JPH0786249A - Dry etching method - Google Patents

Dry etching method

Info

Publication number
JPH0786249A
JPH0786249A JP5231268A JP23126893A JPH0786249A JP H0786249 A JPH0786249 A JP H0786249A JP 5231268 A JP5231268 A JP 5231268A JP 23126893 A JP23126893 A JP 23126893A JP H0786249 A JPH0786249 A JP H0786249A
Authority
JP
Japan
Prior art keywords
gas
film
dry etching
etching method
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5231268A
Other languages
Japanese (ja)
Other versions
JP3161888B2 (en
Inventor
Masatoshi Oyama
正俊 尾山
Hitoaki Sato
仁昭 佐藤
Takamitsu Kanekiyo
任光 金清
Hidenori Takei
秀則 武居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23126893A priority Critical patent/JP3161888B2/en
Priority to TW083108442A priority patent/TW256935B/zh
Priority to KR1019940023354A priority patent/KR950009953A/en
Publication of JPH0786249A publication Critical patent/JPH0786249A/en
Application granted granted Critical
Publication of JP3161888B2 publication Critical patent/JP3161888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32135Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only
    • H01L21/32136Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by vapour etching only using plasmas

Abstract

PURPOSE:To make it possible to make etching which provides both fine workability and high selectivity in etching an aluminum group film by making etching processing with the plasma of a mixed gas of a halogen gas and a fluorocarbon gas which includes no chlorine. CONSTITUTION:A wafer having an aluminum-contained film 2 is etching- processing with the plasma of a mixed gas of halogen gas and fluorocarbon gas which includes no chlorine. More specifically, a substrate oxide film 3 is formed on a silicon board 4 where an aluminum alloy film 2 comprising Al-Si-Cu is formed thereon. A patterned mask 1 is further formed on the film 2, thereby etching the aluminum alloy film 2 along the mask 1. The etching processing is made with a mixed gas of BC13, C13 and CH2F2 as an etching gas by using a microwave etching device which changes the etching gas to plasma by means of the action between a microwave electric field and a magnetic field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はドライエッチング方法に
係り、特に半導体製造工程のアルミニウム合金及びアル
ミニウム合金膜と他の材料とからなる多層膜の微細加工
技術に好適なドライエッチング方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dry etching method, and more particularly to a dry etching method suitable for a fine processing technique of an aluminum alloy and a multilayer film made of an aluminum alloy film and another material in a semiconductor manufacturing process. .

【0002】[0002]

【従来の技術】従来の方法は、例えば特開平2−715
19号公報に記載のようにアルミニウム,アルミニウム
合金等のエッチングに用いられるガスとして、BCl3
+Cl2,BCl3+Cl2+N2が知られている。
2. Description of the Related Art A conventional method is disclosed in, for example, Japanese Patent Laid-Open No. 2-715.
As described in Japanese Patent Laid-Open No. 19 as a gas used for etching aluminum, aluminum alloys, etc., BCl 3
+ Cl 2 , BCl 3 + Cl 2 + N 2 are known.

【0003】BCl3+Cl2の混合ガスはエッチング速
度を向上させるために用いられ、BCl3+Cl2+N2
の混合ガスはさらに異方性を向上させるために用いられ
ていた。
[0003] mixed gas of BCl 3 + Cl 2 is used to improve the etching rate, BCl 3 + Cl 2 + N 2
The mixed gas of was used to further improve the anisotropy.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術は、アル
ミニウム系膜は塩素ラジカルとの化学反応によってエッ
チングされるため、異方性形状を得るために側壁保護成
分としてマスク材からの反応生成物,及びアルミニウム
系膜そのものからの反応生成物を利用する形となってい
た。このため、デバイスの高集積化に伴い微細化が進ん
でくるとエッチングされる部分に供給される側壁保護成
分が不足し異方性形状の確保が困難となり、一方、マス
ク材は薄くなる方向に有るため、エッチング工程では異
方性形状を維持しながらマスク材のエッチング速度を抑
制し、対マスク材選択比を向上しなければならないとい
う問題があった。従来技術を用いてデバイスの微細化に
対応しようとすると、図4に示すようにサイドエッチン
グが無く異方性形状を得るにはイオンエネルギーの増大
によるスパッタ効果によりマスク材からの反応生成物を
増加させる方法がある。しかしながらアルミニウム合金
膜エッチング速度とマスク材エッチング速度の比(以下
選択比とする)が低下し前述の要請に相反するという問
題があった。
In the above-mentioned prior art, since the aluminum-based film is etched by a chemical reaction with chlorine radicals, a reaction product from a mask material is used as a sidewall protection component to obtain an anisotropic shape. And the reaction product from the aluminum-based film itself was used. For this reason, as the device becomes highly integrated and miniaturization progresses, it becomes difficult to secure an anisotropic shape because the sidewall protection component supplied to the etched portion becomes insufficient, while the mask material tends to become thinner. Therefore, in the etching process, there is a problem that the etching rate of the mask material must be suppressed while maintaining the anisotropic shape, and the selectivity ratio to the mask material must be improved. When it is attempted to cope with device miniaturization using the conventional technology, as shown in FIG. 4, in order to obtain an anisotropic shape without side etching, reaction products from the mask material increase due to the sputtering effect due to increase in ion energy. There is a way to do it. However, there has been a problem that the ratio of the etching rate of the aluminum alloy film and the etching rate of the mask material (hereinafter referred to as the selection ratio) is lowered, which conflicts with the above requirement.

【0005】本発明の目的は、アルミニウム系膜のエッ
チングにおいて、微細加工性及び高選択性をあわせもっ
たエッチングを行うことができるドライエッチング方法
を提供することにある。
An object of the present invention is to provide a dry etching method capable of performing etching having both fine workability and high selectivity in etching an aluminum film.

【0006】[0006]

【課題を解決するための手段】本発明者等は、鋭意実験
を重ね、その結果、従来のハロゲン系ガスにCH22
スを混合することにより、図3に示すように、サイドエ
ッチングなく、かつ選択比の低下もないエッチングが行
えることを見出した。
Means for Solving the Problems The inventors of the present invention have conducted earnest experiments, and as a result, by mixing CH 2 F 2 gas with a conventional halogen-based gas, as shown in FIG. It was also found that etching can be performed without lowering the selection ratio.

【0007】上記目的は、アルミニウム系膜を含む膜構
造のウエハをハロゲン系ガスと塩素を含まないフロン系
ガスとの混合ガスのプラズマによりエッチング処理する
ことにより達成される。
The above object is achieved by etching a wafer having a film structure including an aluminum-based film with plasma of a mixed gas of a halogen-based gas and a chlorofluorocarbon-free gas.

【0008】また、上記目的は、高周波電力の印加によ
りバイアス電圧を生じさせウエハへのプラズマ中のイオ
ンの入射エネルギーを制御可能な試料台にアルミニウム
系膜を含む膜構造のウエハを配置し、ハロゲン系ガスと
塩素を含まないフロン系ガスとの混合ガスをマイクロ波
電界と磁界との作用を用いて減圧下でプラズマ化し、該
プラズマによってウエハを処理することにより、達成さ
れる。
Further, the above-mentioned object is to arrange a wafer having a film structure including an aluminum-based film on a sample stage capable of generating a bias voltage by applying high-frequency power and controlling incident energy of ions in plasma on the wafer, This is achieved by converting a mixed gas of a system gas and a CFC-free gas containing chlorine into plasma under a reduced pressure by using the action of a microwave electric field and a magnetic field, and processing a wafer with the plasma.

【0009】[0009]

【作用】本発明の作用を以下に示す。ハロゲン系ガスに
よりアルミニウム系材料をエッチングし、また塩素を含
まないフロン系ガスによりアルミニウム側壁保護膜の形
成を行う。従来のハロゲン系ガスによるエッチングでは
異方性形状を得るために側壁保護成分としてマスク材か
らの反応生成物、及びアルミニウム系膜そのものからの
反応生成物を利用していたが、微細化が進んでくるとこ
れらの側壁保護成分が供給不足となる。側壁保護成分を
増加させる手段として、マスク材のエッチング速度を増
大し、マスク材からの反応生成物を増やすことにより異
方性形状を確保することはできるが、一方ではマスク材
のパターニングを行なう工程では微細化が進むにつれて
マスク材膜厚は薄くなる方向に有り前述の要請と相反す
る。本発明では塩素を含まないフロン系ガスにより側壁
保護膜形成成分を供給することによりアルミニウム系材
料の膜をパターン密度や寸法等に関係なく好適なエッチ
ング処理することができる。
The function of the present invention will be described below. The aluminum-based material is etched with a halogen-based gas, and the aluminum sidewall protection film is formed with a fluorocarbon-free gas. In the conventional etching with halogen-based gas, the reaction product from the mask material and the reaction product from the aluminum-based film itself were used as the sidewall protection component in order to obtain the anisotropic shape. However, the supply of these side wall protective components becomes insufficient. As a means for increasing the sidewall protection component, the anisotropic shape can be secured by increasing the etching rate of the mask material and increasing the reaction products from the mask material, but on the other hand, the step of patterning the mask material. Then, as the miniaturization progresses, the film thickness of the mask material tends to decrease, which conflicts with the above-mentioned demand. In the present invention, by supplying the side wall protective film forming component with the CFC-free gas which does not contain chlorine, the film of the aluminum-based material can be subjected to a suitable etching treatment regardless of the pattern density, size, etc.

【0010】[0010]

【実施例】以下、本発明の一実施例を図1から図3によ
り説明する。図1は本発明によりエッチング処理された
被エッチング膜が構成されるウエハの断面状態を示す一
実施例であり、シリコン基板4上に絶縁膜である下地酸
化膜3(例えば、SiO2膜)を形成し、その上にアル
ミニウム系材料で成る被エッチング膜、この場合、例え
ば、Al−Si−Cuで成るアルミニウム合金膜2を形
成し、その上にスペースサイズが異なる間隔(W1,W
2)でパターニングされたマスク1を形成した構造とな
っており、アルミニウム合金膜2がマスク1に沿ってエ
ッチングされた状態を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is an embodiment showing a cross-sectional state of a wafer in which a film to be etched processed by the present invention is formed. A base oxide film 3 (for example, a SiO 2 film) which is an insulating film is formed on a silicon substrate 4. An etching target film made of an aluminum-based material, in this case, an aluminum alloy film 2 made of, for example, Al—Si—Cu, is formed thereon, and spaces (W1, W1) having different space sizes are formed thereon.
The structure is such that the mask 1 patterned in 2) is formed and the aluminum alloy film 2 is etched along the mask 1.

【0011】図1に示した被エッチング材であるウエハ
のエッチング処理は、図2に示すような、この場合、マ
イクロ波電界と磁界との作用を用いてエッチングガスを
プラズマ化するマイクロ波エッチング装置を用いて行う
ことができる。装置構成を簡単に説明すると、処理室1
0の上部には石英製の放電管14が設けてあり、真空処
理室を形成している。処理室10には真空処理室内にエ
ッチング用ガスを供給するガス供給源(図示省略)につ
ながるガス供給口15が設けてあり、また真空排気装置
(図示省略)につながる排気口16が設けてある。処理
室10には被エッチング材であるウエハ13を配置する
試料台11が設けてある。試料台11には高周波電源1
2が接続してあり、試料台11に高周波電力を印加可能
になっている。放電管14の外側には放電管14を囲ん
で導波管17が設けてあり、さらにその外側には放電管
14内に磁界を発生させるソレノコイドコイル19が設
けてある。導波管17の端部にはマイクロ波を発振する
マグネトロン18が設けてある。
The etching process for the wafer as the material to be etched shown in FIG. 1 is as shown in FIG. 2. In this case, a microwave etching apparatus for converting the etching gas into plasma using the action of the microwave electric field and magnetic field is used. Can be done using. To briefly explain the apparatus configuration, the processing chamber 1
A quartz discharge tube 14 is provided on the upper part of 0 to form a vacuum processing chamber. The processing chamber 10 is provided with a gas supply port 15 connected to a gas supply source (not shown) for supplying an etching gas into the vacuum processing chamber, and an exhaust port 16 connected to a vacuum exhaust device (not shown). . The processing chamber 10 is provided with a sample table 11 on which a wafer 13, which is a material to be etched, is placed. High-frequency power source 1 on the sample table 11
2 is connected, and high frequency power can be applied to the sample table 11. A waveguide 17 is provided outside the discharge tube 14 so as to surround the discharge tube 14, and a sorenocoid coil 19 that generates a magnetic field inside the discharge tube 14 is provided outside the waveguide 17. A magnetron 18 that oscillates microwaves is provided at the end of the waveguide 17.

【0012】このような構成による装置ではガス供給口
15から真空処理室内にエッチング用処理ガスを供給す
るとともに真空処理室内を所定の圧力に減圧,排気し、
導波管17によってマグネトロン18からのマイクロ波
を放電管10内に導入するとともにソレノイドコイル1
9によって磁界を形成し、マイクロ波の電界とソレノイ
ドコイル19による磁界との作用によって放電管14内
の処理ガスをプラズマ化する。さらに高周波電源12に
よって試料台11に高周波電力を印加し、バイアス電圧
を生じさせ、プラズマ中のイオンをウエハ13側に引き
込み異方性エッチングを行わせるようにしている。
In the apparatus having such a structure, the processing gas for etching is supplied from the gas supply port 15 into the vacuum processing chamber, and the vacuum processing chamber is depressurized and exhausted to a predetermined pressure.
The microwave from the magnetron 18 is introduced into the discharge tube 10 by the waveguide 17 and the solenoid coil 1
A magnetic field is formed by 9 and the processing gas in the discharge tube 14 is turned into plasma by the action of the electric field of the microwave and the magnetic field of the solenoid coil 19. Further, high frequency power is applied to the sample stage 11 by the high frequency power source 12 to generate a bias voltage, and ions in the plasma are drawn to the wafer 13 side to perform anisotropic etching.

【0013】図2に示す装置を用い、図1に示すアルミ
ニウム合金のエッチングを行なったとき、エッチング用
の処理ガスとしてBCl3,Cl2にCH22を加えてい
くと図3のような特性が得られた。即ち、BCl3とC
2との混合ガスから成る条件においては側壁保護成分
の不足によりアルミニウム合金側壁にサイドエッチング
を生じるがCH22ガスを混合すると添加量3%程度で
異方性形状を得ることができた。また、このときマスク
材との選択比はほぼ一定であった。このようにエッチン
グ用の処理ガスとして、BCl3,Cl2,CH22の混
合ガスを用いることによりCH22ガスを加えない場合
に比べアルミニウム合金膜のエッチング速度では従来比
1.5倍,マスク材とアルミニウム合金膜との選択比で
は1.3倍,および異方性形状を得ることができた。
When the aluminum alloy shown in FIG. 1 is etched by using the apparatus shown in FIG. 2, when CH 2 F 2 is added to BCl 3 and Cl 2 as a processing gas for etching, as shown in FIG. The characteristics were obtained. That is, BCl 3 and C
Under conditions consisting of a mixed gas with l 2 , side etching occurs on the side wall of the aluminum alloy due to lack of side wall protection component, but when CH 2 F 2 gas was mixed, an anisotropic shape could be obtained with an addition amount of about 3%. . At this time, the selection ratio with respect to the mask material was almost constant. Thus, by using a mixed gas of BCl 3 , Cl 2 , and CH 2 F 2 as a processing gas for etching, the etching rate of the aluminum alloy film is 1.5 times that of the conventional case as compared with the case where CH 2 F 2 gas is not added. Double, the mask material and the aluminum alloy film had a selection ratio of 1.3, and an anisotropic shape could be obtained.

【0014】なお、本装置を用いての処理は、処理圧力
が5〜30mTorr、マイクロ波パワーが500〜1
400W、イオンの入射エネルギーを与えるための高周
波電力値が50〜200Wという範囲で特に効果的であ
った。
In the processing using this apparatus, the processing pressure is 5 to 30 mTorr and the microwave power is 500 to 1
It was particularly effective at a high frequency power value of 400 W and a high frequency power value of 50 to 200 W for applying ion incident energy.

【0015】また、混合ガスとしてのBCl3,Cl2
CH22は、この場合、各々の流量がBCl3:40〜
200ml/sec,Cl2:60〜300ml/se
c,CH22:3〜30ml/secの範囲で効果的で
あり、6インチウエハの処理時に比べ8インチウエハの
処理時には供給量をそれぞれ多くすると良い。
Further, BCl 3 , Cl 2 as a mixed gas,
In this case, CH 2 F 2 has a flow rate of BCl 3 : 40-
200 ml / sec, Cl 2 : 60 to 300 ml / se
c, CH 2 F 2 : It is effective in the range of 3 to 30 ml / sec, and it is preferable to increase the supply amount when processing an 8-inch wafer as compared to when processing a 6-inch wafer.

【0016】また、本一実施例では、アルミニウム系材
料としてアルミニウム合金を例に説明したが、この他に
アルミニウムまたはアルミニウム合金とバリアメタル
(例えばTiN/Ti,W,TiW等)との多層膜アル
ミニウム合金膜であっても同様の効果がある。
In this embodiment, an aluminum alloy is used as an example of the aluminum-based material, but in addition to this, a multilayer film aluminum of aluminum or an aluminum alloy and a barrier metal (for example, TiN / Ti, W, TiW). The same effect can be obtained with an alloy film.

【0017】また、本一実施例では、ハロゲン系ガスと
してBCl3,Cl2を用いたガスで説明したが、この他
にHBr,Br2またはBBr3等のガスであっても良
い。また、本一実施例では塩素を含まないフロン系ガス
として、CH22を用いたガスで説明したが、この他に
CF4,CHF3,CH3FまたはCH4等のガスであって
も良い。
Further, in the present embodiment, the gas using BCl 3 and Cl 2 as the halogen-based gas has been described, but other gas such as HBr, Br 2 or BBr 3 may be used. In addition, although the gas using CH 2 F 2 as the CFC-free gas containing no chlorine has been described in the present embodiment, other gas such as CF 4 , CHF 3 , CH 3 F or CH 4 may be used. Is also good.

【0018】さらに、本一実施例では処理ガスのプラズ
マを発生させる方法として、マイクロ波電界と磁界との
作用を用いたものについて説明したが、プラズマの発生
方法としてこれに限られるものではなく、周知の、例え
ば、平行平板電極を用いたもの,高周波コイルを用いた
もの,その他誘導エネルギを用いたもの等種々のプラズ
マ発生装置が適用できることは言うまでもない。
Further, in the present embodiment, the method of using the action of the microwave electric field and the magnetic field has been described as the method of generating the plasma of the processing gas, but the method of generating the plasma is not limited to this. It goes without saying that various well-known plasma generators such as those using parallel plate electrodes, those using high frequency coils, and others using inductive energy can be applied.

【0019】[0019]

【発明の効果】本発明はアルミニウム系膜構造のウエハ
をハロゲン系ガスと塩素を含まないフロン系ガスとの混
合ガスのプラズマを用いてエッチング処理することによ
り、アルミニウム系膜構造のウエハをパターン密度及び
寸法等に関係なく良好なエッチング形状を確保し、ま
た、アルミニウム系材料の膜とマスク材の選択性を上げ
てエッチング処理することができるという効果がある。
According to the present invention, a wafer having an aluminum-based film structure is subjected to etching treatment using plasma of a mixed gas of a halogen-based gas and a fluorocarbon-free gas, which does not contain chlorine, to thereby obtain a pattern density of the wafer having an aluminum-based film structure. In addition, there is an effect that a good etching shape can be secured regardless of the size and the like, and the etching treatment can be performed by increasing the selectivity between the aluminum-based material film and the mask material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例であるドライエッチング方法
により処理した被エッチング面を示す断面図である。
FIG. 1 is a cross-sectional view showing a surface to be etched processed by a dry etching method according to an embodiment of the present invention.

【図2】本発明のドライエッチング方法を実施するため
の装置の一例を示すマイクロ波エッチング装置の構成図
である。
FIG. 2 is a configuration diagram of a microwave etching apparatus showing an example of an apparatus for performing the dry etching method of the present invention.

【図3】本発明の一実施例であるハロゲン系ガスに混合
するCH22流量とサイドエッチ量及び選択比の関係を
示す図である。
FIG. 3 is a diagram showing a relationship between a flow rate of CH 2 F 2 mixed with a halogen-based gas, a side etch amount, and a selection ratio, which is an embodiment of the present invention.

【図4】従来技術によるサイドエッチ量及び選択比とイ
オンエネルギーとの関係を示す図である。
FIG. 4 is a diagram showing a relationship between a side etching amount and a selection ratio and ion energy according to a conventional technique.

【符号の説明】[Explanation of symbols]

1…マスク、2…アルミニウム合金膜、3…下地酸化
膜、4…シリコン基板、10…処理室、11…試料台、
12…高周波電源、13…ウエハ、14…放電管、15
…ガス供給口、16…排気口、17…導波管、18…マ
グネトロン、19…ソレノイドコイル。
1 ... Mask, 2 ... Aluminum alloy film, 3 ... Base oxide film, 4 ... Silicon substrate, 10 ... Processing chamber, 11 ... Sample stage,
12 ... High frequency power source, 13 ... Wafer, 14 ... Discharge tube, 15
... Gas supply port, 16 ... Exhaust port, 17 ... Waveguide, 18 ... Magnetron, 19 ... Solenoid coil.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武居 秀則 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hidenori Takei 794 Azuma Higashitoyo, Kudamatsu City, Yamaguchi Prefecture Stock Company Hitachi Ltd. Kasado Plant

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】アルミニウムを含む膜のウエハをハロゲン
系ガスと塩素を含まないフロン系ガスとの混合ガスのプ
ラズマによってエッチング処理することを特徴とするド
ライエッチング方法。
1. A dry etching method characterized in that a wafer having a film containing aluminum is etched by plasma of a mixed gas of a halogen-based gas and a fluorocarbon-free gas containing no chlorine.
【請求項2】前記アルミニウムを含む膜は、アルミニウ
ムまたはアルミニウム合金またはアルミニウム合金とそ
の他の膜から構成される多層膜である請求項1記載のド
ライエッチング方法。
2. The dry etching method according to claim 1, wherein the film containing aluminum is a multilayer film composed of aluminum, an aluminum alloy, or an aluminum alloy and another film.
【請求項3】前記アルミニウム合金は、アルミニウムと
シリコンおよび/または銅またはパラジウムからなる合
金である請求項2記載のドライエッチング方法。
3. The dry etching method according to claim 2, wherein the aluminum alloy is an alloy composed of aluminum and silicon and / or copper or palladium.
【請求項4】前記その他の膜は、チタンナイトライド,
チタン,チタンタングステン,タングステン,シリコ
ン,タングステンシリサイドのうち、1つまたは2つ以
上からなる請求項2記載のドライエッチング方法。
4. The other film is titanium nitride,
The dry etching method according to claim 2, comprising one or more of titanium, titanium tungsten, tungsten, silicon, and tungsten silicide.
【請求項5】前記ハロゲン系ガスは、BCl3,Cl2
HBr,Br2またはBBr3のうち1つまたはこれらの
組合せである請求項1記載のドライエッチング方法。
5. The halogen-based gas is BCl 3 , Cl 2 ,
The dry etching method according to claim 1, wherein the dry etching method is one of HBr, Br 2 or BBr 3 or a combination thereof.
【請求項6】前記塩素を含まないフロン系ガスはC
4,CHF3,CH22,CH3FまたはCH4のうち1
つまたはこれらの組合せである請求項1記載のドライエ
ッチング方法。
6. The chlorofluorocarbon-free gas is C
1 of F 4 , CHF 3 , CH 2 F 2 , CH 3 F or CH 4
The dry etching method according to claim 1, which is one or a combination thereof.
【請求項7】高周波電力の印加によりバイアス電圧を生
じさせ、ウエハへのプラズマ中のイオンの入射エネルギ
ーを制御可能な試料台にアルミニウム系膜を含む膜構造
のウエハを配置し、ハロゲン系ガスと塩素を含まないフ
ロン系ガスとの混合ガスをマイクロ波電界と磁界との作
用を用いて減圧下でプラズマ化し、該プラズマによって
前記ウエハを処理することを特徴とするドライエッチン
グ方法。
7. A wafer having a film structure including an aluminum-based film is placed on a sample stage capable of generating a bias voltage by applying high-frequency power and controlling incident energy of ions in plasma on the wafer, and a halogen-based gas is used. A dry etching method comprising: converting a mixed gas containing a fluorocarbon-free gas into plasma under a reduced pressure by using an action of a microwave electric field and a magnetic field, and processing the wafer with the plasma.
【請求項8】前記減圧下の状態は5〜30mTorrと
し、前記マイクロ波パワーは500〜1400Wとし、
前記イオンの入射エネルギーを与えるための高周波電力
値を50〜200Wとする請求項7記載のドライエッチ
ング方法。
8. The reduced pressure state is 5 to 30 mTorr, the microwave power is 500 to 1400 W,
The dry etching method according to claim 7, wherein a high frequency power value for applying the incident energy of the ions is set to 50 to 200W.
【請求項9】前記混合ガスはBCl3,Cl2,CH22
の混合ガスとし、各々の流量はBCl3:40〜200
ml/sec,Cl2:60〜300ml/sec,CH2
2:3〜30ml/secであり、6インチウエハの処
理時に比べ8インチウエハの処理時の供給量をそれぞれ
多くする請求項7記載のドライエッチング方法。
9. The mixed gas is BCl 3 , Cl 2 , CH 2 F 2
As a mixed gas of BCl 3 : 40 to 200
ml / sec, Cl 2 : 60 to 300 ml / sec, CH 2
The dry etching method according to claim 7, wherein F 2 is 3 to 30 ml / sec, and the supply amount at the time of processing the 8-inch wafer is larger than that at the time of processing the 6-inch wafer.
JP23126893A 1993-09-17 1993-09-17 Dry etching method Expired - Fee Related JP3161888B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP23126893A JP3161888B2 (en) 1993-09-17 1993-09-17 Dry etching method
TW083108442A TW256935B (en) 1993-09-17 1994-09-13
KR1019940023354A KR950009953A (en) 1993-09-17 1994-09-15 Dry etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23126893A JP3161888B2 (en) 1993-09-17 1993-09-17 Dry etching method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP34644698A Division JP3267254B2 (en) 1998-12-07 1998-12-07 Dry etching method

Publications (2)

Publication Number Publication Date
JPH0786249A true JPH0786249A (en) 1995-03-31
JP3161888B2 JP3161888B2 (en) 2001-04-25

Family

ID=16920950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23126893A Expired - Fee Related JP3161888B2 (en) 1993-09-17 1993-09-17 Dry etching method

Country Status (3)

Country Link
JP (1) JP3161888B2 (en)
KR (1) KR950009953A (en)
TW (1) TW256935B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4690512B2 (en) * 1998-09-15 2011-06-01 シーメンス アクチエンゲゼルシヤフト Method for reducing polymer deposition on etched vertical metal lines, corrosion of etched metal lines and corrosion during wet cleaning of etched metal features

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010028673A (en) * 1999-09-22 2001-04-06 윤종용 Method for forming contact hole in semiconductor device using reactive ion etching
TW486733B (en) * 1999-12-28 2002-05-11 Toshiba Corp Dry etching method and manufacturing method of semiconductor device for realizing high selective etching

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4690512B2 (en) * 1998-09-15 2011-06-01 シーメンス アクチエンゲゼルシヤフト Method for reducing polymer deposition on etched vertical metal lines, corrosion of etched metal lines and corrosion during wet cleaning of etched metal features

Also Published As

Publication number Publication date
JP3161888B2 (en) 2001-04-25
TW256935B (en) 1995-09-11
KR950009953A (en) 1995-04-26

Similar Documents

Publication Publication Date Title
US6090717A (en) High density plasma etching of metallization layer using chlorine and nitrogen
US6004884A (en) Methods and apparatus for etching semiconductor wafers
JP2915807B2 (en) Etching of molybdenum silicide using sulfur hexafluoride, hydrogen bromide and oxygen
US20060128159A1 (en) Method of removing etch residues
JPH0982687A (en) Manufacture of semiconductor device
JP2002508117A (en) Copper pattern etching for micron and sub-micron features using enhanced physical impact
US5883007A (en) Methods and apparatuses for improving photoresist selectivity and reducing etch rate loading
JP2008512854A (en) Method for removing photoresist on a substrate
WO1997045866A1 (en) Mechanism for uniform etching by minimizing effects of etch rate loading
US5849641A (en) Methods and apparatus for etching a conductive layer to improve yield
US5667630A (en) Low charge-up reactive ion metal etch process
JP2003023000A (en) Production method for semiconductor device
US5952244A (en) Methods for reducing etch rate loading while etching through a titanium nitride anti-reflective layer and an aluminum-based metallization layer
JP3440735B2 (en) Dry etching method
JPH0786249A (en) Dry etching method
JP4554479B2 (en) Dry etching method
JP3267254B2 (en) Dry etching method
KR20010033102A (en) Techniques for etching a transition metal-containing layer
JPH053178A (en) Manufacture of semiconductor device
JP3172340B2 (en) Plasma processing equipment
JP3191224B2 (en) Dry etching method
JPH09199484A (en) Manufacture of semiconductor device
JPH05326515A (en) Manufacturing method of semiconductor device
JPH06104217A (en) Etching method
JPH07221079A (en) Plasma apparatus and dry etching method using it

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080223

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees