JPH0786407A - Multilayered wiring method of integrated circuit - Google Patents

Multilayered wiring method of integrated circuit

Info

Publication number
JPH0786407A
JPH0786407A JP22477393A JP22477393A JPH0786407A JP H0786407 A JPH0786407 A JP H0786407A JP 22477393 A JP22477393 A JP 22477393A JP 22477393 A JP22477393 A JP 22477393A JP H0786407 A JPH0786407 A JP H0786407A
Authority
JP
Japan
Prior art keywords
wiring
integrated circuit
layer
layers
multilayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22477393A
Other languages
Japanese (ja)
Inventor
Shinpei Miura
信平 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22477393A priority Critical patent/JPH0786407A/en
Publication of JPH0786407A publication Critical patent/JPH0786407A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To increase wiring efficiency of the layout of an integrated circuit, and provide a multilayered wiring method of an integrated circuit wherein wiring distance is short, by effectively using each wiring layer, in an integrated circuit wherein multilayered wiring is performed. CONSTITUTION:In the multilayered wiring method of an integrated circuit wherein (m) kinds of wiring layers L1, L2 and L3 ((m) is three or larger positive integer) are formed, the main wiring directions of the (m) kinds of wiring layers L1, L2 and L are made different (n) kinds of wiring directions R1, R2 and R ((n) is positive integer satisfying 3<=<=m).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は集積回路のチップレイア
ウト方法に係り、特に、多層配線を行う集積回路におい
て、各配線層を有効に使用することにより集積回路のレ
イアウトにおける配線効率を向上させた、また配線距離
を短くし得る集積回路の多層配線方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chip layout method for an integrated circuit, and more particularly, in an integrated circuit having multi-layer wiring, the wiring efficiency in the layout of the integrated circuit is improved by effectively using each wiring layer. The present invention also relates to a multilayer wiring method of an integrated circuit that can shorten the wiring distance.

【0002】近年のLSIは、高集積化に伴うチップの
大規模化により、配線層の多層化が進んでいる。そのた
め、配線層の多層化に伴う効率的な配線手法を確立させ
る必要がある。
[0002] In recent LSIs, the wiring layers have become multi-layered due to the increase in the scale of chips accompanying the high integration. Therefore, it is necessary to establish an efficient wiring method with the increase in the number of wiring layers.

【0003】[0003]

【従来の技術】従来の半導体集積回路においては、垂直
に交差する縦横の2方向をメイン配線方向としてレイア
ウトが行われている。ここで、メイン配線方向というの
は、基本的に各配線層に対して決められる配線方向のこ
とを言い、各配線層の配線方向は完全に1方向ではな
く、部分的には(配線が混雑している部分等では)異な
る方向にも配線がなされるのが一般的である。
2. Description of the Related Art In a conventional semiconductor integrated circuit, layout is performed with two vertical and horizontal directions intersecting vertically as main wiring directions. Here, the main wiring direction means a wiring direction basically determined for each wiring layer, and the wiring direction of each wiring layer is not completely one direction but partially (wiring is crowded). It is general that the wiring is made in different directions (for example, in the portion where it is formed).

【0004】例えば3層配線の場合には、図5(a)及
び(b)に示すように、第1層目L11と第2層目L1
2が垂直に交差するような配線方向R11及びR12を
メインの配線方向とし、更に、第2層目L12と第3層
目L13が垂直に交差するような配線方向R12及びR
11をメインの配線方向としていた。結果として、第1
層目L11と第3層目L13が同じ方向をメインの配線
方向R11とすることとなる。このような場合に、第1
層目L11及び第2層目L12を基本的な配線に使用し
て、第3層目L13を混雑している部分について補助的
に使用することが多かった。
For example, in the case of a three-layer wiring, as shown in FIGS. 5A and 5B, the first layer L11 and the second layer L1
The wiring directions R11 and R12 in which 2 vertically intersects are the main wiring directions, and further, the wiring directions R12 and R12 in which the second layer L12 and the third layer L13 vertically intersect.
11 was the main wiring direction. As a result, the first
The same direction of the layer L11 and the third layer L13 is the main wiring direction R11. In such cases, the first
In many cases, the layer L11 and the second layer L12 are used for basic wiring, and the third layer L13 is used as a supplement for a congested portion.

【0005】[0005]

【発明が解決しようとする課題】従って、従来の多層配
線を行う集積回路では、各配線層、特に第3層目以降の
配線層における配線は、該配線層を有効に使用しておら
ず、レイアウトの配線効率が悪いという問題があった。
Therefore, in the conventional integrated circuit for multi-layer wiring, the wiring layers, particularly the wirings in the third and subsequent wiring layers, do not effectively use the wiring layers. There was a problem that the wiring efficiency of the layout was poor.

【0006】本発明は、上記問題点を解決するもので、
多層配線を行う集積回路において、各配線層を有効に使
用することにより、集積回路のレイアウトにおける配線
効率を向上させ、且つ配線距離の短い集積回路の多層配
線方法を提供することを目的とする。
The present invention solves the above problems.
It is an object of the present invention to provide a multilayer wiring method for an integrated circuit having a short wiring distance by improving the wiring efficiency in the layout of the integrated circuit by effectively using each wiring layer in the integrated circuit performing the multilayer wiring.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明の第1の特徴の集積回路の多層配線方法は、
図1に示す如く、m層(mは3以上の正整数)の配線層
L1,L2,及びL3を備える集積回路の多層配線方法
において、前記m層の配線層L1,L2,及びL3のメ
インの配線方向は、異なるn種(nは3≦n≦mの正整
数)の配線方向R1,R2,及びR3である。
In order to solve the above-mentioned problems, a method of multilayer wiring of an integrated circuit according to the first feature of the present invention is
As shown in FIG. 1, in a multilayer wiring method of an integrated circuit including m layers (m is a positive integer of 3 or more) of wiring layers L1, L2, and L3, the main wiring layers of the m layers L1, L2, and L3 are The wiring directions of are different n types (n is a positive integer of 3 ≦ n ≦ m) of the wiring directions R1, R2, and R3.

【0008】また、本発明の第2の特徴の集積回路の多
層配線方法は、請求項1に記載の集積回路の多層配線方
法において、前記n種の配線方向R1,R2,及びR3
は、お互いに等角度で交差する。
According to a second aspect of the present invention, there is provided a multilayer wiring method for an integrated circuit according to claim 1, wherein the n types of wiring directions R1, R2 and R3 are provided.
Intersect each other at an equal angle.

【0009】また、本発明の第3の特徴の集積回路の多
層配線方法は、請求項1または2に記載の集積回路の多
層配線方法において、前記集積回路は、論理セルを備え
るゲートアレイ、スタンダードセル等の集積回路であ
る。
According to a third aspect of the present invention, there is provided a multilayer wiring method of an integrated circuit according to claim 1 or 2, wherein the integrated circuit includes a gate array including logic cells and a standard. An integrated circuit such as a cell.

【0010】更に、本発明の第4の特徴の集積回路の多
層配線方法は、請求項3に記載の集積回路の多層配線方
法において、前記集積回路の多層配線方法は、前記論理
セルまたは前記論理セルの端子をグリッドと見做し、該
グリッド間の間隔が等しいアイソメトリック・グリッド
を用いて行われる。
A fourth aspect of the present invention is a multilayer wiring method for an integrated circuit according to claim 3, wherein the multilayer wiring method for the integrated circuit is the logic cell or the logic cell. The terminals of the cells are regarded as grids, and isometric grids are used in which the intervals between the grids are equal.

【0011】[0011]

【作用】本発明の第1及び第2の特徴の集積回路の多層
配線方法では、図1に示す如く、m層(mは3以上の正
整数であり、図1ではm=3)の配線層L1,L2,及
びL3を備える集積回路の多層配線方法において、前記
m層の配線層のメインの配線方向を、それぞれ異なるn
種(nは3≦n≦mの正整数であり、図1ではn=3)
の配線方向R1,R2,及びR3とし、特に、第2の特
徴の集積回路の多層配線方法では、n種の配線方向R
1,R2,及びR3がお互いに等角度で交差するように
している。
In the multilayer wiring method of the integrated circuit having the first and second characteristics of the present invention, as shown in FIG. 1, wiring of m layers (m is a positive integer of 3 or more, and m = 3 in FIG. 1). In a multilayer wiring method of an integrated circuit including layers L1, L2, and L3, the main wiring directions of the m wiring layers are different from each other by n
Species (n is a positive integer of 3 ≦ n ≦ m, and n = 3 in FIG. 1)
Wiring directions R1, R2, and R3, and in particular, in the multilayer wiring method of the integrated circuit of the second feature, n kinds of wiring directions R
1, R2, and R3 intersect each other at an equal angle.

【0012】また、m=5,n=3とした場合には、5
層の配線層L1〜L5を備える集積回路において、前記
m層の配線層のメインの配線方向を、それぞれ3種の配
線方向R1,R2,R3,R1,及びR2として配線さ
れることになる。
When m = 5 and n = 3, 5
In the integrated circuit including the wiring layers L1 to L5, the main wiring directions of the m wiring layers are wired as three kinds of wiring directions R1, R2, R3, R1, and R2, respectively.

【0013】即ち、図1において、n種の配線方向R
1,R2,及びR3が均等の角度で交差するn層の配線
層(第1、第2、及び第3層)L1,L2,及びL3を
用いて配線を行うことにより、各配線層を有効に使用す
ることができ、集積回路のレイアウトにおける配線効率
を向上させることができる。また斜め配線が可能となる
ため、従来の配線に比べて配線距離の短いレイアウトを
実現できる。
That is, in FIG. 1, n kinds of wiring directions R
Each wiring layer is made effective by wiring using n wiring layers (first, second, and third layers) L1, L2, and L3 in which 1, 1, R2, and R3 intersect at an equal angle. It is possible to improve the wiring efficiency in the layout of the integrated circuit. Also, since diagonal wiring is possible, a layout having a shorter wiring distance than conventional wiring can be realized.

【0014】また、本発明の第3及び第4の特徴の集積
回路の多層配線方法では、論理セルを備えるゲートアレ
イ、スタンダードセル等の集積回路に対し、レイアウト
のCADを行うシステム上で論理セルまたは論理セルの
端子をグリッドと見做し、該グリッド間の間隔が等しい
アイソメトリック・グリッドを用いて配線決定が行われ
る。
According to the third and fourth aspects of the present invention, there is provided a multilayer wiring method for an integrated circuit, wherein a logic cell is provided on a system for performing layout CAD on an integrated circuit such as a gate array or a standard cell including the logic cell. Alternatively, the terminals of the logic cells are regarded as grids, and wiring is determined by using an isometric grid in which the intervals between the grids are equal.

【0015】これにより、レイアウト設計の自動化が図
れると共に、各配線層を有効に使用することができ、集
積回路のレイアウトにおける配線効率を向上させること
ができる。
As a result, the layout design can be automated, each wiring layer can be effectively used, and the wiring efficiency in the layout of the integrated circuit can be improved.

【0016】[0016]

【実施例】次に、本発明に係る実施例を図面に基づいて
説明する。第1実施例 図1に本発明の第1実施例に係る集積回路の多層配線方
法の概念説明図を示す。図1(a)は立体図、図1
(b)は平面図である。本実施例の集積回路は3層の配
線層を用いて配線される。集積回路としては、論理セル
を備えるゲートアレイ、スタンダードセル等の集積回路
を想定している。
Embodiments of the present invention will now be described with reference to the drawings. First Embodiment FIG. 1 is a conceptual explanatory diagram of a multilayer wiring method for an integrated circuit according to a first embodiment of the present invention. FIG. 1A is a three-dimensional view, and FIG.
(B) is a plan view. The integrated circuit of this embodiment is wired using three wiring layers. As the integrated circuit, a gate array including logic cells, a standard cell, and the like are assumed.

【0017】同図において、L1は第1層目の配線、L
2は第2層目の配線、L3は第3層目の配線、R1は第
1層目L1のメイン配線方向、R2は第2層目L2の配
線方向、R3は第3層目L3の配線方向を、それぞれ表
す。
In the figure, L1 is the wiring of the first layer, L1
2 is the wiring of the second layer, L3 is the wiring of the third layer, R1 is the main wiring direction of the first layer L1, R2 is the wiring direction of the second layer L2, and R3 is the wiring of the third layer L3. Each direction is shown.

【0018】本実施例の集積回路の多層配線方法は、論
理セルまたは論理セルの端子をグリッドと見做し、該グ
リッド間の間隔が等しいアイソメトリック・グリッドを
用いて行われる。図2(a)は、本実施例におけるアイ
ソメトリック・グリッドを表す。各層の配線方向R1,
R2,及びR3は、お互いに等角度(60[deg ])で
交差している。
The multilayer wiring method of the integrated circuit of this embodiment is performed by using the isometric grid in which the logic cells or the terminals of the logic cells are regarded as grids and the intervals between the grids are equal. FIG. 2A shows an isometric grid in this embodiment. Wiring direction R1 of each layer
R2 and R3 intersect each other at an equal angle (60 [deg]).

【0019】図2(b)は、ゲートアレイ、スタンダー
ドセル等の集積回路における配線例を示す。図中、Aは
論理セルであり、12個の論理セルから成るセル列Bを
5列備えた構成である。また、第1層目L1の配線方向
R1は、セル列に対して垂直方向である。
FIG. 2B shows an example of wiring in an integrated circuit such as a gate array and a standard cell. In the figure, A is a logic cell, which has a configuration including five cell rows B each including 12 logic cells. Further, the wiring direction R1 of the first layer L1 is a direction perpendicular to the cell column.

【0020】同図において、ノードM1及びノードN1
間の配線は、第1層目の配線L1〜第2層目の配線L2
〜第3層目の配線L3〜第2層目の配線L2〜第1層目
の配線L1により配線され、また、ノードM2及びノー
ドN2間の配線は、第1層目の配線L1〜第2層目の配
線L2〜第1層目の配線L1により配線されている。ま
た、ノードN1近傍のアイソメトリック・グリッド及び
配線を同図(c)に示す。
In the figure, node M1 and node N1
The wiring between them is the wiring L1 of the first layer to the wiring L2 of the second layer.
-The wiring L3 of the third layer-the wiring L2 of the second layer-the wiring L1 of the first layer, and the wiring between the node M2 and the node N2 is the wiring L1 of the first layer Wiring is performed by the wiring L2 of the first layer to the wiring L1 of the first layer. Further, the isometric grid and wiring near the node N1 are shown in FIG.

【0021】このように、本実施例による集積回路の多
層配線方法では、各層の配線方向R1,R2,及びR3
が均等の角度で交差する第1、第2、及び第3層L1,
L2,及びL3を用いて配線し、またCADシステム上
では、論理セルまたは論理セルの端子をグリッドと見做
したアイソメトリック・グリッドの構造モデルを使用し
て、配線決定を行うことにより、各配線層を有効に使用
することができ、集積回路のレイアウトにおける配線効
率を向上させることができる。
As described above, in the multilayer wiring method for the integrated circuit according to the present embodiment, the wiring directions R1, R2, and R3 of the respective layers are set.
The first, second, and third layers L1, which intersect at equal angles
Wiring is performed by using L2 and L3, and on the CAD system, the wiring model is determined by using the isometric grid structural model in which the logic cell or the terminal of the logic cell is regarded as a grid. Can be effectively used, and the wiring efficiency in the layout of the integrated circuit can be improved.

【0022】また、本実施例では斜め配線が可能となる
ため、従来の配線に比べて配線距離の短いレイアウトを
実現できる。第2実施例 図3に本発明の第2実施例に係る集積回路の多層配線方
法の説明図を示す。本実施例においても、第1実施例と
同様の(図1に示す)3層の配線層を用いて配線され
る。
Further, in this embodiment, since diagonal wiring is possible, it is possible to realize a layout having a shorter wiring distance than the conventional wiring. Second Embodiment FIG. 3 shows an explanatory view of a multilayer wiring method of an integrated circuit according to a second embodiment of the present invention. Also in this embodiment, wiring is performed using the same three wiring layers (shown in FIG. 1) as in the first embodiment.

【0023】図3(a)は、本実施例におけるアイソメ
トリック・グリッドを表す。第1、第2、及び第3層L
1,L2,及びL3の各層の配線方向R1,R2,及び
R3は、お互いに等角度(60[deg ])で交差してい
る。
FIG. 3A shows an isometric grid in this embodiment. First, second, and third layers L
The wiring directions R1, R2, and R3 of the layers 1, L2, and L3 intersect each other at an equal angle (60 [deg]).

【0024】図3(b)は、ゲートアレイ、スタンダー
ドセル等の集積回路における配線例を示す。第2層目L
2の配線方向R2は、セル列に対して同方向である。同
図において、ノードM1及びノードN1間の配線は、第
1層目の配線L1〜第2層目の配線L2〜第3層目の配
線L3により配線され、また、ノードM2及びノードN
2間の配線は、第1層目の配線L1〜第2層目の配線L
2〜第1層目の配線L1により配線されている。また、
ノードN1近傍のアイソメトリック・グリッド及び配線
を同図(c)に示す。
FIG. 3B shows an example of wiring in an integrated circuit such as a gate array and a standard cell. Second layer L
The wiring direction R2 of 2 is the same direction as the cell row. In the figure, the wiring between the node M1 and the node N1 is wired by the wiring L1 of the first layer to the wiring L2 of the second layer to the wiring L3 of the third layer, and also the node M2 and the node N.
The wiring between the two is the wiring L of the first layer to the wiring L of the second layer.
It is wired by the second to first layer wirings L1. Also,
The isometric grid and wiring near the node N1 is shown in FIG.

【0025】このように、本実施例による集積回路の多
層配線方法においても第1実施例と同様に、各配線層を
有効に使用することができ、集積回路のレイアウトにお
ける配線効率を向上させることができ、また斜め配線が
可能となることから、従来の配線に比べて配線距離の短
いレイアウトを実現できる。
As described above, in the multilayer wiring method for an integrated circuit according to this embodiment, each wiring layer can be effectively used as in the first embodiment, and the wiring efficiency in the layout of the integrated circuit can be improved. In addition, since diagonal wiring is possible, a layout having a shorter wiring distance than conventional wiring can be realized.

【0026】尚、第1及び第2実施例において、第i層
目Liの配線方向Riのセル列に対する方向性は、上記
内容に限定されず、どのような組み合わせであっても構
わない。第3実施例 図4に本発明の第3実施例に係る集積回路の多層配線方
法の説明図を示す。
In the first and second embodiments, the directivity of the i-th layer Li in the wiring direction Ri with respect to the cell row is not limited to the above description, and any combination may be used. Third Embodiment FIG. 4 shows an explanatory view of a multilayer wiring method of an integrated circuit according to a third embodiment of the present invention.

【0027】同図において、R1は第1層目L1のメイ
ン配線方向、R2は第2層目L2の配線方向、R3は第
3層目L3の配線方向、R4は第4層目L4の配線方向
を、それぞれ表す。
In the figure, R1 is the main wiring direction of the first layer L1, R2 is the wiring direction of the second layer L2, R3 is the wiring direction of the third layer L3, and R4 is the wiring of the fourth layer L4. Each direction is shown.

【0028】本実施例の集積回路の多層配線方法は、論
理セルまたは論理セルの端子をグリッドと見做し、従来
と同様の平方グリッドを用いて行われる。図4(a)
は、本実施例における平方グリッドを表す。各層の配線
方向R1,R2,R3,及びR4は、お互いに等角度
(45[deg ])で交差している。
The multilayer wiring method of the integrated circuit of this embodiment is performed by using the same square grid as the conventional one, by regarding the logic cell or the terminal of the logic cell as a grid. Figure 4 (a)
Represents the square grid in this embodiment. The wiring directions R1, R2, R3, and R4 of the respective layers intersect each other at an equal angle (45 [deg]).

【0029】図4(b)は、ゲートアレイ、スタンダー
ドセル等の集積回路における配線例を示す。図中、Aは
論理セルであり、12個の論理セルから成るセル列Bを
5列備えた構成である。また、第1層目L1の配線方向
R1はセル列に対して垂直方向で、第2層目L2の配線
方向R2はセル列に対して同じ方向である。
FIG. 4B shows an example of wiring in an integrated circuit such as a gate array and a standard cell. In the figure, A is a logic cell, which has a configuration including five cell rows B each including 12 logic cells. The wiring direction R1 of the first layer L1 is perpendicular to the cell column, and the wiring direction R2 of the second layer L2 is the same direction to the cell column.

【0030】同図において、ノードM1及びノードN1
間の配線は、第1層目の配線L1〜第2層目の配線L2
〜第4層目の配線L4〜第2層目の配線L2〜第1層目
の配線L1により配線され、また、ノードM2及びノー
ドN2間の配線は、第1層目の配線L1〜第2層目の配
線L2〜第3層目L3の配線〜第2層目L2の配線〜第
1層目の配線L1により配線されている。また、ノード
N1近傍のアイソメトリック・グリッド及び配線を同図
(c)に示す。
In the figure, node M1 and node N1
The wiring between them is the wiring L1 of the first layer to the wiring L2 of the second layer.
-The wiring L4 of the fourth layer-the wiring L2 of the second layer-the wiring L1 of the first layer, and the wiring between the node M2 and the node N2 is the wiring L1 of the first layer Wiring is performed by the wiring L2 of the first layer, the wiring L3 of the third layer, the wiring L2 of the second layer, and the wiring L1 of the first layer. Further, the isometric grid and wiring near the node N1 are shown in FIG.

【0031】このように、本実施例による集積回路の多
層配線方法では、各層の配線方向R1,R2,R3,及
びR4が均等の角度で交差する第1、第2、第3、及び
第4層L1,L2,L3,及びL4を用いて配線し、ま
たCADシステム上では、論理セルまたは論理セルの端
子をグリッドと見做した平方グリッドの構造モデルを使
用して、配線決定を行うことにより、各配線層を有効に
使用することができ、集積回路のレイアウトにおける配
線効率を向上させることができる。
As described above, in the multilayer wiring method of the integrated circuit according to the present embodiment, the wiring directions R1, R2, R3, and R4 of the respective layers intersect at an equal angle, that is, the first, second, third, and fourth wirings. By using the layers L1, L2, L3, and L4 for wiring, and using a square grid structural model in which a logic cell or terminals of the logic cell is regarded as a grid on a CAD system, wiring is determined. The wiring layers can be effectively used, and the wiring efficiency in the layout of the integrated circuit can be improved.

【0032】また、本実施例では斜め配線が可能となる
ため、従来の配線に比べて配線距離の短いレイアウトを
実現できる。
In addition, since diagonal wiring is possible in this embodiment, a layout having a shorter wiring distance than conventional wiring can be realized.

【0033】[0033]

【発明の効果】以上説明したように、本発明によれば、
n種の配線方向が均等の角度で交差するm層の配線層を
用いて配線し、またCADシステム上では、論理セルま
たは論理セルの端子をグリッドと見做した平方グリッド
の構造モデルを使用して配線決定を行うこととしたの
で、各配線層を有効に使用することができ、集積回路の
レイアウトにおける配線効率を向上させることができ、
また斜め配線が可能となるため、従来の配線に比べて配
線距離の短いレイアウトを実現でき、結果として、集積
回路のレイアウトにおける配線効率を向上させ、且つ配
線距離の短い集積回路の多層配線方法を提供することが
できる。
As described above, according to the present invention,
Wiring is performed using m wiring layers in which n kinds of wiring directions intersect at equal angles, and a CAD system uses a square grid structural model in which logic cells or logic cell terminals are regarded as grids. Since the wiring is decided by using each wiring layer, the wiring layers can be effectively used, and the wiring efficiency in the layout of the integrated circuit can be improved.
Further, since diagonal wiring is possible, a layout having a shorter wiring distance than that of conventional wiring can be realized, and as a result, the wiring efficiency in the layout of the integrated circuit is improved, and a multilayer wiring method for an integrated circuit having a short wiring distance is provided. Can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る集積回路の多層配線
方法の概念説明図であり、図1(a)は立体図、図1
(b)は平面図である。
FIG. 1 is a conceptual explanatory diagram of a multilayer wiring method of an integrated circuit according to a first embodiment of the present invention, FIG.
(B) is a plan view.

【図2】第1実施例の集積回路の多層配線方法の説明図
であり、図2(a)はアイソメトリック・グリッドの説
明図、図2(b)はゲートアレイ、スタンダードセル等
の集積回路における配線例、図2(c)はノードN1近
傍のアイソメトリック・グリッド及び配線を説明図であ
る。
2A and 2B are explanatory views of a multilayer wiring method of an integrated circuit of the first embodiment, FIG. 2A is an explanatory view of an isometric grid, and FIG. 2B is an integrated circuit such as a gate array and a standard cell. An example of wiring, FIG. 2C is an explanatory diagram of an isometric grid and wiring near the node N1.

【図3】本発明の第2実施例の集積回路の多層配線方法
の説明図であり、図3(a)はアイソメトリック・グリ
ッドの説明図、図3(b)は集積回路における配線例、
図3(c)はノードN1近傍のアイソメトリック・グリ
ッド及び配線を説明図である。
3A and 3B are explanatory diagrams of a multilayer wiring method of an integrated circuit according to a second embodiment of the present invention, FIG. 3A is an explanatory diagram of an isometric grid, and FIG. 3B is a wiring example in an integrated circuit;
FIG. 3C is an explanatory diagram of the isometric grid and wiring near the node N1.

【図4】本発明の第3実施例の集積回路の多層配線方法
の説明図であり、図4(a)は平方グリッドの説明図、
図4(b)は集積回路における配線例、図4(c)はノ
ードN1近傍のアイソメトリック・グリッド及び配線を
説明図である。
FIG. 4 is an explanatory view of a multilayer wiring method of an integrated circuit of a third embodiment of the present invention, FIG. 4 (a) is an explanatory view of a square grid,
FIG. 4B is an illustration of wiring in the integrated circuit, and FIG. 4C is an illustration of an isometric grid and wiring near the node N1.

【図5】従来の集積回路の多層配線方法の概念説明図で
あり、図5(a)は立体図、図5(b)は平面図であ
る。
5A and 5B are conceptual explanatory diagrams of a conventional multilayer wiring method for an integrated circuit, FIG. 5A is a three-dimensional view, and FIG. 5B is a plan view.

【符号の説明】[Explanation of symbols]

L1,L2,L3,L4…第1、第2、第3、及び第4
層(目の配線) R1,R2,R3,R4…第1、第2、第3、及び第4
層の配線方向 A…論理セル B…セル列 M1,M2,N1,N2…ノード
L1, L2, L3, L4 ... First, second, third, and fourth
Layer (eye wiring) R1, R2, R3, R4 ... First, second, third, and fourth
Wiring direction of layers A ... Logic cell B ... Cell column M1, M2, N1, N2 ... Node

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/822 8832−4M H01L 27/04 D ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H01L 21/822 8832-4M H01L 27/04 D

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 m層(mは3以上の正整数)の配線層
(L1,L2,及びL3)を備える集積回路の多層配線
方法において、 前記m層の配線層(L1,L2,及びL3)のメインの
配線方向は、異なるn種(nは3≦n≦mの正整数)の
配線方向(R1,R2,及びR3)であることを特徴と
する集積回路の多層配線方法。
1. A multilayer wiring method for an integrated circuit, comprising m layers (m is a positive integer of 3 or more) of wiring layers (L1, L2, and L3), comprising: m layers of wiring layers (L1, L2, and L3). The main wiring direction of) is a wiring direction of different n types (n is a positive integer of 3 ≦ n ≦ m) (R1, R2, and R3), which is a multilayer wiring method of an integrated circuit.
【請求項2】 前記n種の配線方向(R1,R2,及び
R3)は、お互いに等角度で交差することを特徴とする
請求項1に記載の集積回路の多層配線方法。
2. The multi-layer wiring method for an integrated circuit according to claim 1, wherein the n kinds of wiring directions (R1, R2, and R3) intersect each other at an equal angle.
【請求項3】 前記集積回路は、論理セルを備えるゲー
トアレイ、スタンダードセル等の集積回路であることを
特徴とする請求項1または2に記載の集積回路の多層配
線方法。
3. The multilayer wiring method for an integrated circuit according to claim 1, wherein the integrated circuit is an integrated circuit such as a gate array including logic cells and a standard cell.
【請求項4】 前記集積回路の多層配線方法は、前記論
理セルまたは前記論理セルの端子をグリッドと見做し、
該グリッド間の間隔が等しいアイソメトリック・グリッ
ドを用いて行われることを特徴とする請求項3に記載の
集積回路多層配線方法。
4. The multilayer wiring method of the integrated circuit, wherein the logic cell or the terminal of the logic cell is regarded as a grid,
4. The integrated circuit multilayer wiring method according to claim 3, wherein the method is performed by using an isometric grid having an equal interval between the grids.
JP22477393A 1993-09-09 1993-09-09 Multilayered wiring method of integrated circuit Withdrawn JPH0786407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22477393A JPH0786407A (en) 1993-09-09 1993-09-09 Multilayered wiring method of integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22477393A JPH0786407A (en) 1993-09-09 1993-09-09 Multilayered wiring method of integrated circuit

Publications (1)

Publication Number Publication Date
JPH0786407A true JPH0786407A (en) 1995-03-31

Family

ID=16818993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22477393A Withdrawn JPH0786407A (en) 1993-09-09 1993-09-09 Multilayered wiring method of integrated circuit

Country Status (1)

Country Link
JP (1) JPH0786407A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6745379B2 (en) 2001-08-23 2004-06-01 Cadence Design Systems, Inc. Method and apparatus for identifying propagation for routes with diagonal edges
US6795958B2 (en) 2001-08-23 2004-09-21 Cadence Design Systems, Inc. Method and apparatus for generating routes for groups of related node configurations
US6802049B2 (en) 2000-12-06 2004-10-05 Cadence Design Systems, Inc. Method and apparatus for computing placement costs by calculating bend values of connection graphs that model interconnect line topologies
US6848091B2 (en) 2000-12-06 2005-01-25 Cadence Design Systems, Inc. Partitioning placement method and apparatus
US6859916B1 (en) 2001-06-03 2005-02-22 Cadence Design Systems, Inc. Polygonal vias
US6882055B1 (en) 2001-06-03 2005-04-19 Cadence Design Systems, Inc. Non-rectilinear polygonal vias
US6889372B1 (en) 2000-07-15 2005-05-03 Cadence Design Systems Inc. Method and apparatus for routing
US6892371B1 (en) 2002-01-22 2005-05-10 Cadence Design Systems, Inc. Method and apparatus for performing geometric routing
US6895569B1 (en) 2001-06-03 2005-05-17 Candence Design Systems, Inc. IC layout with non-quadrilateral Steiner points
US6915501B2 (en) 2001-01-19 2005-07-05 Cadence Design Systems, Inc. LP method and apparatus for identifying routes
US6944841B1 (en) 2002-01-22 2005-09-13 Cadence Design Systems, Inc. Method and apparatus for proportionate costing of vias
US6951006B1 (en) 2002-01-22 2005-09-27 Cadence Design Systems, Inc. Decomposing IC regions and embedding routes
US6951005B1 (en) 2001-06-03 2005-09-27 Cadence Design Systems, Inc. Method and apparatus for selecting a route for a net based on the impact on other nets
US6976238B1 (en) 2001-06-03 2005-12-13 Cadence Design Systems, Inc. Circular vias and interconnect-line ends
US7003752B2 (en) 2002-11-18 2006-02-21 Cadence Design Systems, Inc. Method and apparatus for routing
US7013445B1 (en) 2002-12-31 2006-03-14 Cadence Design Systems, Inc. Post processor for optimizing manhattan integrated circuits placements into non manhattan placements
US7047513B2 (en) 2002-11-18 2006-05-16 Cadence Design Systems, Inc. Method and apparatus for searching for a three-dimensional global path
US7055120B2 (en) 2000-12-06 2006-05-30 Cadence Design Systems, Inc. Method and apparatus for placing circuit modules
US7073150B2 (en) 2000-12-07 2006-07-04 Cadence Design Systems, Inc. Hierarchical routing method and apparatus that use diagonal routes
US7080336B2 (en) 2000-12-06 2006-07-18 Cadence Design Systems, Inc. Method and apparatus for computing placement costs
US7096449B1 (en) 2002-01-22 2006-08-22 Cadence Design Systems, Inc. Layouts with routes with different widths in different directions on the same layer, and method and apparatus for generating such layouts
US7171635B2 (en) 2002-11-18 2007-01-30 Cadence Design Systems, Inc. Method and apparatus for routing
US7310793B1 (en) 2001-06-03 2007-12-18 Cadence Design Systems, Inc. Interconnect lines with non-rectilinear terminations
US7398498B2 (en) 2001-08-23 2008-07-08 Cadence Design Systems, Inc. Method and apparatus for storing routes for groups of related net configurations

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6889372B1 (en) 2000-07-15 2005-05-03 Cadence Design Systems Inc. Method and apparatus for routing
US7080336B2 (en) 2000-12-06 2006-07-18 Cadence Design Systems, Inc. Method and apparatus for computing placement costs
US6802049B2 (en) 2000-12-06 2004-10-05 Cadence Design Systems, Inc. Method and apparatus for computing placement costs by calculating bend values of connection graphs that model interconnect line topologies
US6826737B2 (en) 2000-12-06 2004-11-30 Cadence Design Systems, Inc. Recursive partitioning placement method and apparatus
US6848091B2 (en) 2000-12-06 2005-01-25 Cadence Design Systems, Inc. Partitioning placement method and apparatus
US7055120B2 (en) 2000-12-06 2006-05-30 Cadence Design Systems, Inc. Method and apparatus for placing circuit modules
US7073150B2 (en) 2000-12-07 2006-07-04 Cadence Design Systems, Inc. Hierarchical routing method and apparatus that use diagonal routes
US6915501B2 (en) 2001-01-19 2005-07-05 Cadence Design Systems, Inc. LP method and apparatus for identifying routes
US6882055B1 (en) 2001-06-03 2005-04-19 Cadence Design Systems, Inc. Non-rectilinear polygonal vias
US7310793B1 (en) 2001-06-03 2007-12-18 Cadence Design Systems, Inc. Interconnect lines with non-rectilinear terminations
US6951005B1 (en) 2001-06-03 2005-09-27 Cadence Design Systems, Inc. Method and apparatus for selecting a route for a net based on the impact on other nets
US6976238B1 (en) 2001-06-03 2005-12-13 Cadence Design Systems, Inc. Circular vias and interconnect-line ends
US6895569B1 (en) 2001-06-03 2005-05-17 Candence Design Systems, Inc. IC layout with non-quadrilateral Steiner points
US6859916B1 (en) 2001-06-03 2005-02-22 Cadence Design Systems, Inc. Polygonal vias
US6745379B2 (en) 2001-08-23 2004-06-01 Cadence Design Systems, Inc. Method and apparatus for identifying propagation for routes with diagonal edges
US7398498B2 (en) 2001-08-23 2008-07-08 Cadence Design Systems, Inc. Method and apparatus for storing routes for groups of related net configurations
US7155697B2 (en) 2001-08-23 2006-12-26 Cadence Design Systems, Inc. Routing method and apparatus
US6795958B2 (en) 2001-08-23 2004-09-21 Cadence Design Systems, Inc. Method and apparatus for generating routes for groups of related node configurations
US7096449B1 (en) 2002-01-22 2006-08-22 Cadence Design Systems, Inc. Layouts with routes with different widths in different directions on the same layer, and method and apparatus for generating such layouts
US6951006B1 (en) 2002-01-22 2005-09-27 Cadence Design Systems, Inc. Decomposing IC regions and embedding routes
US6944841B1 (en) 2002-01-22 2005-09-13 Cadence Design Systems, Inc. Method and apparatus for proportionate costing of vias
US6892371B1 (en) 2002-01-22 2005-05-10 Cadence Design Systems, Inc. Method and apparatus for performing geometric routing
US7047513B2 (en) 2002-11-18 2006-05-16 Cadence Design Systems, Inc. Method and apparatus for searching for a three-dimensional global path
US7003752B2 (en) 2002-11-18 2006-02-21 Cadence Design Systems, Inc. Method and apparatus for routing
US7171635B2 (en) 2002-11-18 2007-01-30 Cadence Design Systems, Inc. Method and apparatus for routing
US7013445B1 (en) 2002-12-31 2006-03-14 Cadence Design Systems, Inc. Post processor for optimizing manhattan integrated circuits placements into non manhattan placements

Similar Documents

Publication Publication Date Title
JPH0786407A (en) Multilayered wiring method of integrated circuit
US6407434B1 (en) Hexagonal architecture
JP2605968B2 (en) Semiconductor integrated circuit and method of forming the same
JPH09162279A (en) Semiconductor integrated circuit device and manufacture thereof
JPH02262354A (en) Semiconductor integrated circuit device and wiring method thereof
JPH0750817B2 (en) Wiring interconnection structure
JPS59163837A (en) Semiconductor integrated circuit
JPS61292341A (en) Semiconductor integrated circuit
JP2001306641A (en) Automatic arranging and wiring method for semiconductor integrated circuit
JP3281234B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP3001533B1 (en) Semiconductor integrated circuit and layout method thereof
JPH0630376B2 (en) Method for manufacturing semiconductor device
JPS59165436A (en) Semiconductor integrated circuit device
JP2002100732A (en) Method for forming capacitive element
JPS59232442A (en) Semiconductor integrated circuit
JPS6247149A (en) Manufacture of semiconductor integrated circuit
JPH0786414A (en) Semiconductor device
JP2947219B2 (en) Wiring structure of standard cell type semiconductor integrated circuit
JPS62273751A (en) Integrated circuit
JP2587611B2 (en) Electronic equipment
JPH05259415A (en) Gate array
JP3386004B2 (en) Semiconductor integrated circuit device
JPH0443665A (en) Semiconductor device and its manufacture
JPS62210641A (en) Interconnection method for semiconductor integrated circuit
JPH1131787A (en) Semiconductor integrated circuit device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001128