitsubishi Electric Corp | Semiconductor integrated circuit device and its manufacture |
-
1993
- 1993-06-29 JP JP5185599A patent/JPH0786424A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6332960A (en) * | 1986-07-25 | 1988-02-12 | Mitsubishi Electric Corp | Semiconductor device |
JPH03173172A (en) * | 1989-11-30 | 1991-07-26 | Mitsubishi Electric Corp | Complementary field-effect element and manufacture thereof |
JPH0456164A (en) * | 1990-06-21 | 1992-02-24 | Mitsubishi Electric Corp | Semiconductor integrated circuit device and its manufacture |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2851753B2 (en) | Semiconductor device and manufacturing method thereof | |
US4306916A (en) | CMOS P-Well selective implant method | |
US5427964A (en) | Insulated gate field effect transistor and method for fabricating | |
JPH0691201B2 (en) | Method for manufacturing CMOS semiconductor device | |
JPH07183393A (en) | Fabrication of semiconductor device | |
KR20020062200A (en) | Semiconductor device and method of fabricating the same | |
JP5762687B2 (en) | Ion implantation method to achieve desired dopant concentration | |
KR0149659B1 (en) | Semiconductor device and method of fabricating the same | |
JP3536693B2 (en) | Semiconductor storage device and method of manufacturing the same | |
KR100324931B1 (en) | Method of Fabricating a Twin Well CMOS Device | |
JPH04239760A (en) | Manufacture of semiconductor device | |
EP0091256B1 (en) | Cmos device | |
JP2745228B2 (en) | Semiconductor device and manufacturing method thereof | |
JP2001284540A (en) | Semiconductor device and its manufacturing method | |
US6791147B1 (en) | Semiconductor memory device and method for manufacturing the same | |
US4987088A (en) | Fabrication of CMOS devices with reduced gate length | |
JPH10135349A (en) | Cmos type semiconductor device and its manufacturing method | |
JP3425043B2 (en) | Method for manufacturing MIS type semiconductor device | |
JP2768751B2 (en) | Method for manufacturing semiconductor device | |
JP2947816B2 (en) | Method for manufacturing semiconductor device | |
KR100220954B1 (en) | Manufacturing method of semiconductor device having a triple well | |
JPH0786424A (en) | Semiconductor device and its manufacture | |
JP2003332461A (en) | Method of manufacturing semiconductor element including triple well structure | |
JPH063808B2 (en) | Method for manufacturing MOS semiconductor device | |
JPH1168124A (en) | Semiconductor device and its manufacture |