JPH0785150B2 - Integrated optical circuit - Google Patents

Integrated optical circuit

Info

Publication number
JPH0785150B2
JPH0785150B2 JP5664193A JP5664193A JPH0785150B2 JP H0785150 B2 JPH0785150 B2 JP H0785150B2 JP 5664193 A JP5664193 A JP 5664193A JP 5664193 A JP5664193 A JP 5664193A JP H0785150 B2 JPH0785150 B2 JP H0785150B2
Authority
JP
Japan
Prior art keywords
waveguide
channel
refractive index
waveguides
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5664193A
Other languages
Japanese (ja)
Other versions
JPH06265944A (en
Inventor
義徳 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5664193A priority Critical patent/JPH0785150B2/en
Publication of JPH06265944A publication Critical patent/JPH06265944A/en
Publication of JPH0785150B2 publication Critical patent/JPH0785150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、安定性に優れ、他チャ
ンネルの構成が容易な導波路形集積光回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a waveguide type integrated optical circuit having excellent stability and easy configuration of other channels.

【0002】[0002]

【従来の技術】光ファイバ伝送技術を加入者端まで適用
してHDTVを含む広帯域のデジタルサービス統合シス
テムを実現する方式が精力的に検討されている。この様
なシステムを実現する上で必須の光部品の一つに光フィ
ルタや光スイッチ等の集積光回路がある。光スイッチの
定義としては、通常、光路を空間的に切り換えるタイプ
と、単に光強度をオン/オフするタイプの両方を指して
いる。集積光回路が備えるべき要件は、高性能であると
同時に安価でなければならないことから、光学結晶基板
に光導波路を築いて構成する集積光回路が中心に検討さ
れている。利用している物理光学効果としては、動作速
度の観点から結晶の電気光学効果が主に選ばれている。
代表的な単位光スイッチとしては、光ファイバから導か
れた光を二つのチャンネル導波路に光強度を等分に分
け、電気光学効果によって各々の導波路を伝わる光に位
相差を与え、干渉の効果によって強度の変化を与える構
成のものがある。この光スイッチは干渉光強度の変化が
位相差に対して周期性を持っているため、動作点の変動
に対して敏感であるという難点を有する。動作点を変動
させる要因としては、導波路精度のばらつき、プロセス
加工時の残留歪、結晶の焦電効果、結晶中の不純物、空
孔等に起因するイオンドリフトと空間電荷蓄積変化、等
多くのものがあり、未だ充分に安定性、信頼性の高い素
子の実現に至っていない。
2. Description of the Related Art A method for implementing a broadband digital service integrated system including an HDTV by applying an optical fiber transmission technique to a subscriber end is being actively studied. An integrated optical circuit such as an optical filter or an optical switch is one of the optical components indispensable for realizing such a system. The definition of an optical switch usually refers to both a type that spatially switches the optical path and a type that simply turns on / off the light intensity. Since the requirements that an integrated optical circuit must have are high performance and low cost, integrated optical circuits constructed by constructing an optical waveguide on an optical crystal substrate have been mainly studied. As the physical optical effect used, the electro-optical effect of crystals is mainly selected from the viewpoint of operating speed.
As a typical unit optical switch, the light guided from the optical fiber is divided into two channel waveguides with equal light intensity, and a phase difference is given to the light transmitted through each waveguide by the electro-optic effect, and the interference of There is a structure in which the strength is changed by the effect. This optical switch has a drawback that it is sensitive to changes in the operating point because changes in the intensity of interference light are periodic with respect to the phase difference. Factors that change the operating point include variations in waveguide precision, residual strain during process processing, pyroelectric effects in crystals, impurities in crystals, ion drift and changes in space charge accumulation due to holes, etc. However, it has not yet been possible to realize a sufficiently stable and highly reliable element.

【0003】また、導波路で構成する方向性結合器やマ
ッハツェンダー干渉器で光波長フィルタを実現すること
が検討されているが、干渉効果を利用するこれらの集積
光回路では、上で述べたと同じ問題がある。
Further, it has been considered to realize an optical wavelength filter by a directional coupler or a Mach-Zehnder interferometer composed of a waveguide, but these integrated optical circuits utilizing the interference effect have been described above. I have the same problem.

【0004】[0004]

【発明が解決しようとする課題】従来の集積光回路の不
安定性発現の根本的な原因は、上記のように光の干渉効
果を利用している点にある。光スイッチ等の集積光回路
を構成するのに利用できる光学現象のうち有用なものの
一つは回折である。電気光学結晶上に平面導波路とその
上にインターディジタル電極を形成し、この電極間に印
加した電界が、電気光学効果を介して結晶表面近傍に屈
折率変化の周期格子を形造り、この周期格子によって導
波光を回折させるという原理の光スイッチはすでに提案
されており、原理は実証されている。回折角は電極周期
長に反比例し、回折効率は基板中への電界の浸透深さが
深い方が大きく、この二つの条件は相反する。このため
素子長が長くなり、また、インターディジタル電極を使
用しているため、他チャンネル化が難しいという難点が
ある。
The fundamental cause of the instability of the conventional integrated optical circuit is that it utilizes the optical interference effect as described above. One of the useful optical phenomena that can be used to construct an integrated optical circuit such as an optical switch is diffraction. A planar waveguide and an interdigital electrode are formed on the electro-optic crystal, and the electric field applied between the electrodes forms a periodic grating of refractive index change near the crystal surface via the electro-optic effect. An optical switch based on the principle of diffracting guided light by a grating has already been proposed and the principle has been demonstrated. The diffraction angle is inversely proportional to the electrode period length, and the diffraction efficiency is larger when the penetration depth of the electric field into the substrate is deeper, and these two conditions contradict each other. For this reason, the element length becomes long, and since the interdigital electrodes are used, it is difficult to form another channel.

【0005】本発明の目的は、上記の難点の全てを除去
した導波路形光スイッチを含む集積光回路を提供するこ
とである。
It is an object of the present invention to provide an integrated optical circuit including a waveguide type optical switch which eliminates all of the above drawbacks.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、近接したチャンネル導波路間の干渉による光パワ
ーの偏移を起こすのではなく、チャンネル導波路に屈折
率周期変化を与えて平行しているが空間的に離れたチャ
ンネル導波路間で光を転送させるのが本発明の基本概念
である。
In order to achieve the above object, optical power is not shifted due to interference between adjacent channel waveguides, but the channel waveguides are parallelized by changing the refractive index period. However, the basic concept of the present invention is to transfer light between channel waveguides that are spatially separated.

【0007】そのために、基本構成としては、電気光学
結晶を基板とし、この基板に、互いに平行し、互いに離
れた二本のチャンネル導波路を形成し、これらの間を平
面導波路で満たし、一方のチャンネル導波路に電界を作
用させたとき、ポインティングベクトルが、チャンネル
導波路方向から角度を有する平面導波路のモード、すな
わち、チャンネル導波路方向に直交する方向に伝搬波数
を有する平面導波路モードへ変換し伝搬させ、もう一方
のチャンネル導波路にも電界を掛けておき、この平面導
波路モードを相反の原理でこのチャンネルの導波モード
に変換する。電界を掛けないと、この平面導波モード
は、このチャンネル導波路を横切って通り過ぎる。そし
て、チャンネル導波路に電界を作用させて、チャンネル
方向とは直交する方向に伝搬波数を有する平面導波路モ
ードへの変換を行なわせるのに、インターディジタル電
極による電界の周期ではなく、単なるストライプ状の電
極による一様電界で電気光学効果の周期を作り出す手段
を持たせる。このために、結晶表面に自発分極の反転格
子を予め作っておくことが特徴でもある。具体的に入出
力一本ずつの導波路で構成する光スイッチの場合では、
電気光学結晶を基板とし、その表面に沿って周期を有す
る結晶方位の反転周期と該結晶表面にあって、光学的に
結合しない程度に離れた入力及び出力の二本のチャンネ
ンル導波路とこれら二本の導波路の間に形成され、前記
チャンネル導波路より等価屈折率の小さい平面導波路
と、前記にチャンネル導波路に電界を印加するための電
極とから構成することによって、他チャンネル構成が可
能で安定、製作容易な電気光学光スイッチが得られる。
さらに、平面導波路に波長選択機能(伝搬波長に合わせ
て平面導波路の厚さを決める)を持たせると光フィルタ
としても働く。
Therefore, as a basic constitution, an electro-optic crystal is used as a substrate, two channel waveguides parallel to each other and separated from each other are formed on this substrate, and a planar waveguide is filled between them. When an electric field is applied to the channel waveguide of, the pointing vector becomes a mode of a plane waveguide having an angle from the channel waveguide direction, that is, a plane waveguide mode having a propagation wave number in a direction orthogonal to the channel waveguide direction. It is converted and propagated, and an electric field is also applied to the other channel waveguide, and this planar waveguide mode is converted into the waveguide mode of this channel by the principle of reciprocity. Without the application of an electric field, the planar guided mode passes across the channel waveguide. Then, an electric field is applied to the channel waveguide to convert it into a planar waveguide mode having a propagation wave number in a direction orthogonal to the channel direction. A means for producing a cycle of electro-optical effect by a uniform electric field by the electrodes of. Therefore, it is also a feature that an inversion lattice of spontaneous polarization is previously formed on the crystal surface. Specifically, in the case of an optical switch composed of a waveguide for each input and output,
An electro-optic crystal is used as a substrate, and an inversion period of a crystal orientation having a period along the surface and two channel waveguides of an input and an output, which are on the surface of the crystal and are spaced apart from each other so as not to be optically coupled, and these two waveguides. Other channels can be configured by forming a planar waveguide having an equivalent refractive index smaller than that of the channel waveguides and an electrode for applying an electric field to the channel waveguides. Thus, an electro-optical optical switch that is stable and easy to manufacture can be obtained.
Furthermore, if the planar waveguide has a wavelength selection function (determines the thickness of the planar waveguide according to the propagation wavelength), it also functions as an optical filter.

【0008】[0008]

【実施例】次に、本発明について図面を参照して説明す
る。図1は本発明の一実施例を示す斜視図で、単位光ス
イッチの例についてその構成を示してある。電気光学効
果の大きい結晶、例えばC板タンタル酸リチウム結晶1
の表面に、電子ビーム照射により基板表面に沿って自発
分極を周期的に反転させて形成し、自発分極反転周期構
造2を形成し、プロトン交換法により、平行する2本の
チャンネル導波路3及び4を形成し、これらの間に平面
導波路5を形成する。このとき、平面導波路5の等価屈
折率がチャンネル導波路3,4の等価屈折率よりも小さ
くなるよう導波路の深さ及びプロトンの量を調整する。
この実施例ではチャンネル導波路の等価屈折率を2.2
2とし、平面導波路の等価屈折率を2.218とした。
このように平面導波路の等価屈折率をチャンネル導波路
の等価屈折率よりも小さくしたのは、チャンネル導波路
中に光を閉じ込めて伝播させる(平面導波路に漏れ出る
のを防ぐ)ためである。さらにチャンネル導波路に電界
を印加するための電極6A及び7Aを各々のチャンネル
導波路上に、電極6B、7Bを各々のチャンネル導波路
の近傍の領域に設ける。なお、この電極による光の吸収
を防ぐ目的で、基板よりも屈折率の小さい材料、例えば
SiO2 等の光学的バッファ層11を結晶面と電極との
間に薄く設けてある。自発分極反転周期構造2を構成す
るストライプ状の自発分極反転領域2aとチャンネル導
波路とは、図1に示す如く、斜めに交叉している。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing an embodiment of the present invention, showing the configuration of an example of a unit optical switch. Crystals having a large electro-optical effect, for example, C plate lithium tantalate crystal 1
Spontaneous polarization is periodically inverted along the surface of the substrate by electron beam irradiation to form a spontaneous polarization inversion periodic structure 2, and two parallel channel waveguides 3 and 3 are formed by a proton exchange method. 4 are formed, and the planar waveguide 5 is formed between them. At this time, the depth of the waveguide and the amount of protons are adjusted so that the equivalent refractive index of the planar waveguide 5 becomes smaller than the equivalent refractive index of the channel waveguides 3 and 4.
In this embodiment, the equivalent refractive index of the channel waveguide is 2.2.
2 and the equivalent refractive index of the planar waveguide was 2.218.
The reason why the equivalent refractive index of the planar waveguide is made smaller than the equivalent refractive index of the channel waveguide is to confine and propagate light in the channel waveguide (to prevent leakage to the planar waveguide). . Further, electrodes 6A and 7A for applying an electric field to the channel waveguides are provided on the respective channel waveguides, and electrodes 6B and 7B are provided in regions near the respective channel waveguides. In order to prevent absorption of light by the electrode, a material having a smaller refractive index than the substrate, for example, an optical buffer layer 11 such as SiO 2 is thinly provided between the crystal plane and the electrode. As shown in FIG. 1, the stripe-shaped spontaneous polarization inversion region 2a forming the spontaneous polarization inversion periodic structure 2 and the channel waveguide are diagonally crossed.

【0009】この光スイッチの動作原理は次のようであ
る。入力のチャンネル導波路3の一端より入射したTM
モード光8は、この入力チャンネル導波路3の上及び近
傍に設けた電極6A−6B間に電圧を印加しない時、こ
のTMモード光にとっては、導波路中に自発分極の反転
部位があっても屈折率は空間的に変化を生じていないの
で、伝搬特性に影響を受けることなく導波路を進み、入
力のチャンネル導波路3の出射端より出力する。電極6
A−6B間に電圧を印加すると、基板に垂直な印加電界
成分により、電気光学定数テンソル成分r33を介して、
基板に垂直な光電界であるTMモード光に屈折率の変化
を与える。この時、基板表面付近には予め自発分極反転
周期構造2が形成されているので、分極の方向の正負の
位置で屈折率変化の正負が反転する。このためTMモー
ド光は位相格子を通過することと等価となり、格子のピ
ッチで定まるブラッグ角方向に回折される。この回折方
向は、図2に示すように、入射チャンネルTMモード光
の端数ベクトルKCHと自発分極反転周期構造のつくる空
間格子ベクトルKa の2つのベクトルで平面導波路のT
M平面導波路モード光の端数ベクトルKp1が閉じた、三
角形を形成する方向となる。この位相整合条件は、つと
に良く知られている音響光学効果に於ける異常ブラッグ
回折効果と類似的である。すなわち、入射チャンネルT
Mモード光の波数ベクトルKCHと自発分極反転周期構造
のつくる空間格子ベクルKa とは直交していないため、
変換されるTM平面導波路モード光はチャンネル導波路
を挟んで両方向に出るのではなく、一方向であって効率
がよい。音響進行波と異なり、静止した空間位相格子の
波数ベクトルは正負両方向を持つ。チャンネルTMモー
ド光の波数ベクトルKCHと自発分極反転周期構造のつく
る空間格子ベクトルKaとが直交していると、導波路を
挟んで両方向に整合する平面導波路モード光の端数ベク
トルKP1が存在し得るが、KCHとKa とが傾いて設けて
あるため、図2に示すように平面導波路モード光の波数
ベクトルKp1は、導波路の斜め一方向にしか整合条件を
満たすベクトルが存在し得ないため、好都合である。
The operating principle of this optical switch is as follows. TM incident from one end of the input channel waveguide 3
When no voltage is applied between the electrodes 6A and 6B provided on and near the input channel waveguide 3 for the mode light 8, for the TM mode light, even if there is a site of spontaneous polarization reversal in the waveguide. Since the refractive index does not change spatially, it travels through the waveguide without being affected by the propagation characteristics and is output from the output end of the input channel waveguide 3. Electrode 6
When a voltage is applied between A-6B, an applied electric field component perpendicular to the substrate causes an electro-optic constant tensor component r 33 ,
A change in the refractive index is given to the TM mode light which is an optical electric field perpendicular to the substrate. At this time, since the spontaneous polarization inversion periodic structure 2 is formed in the vicinity of the surface of the substrate in advance, the positive / negative of the refractive index change is inverted at the positive / negative positions in the polarization direction. Therefore, TM mode light is equivalent to passing through the phase grating and is diffracted in the Bragg angle direction determined by the grating pitch. As shown in FIG. 2, this diffraction direction has two vectors, that is, a fraction vector K CH of incident channel TM mode light and a spatial lattice vector K a formed by a spontaneous polarization inversion periodic structure, and T of a planar waveguide.
The fraction vector K p1 of the M-plane waveguide mode light is closed and forms a triangle. This phase matching condition is similar to the anomalous Bragg diffraction effect in the acousto-optic effect which is well known. That is, the incident channel T
Since the wavenumber vector K CH of M-mode light and the spatial lattice vector K a formed by the spontaneous polarization inversion periodic structure are not orthogonal,
The TM plane waveguide mode light to be converted does not go out in both directions across the channel waveguide, but is in one direction, which is efficient. Unlike acoustic traveling waves, the wave vector of a stationary spatial phase grating has both positive and negative directions. When the wave number vector K CH of the channel TM mode light and the spatial lattice vector K a formed by the spontaneous polarization inversion periodic structure are orthogonal to each other, a fractional vector K P1 of the planar waveguide mode light that matches in both directions with the waveguide sandwiched is obtained. Although it may exist, since K CH and K a are inclined, the wave number vector K p1 of the planar waveguide mode light is a vector satisfying the matching condition only in one diagonal direction of the waveguide as shown in FIG. Is convenient because there can be no.

【0010】回折されたTM平面導波路モード光9は、
チャンネル導波路間に平面導波路があるため基板深さ方
向の進行は阻止され、表面に平行な方向への伝搬波とな
って平面導波路を進み、入力のチャンネル導波路3と平
行する出力のチャンネル導波路4に到着する。この出力
チャンネル導波路近部に設けた電極7A−7B間に電圧
が印加されていると、チャンネル導波路3で起こったの
とは相反の効果でチャンネル導波路4の導波TMモード
に変換されこの導波路を進み、出射TMモード光10と
なって出力チャンネル導波路4を出射する。電極7A−
7B間に電界が印加されていない時、チャンネル導波路
4の近傍には屈折率変化による位相格子が形成されてい
ないため、TM平面導波路モード光はチャンネル導波路
4を横切って進み、このチャンネル導波路にエネルギー
を残すことはない。
The TM-plane waveguide mode light 9 diffracted is
Since there is a planar waveguide between the channel waveguides, the propagation in the depth direction of the substrate is blocked, and a propagating wave in the direction parallel to the surface is propagated through the planar waveguide and an output parallel to the input channel waveguide 3 is generated. Arrives at the channel waveguide 4. When a voltage is applied between the electrodes 7A-7B provided in the vicinity of the output channel waveguide, it is converted into the guided TM mode of the channel waveguide 4 due to the effect of being contrary to that which occurs in the channel waveguide 3. The light travels through this waveguide and becomes the emitted TM mode light 10 and is emitted from the output channel waveguide 4. Electrode 7A-
When the electric field is not applied between 7B, the TM plane waveguide mode light travels across the channel waveguide 4 because the phase grating due to the refractive index change is not formed in the vicinity of the channel waveguide 4, It leaves no energy in the waveguide.

【0011】このように、入力側チャンネル導波路の電
極6A−6B及び出力側チャンネル導波路の電極7A−
7Bの両方の電極対に電圧が印加されているときのみ、
出力チャンネル導波路から光は現われ、どちらか一方の
電極対に電圧が印加されていなければ現われることは無
い。
Thus, the electrodes 6A-6B of the input side channel waveguide and the electrodes 7A- of the output side channel waveguide are provided.
Only when voltage is applied to both electrode pairs of 7B,
Light emerges from the output channel waveguide and does not appear unless a voltage is applied to either electrode pair.

【0012】出力側のチャンネル導波路及び電極を平行
して多数設けると、任意のチャンネル導波路から光を出
射させることとか、複数の出射導波路近傍の電極対に電
圧を各々調整して印加すれば任意の強度比で複数のチャ
ンネル導波路から光を出射させる等、いわゆる、1対n
光スイッチの集積光回路が構成できる。また、入力側チ
ャンネル導波路を複数本、出力側をチャンネル導波路を
1本とすれば、任意の入力光を出力チャンネル導波路に
接続することもできる。また、複数の入力光を1つの出
力に合流するn対1光スイッチの集積光回路も可能であ
る。
When a large number of channel waveguides and electrodes on the output side are provided in parallel, light is emitted from an arbitrary channel waveguide, or voltages are adjusted and applied to electrode pairs near a plurality of emission waveguides. For example, light is emitted from a plurality of channel waveguides at an arbitrary intensity ratio, so-called 1 to n.
An integrated optical circuit of an optical switch can be constructed. Further, if a plurality of input side channel waveguides are provided and one output side channel waveguide is provided, any input light can be connected to the output channel waveguide. Also, an integrated optical circuit of an n-to-1 optical switch that merges a plurality of input lights into one output is possible.

【0013】上で述べた整合条件では、チャンネル導波
路及び平面導波路のTMモードの等価屈折率、自発分極
反転格子の方向とピッチを正しく設計しても、製作時の
ばらつきや入射波長のばらつきに対する余裕度が考慮さ
れていないと、集積光回路の特性は安定して得られな
い。この場合、自発分極反転周期構造の作る格子ベクト
ルの方向とチャンネル導波路の光透過方向との成す相対
角度をチャンネル導波路の光透過方向に沿って徐々に変
化させておけば、これによって、TMモードの透過方向
の何処かで上記の位相整合条件が満たされる事になり、
その場で強いチャンネル/平面モード間の変換が起こ
り、製作時の等価屈折率のばらつき、入射波長のばらつ
きや変動を吸収することが出来、安定した集積光回路を
得ることが出来る。
Under the matching conditions described above, even if the TM mode equivalent refractive index of the channel waveguide and the planar waveguide, and the direction and pitch of the spontaneous polarization inversion grating are correctly designed, variations in manufacturing and variations in incident wavelength are caused. The characteristics of the integrated optical circuit cannot be stably obtained unless the margin for is taken into consideration. In this case, if the relative angle formed by the direction of the lattice vector formed by the spontaneous polarization inversion periodic structure and the light transmission direction of the channel waveguide is gradually changed along the light transmission direction of the channel waveguide, the TM The above phase matching condition will be satisfied somewhere in the transmission direction of the mode,
A strong channel / planar mode conversion occurs on the spot, variations in the equivalent refractive index at the time of manufacture, variations and variations in the incident wavelength can be absorbed, and a stable integrated optical circuit can be obtained.

【0014】タンタル酸リチウム結晶やニオブ酸リチウ
ム結晶等では育成された単結晶ウェハに熱処理、電子ビ
ーム描画等適当な処理を施すことによって、結晶板表面
に自発分極の反転模様を形成できることが知られてい
る。また、結晶引上げ育成時に、通入電流の反転や、育
成温度の周期制御を行なうことによって、結晶塊全体に
自発分極の反転を形成できることが知られている。した
がって、これらの方法によって自発分極反転周期構造を
形成することができる。
It has been known that, for a lithium tantalate crystal, a lithium niobate crystal or the like, an inversion pattern of spontaneous polarization can be formed on the surface of a crystal plate by subjecting a grown single crystal wafer to an appropriate treatment such as heat treatment or electron beam drawing. ing. Further, it is known that the inversion of the spontaneous polarization can be formed in the entire crystal ingot by reversing the inrush current and controlling the growth temperature periodically during the crystal pulling and growing. Therefore, the spontaneous polarization inversion periodic structure can be formed by these methods.

【0015】上記の実施例では、基板材料に強誘電体の
タンタル酸リチウム結晶を用い、プロトン交換法による
導波路形成方法の場合を述べたが、Ti拡散法等の既に
知られている他の導波路形成方法、他の強誘電体(例え
ばBaTiO3 )、電気光学効果のある他の常誘電体
(例えばBSO)や半導体でも同じ様な機能を実現でき
る。
In the above-mentioned embodiment, the case where the ferroelectric lithium tantalate crystal is used as the substrate material and the waveguide forming method by the proton exchange method is described, but other known methods such as the Ti diffusion method are known. A similar function can be realized by a waveguide forming method, another ferroelectric substance (for example, BaTiO 3 ), another paraelectric substance having an electro-optical effect (for example, BSO), or a semiconductor.

【0016】本発明の基本構成は、空間的に離れている
独立したチャンネル導波路間の光結合を、位相格子によ
る回折を介して間を埋めている平面導波路の平面モード
によって行なうものであって、位相格子に、結晶方位の
反転周期に基づく電気光学効果の周期を利用するのが上
記第一の実施例の光スイッチである。
The basic configuration of the present invention is to perform optical coupling between independent channel waveguides that are spatially separated by a plane mode of a plane waveguide that fills the gap through diffraction by a phase grating. In the optical switch of the first embodiment, the phase grating uses the period of the electro-optical effect based on the inversion period of the crystal orientation.

【0017】上記実施例における構成要件を変形する事
によって、別なる有用な素子も可能である。例えば、独
立したチャンネル導波路間を埋めている平面導波路に波
長選択機能を付与する、即ち、例えば、1.3μm光は
平面モード導波し、1.5μm光はカットオフとなるよ
うに平面導波路厚さを設定する。このときの平面導波路
の厚さは、例えば基板にニオブ酸リチウム結晶を使用
し、Ti拡散法によって高屈折率層を形成する場合、
1.8μm程度の厚さにすればよい。
Another useful element is possible by modifying the constituent elements in the above embodiment. For example, a wavelength selecting function is given to a planar waveguide that fills the space between independent channel waveguides, that is, for example, 1.3 μm light is planar mode guided and 1.5 μm light is cut off in a plane. Set the waveguide thickness. The thickness of the planar waveguide at this time is, for example, when using a lithium niobate crystal for the substrate and forming the high refractive index layer by the Ti diffusion method,
The thickness may be about 1.8 μm.

【0018】また、位相格子は、基板に自発分極反転周
期構造を形成した構造とする替りに、チャンネル導波路
上に誘電体膜等(例えばSiO2 )でグレーティングを
形成してくくりつけとし、先の図2の位相整合条件が
1.3μm光で成立するように設定する。すなわち、K
CHとKp1とのなす角度をθi 、KCHとKa とのなす角度
をθa としたとき、 KCH=Kp1・COS(θi )+Ka・COS(θa ) Kp1・SIN(θ)=Ka ・SIN(θa ) の両式を1.3μm光で満たすようにθi やθa の値、
回折格子の周期、チャンネル導波路や平面導波路の厚さ
等を定める。この構成にすると、例えば2種類の波長の
合波や分波が可能な光フィルタを構成することが出来
る。更にチャンネル導波路を追加し、平面導波路の波長
選択機能を適切に定める事により、更にもう1波の合
波、分波が可能になり、構造的に機能拡張が容易であ
る。この機能の素子に使う材料は、物理光学効果は特に
必要はなく、光学的に透明な硝子等の通常の誘電体であ
りさえすればよい。
The phase grating has a structure in which a spontaneous polarization inversion periodic structure is formed on the substrate, and a grating is formed on the channel waveguide with a dielectric film or the like (for example, SiO 2 ), and the grating is attached to the phase grating. The phase matching condition of FIG. 2 is set so as to be satisfied with 1.3 μm light. That is, K
When the angle between CH and K p1 is θ i and the angle between K CH and K a is θ a , K CH = K p1 · COS (θ i ) + Ka · COS (θ a ) K p1 · SIN (Θ i ) = K a · SIN (θ a ), the values of θ i and θ a such that 1.3 μm light is satisfied,
The period of the diffraction grating, the thickness of the channel waveguide and the planar waveguide, etc. are determined. With this configuration, for example, an optical filter that can combine or demultiplex two types of wavelengths can be formed. By further adding a channel waveguide and appropriately determining the wavelength selection function of the planar waveguide, it is possible to combine and demultiplex another wave, and it is structurally easy to expand the function. The material used for the element having this function is not particularly required to have a physical optical effect, and may be any ordinary dielectric such as optically transparent glass.

【0019】[0019]

【発明の効果】本発明によって、電気光学的安定性に優
れ、多チャンネル出力の構成が容易な導波路電気光学光
スイッチ等の集積光回路が得られる。加えて、周囲の温
度変化による等価屈折率の変動や入射光の波長変動やば
らつきを吸収することが出来る集積光回路が実現し、ま
た、構成が簡単な波長フィルタ機能も実現することが出
来、本発明の基本的な概念を展開することによって有用
な集積光回路を生み出すことが出来る。
According to the present invention, it is possible to obtain an integrated optical circuit such as a waveguide electro-optical optical switch which is excellent in electro-optical stability and can be easily configured for multi-channel output. In addition, an integrated optical circuit that can absorb variations in the equivalent refractive index due to ambient temperature changes and wavelength variations and variations in incident light can be realized, and a wavelength filter function with a simple configuration can also be realized. By developing the basic concept of the present invention, useful integrated optical circuits can be created.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である単位光スイッチの構造
を示す斜視図である。
FIG. 1 is a perspective view showing the structure of a unit optical switch that is an embodiment of the present invention.

【図2】光スイッチ内における光波モードの変換の整合
条件を示す図である。
FIG. 2 is a diagram showing matching conditions for lightwave mode conversion in an optical switch.

【符号の説明】[Explanation of symbols]

1 LiTaO3 結晶 2 自発分極反転周期構造 3 入力チャンネル導波路 4 出力チャンネル導波路 5 平面導波路 6A,6B,7A,7B 電極 8 入射TMモード光 9 TM平面導波路モード光 10 出射TMモード光 11 光学的バッファ層1 LiTaO 3 crystal 2 spontaneous polarization inversion periodic structure 3 input channel waveguide 4 output channel waveguide 5 planar waveguide 6A, 6B, 7A, 7B electrode 8 incident TM mode light 9 TM planar waveguide mode light 10 outgoing TM mode light 11 Optical buffer layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 同一の等価屈折率を有し、光学的に結合
しない程度に離れた複数本のチャンネル光導波路と、該
チャンネル導波路間にあってチャンネル光導波路より等
価屈折率の低い平面導波路と、前記複数のチャンネル導
波路に同一の屈折率周期変化を与える手段とを有するこ
とを特徴とする集積光回路。
1. A plurality of channel optical waveguides which have the same equivalent refractive index and are separated from each other so as not to be optically coupled, and a planar waveguide which is located between the channel waveguides and whose equivalent refractive index is lower than that of the channel optical waveguide. , The plurality of channel guides
An integrated optical circuit having means for imparting the same refractive index period change to the waveguide .
【請求項2】 電気光学結晶を基板とし、その表面に沿
った方向に周期配列方向を有する結晶方位の反転周期構
造と、該結晶表面にあって光学的に結合しない程度に離
れ、同一の導波特性を有する複数本のチャンネル導波路
と、これらのチャンネル導波路の間に形成された該チャ
ンネル導波路より等価屈折率の小さい平面導波路と、前
記複数のチャンネル光導波路に電界を印加する手段とを
有することを特徴とする集積光回路。
2. An electro-optic crystal is used as a substrate, and an inversion periodic structure of a crystal orientation having a periodic arrangement direction along a surface thereof is separated from the same conductive surface so as not to be optically coupled to the crystal surface. A plurality of channel waveguides having wave characteristics, a planar waveguide formed between these channel waveguides having an equivalent refractive index smaller than that of the channel waveguides, and an electric field is applied to the plurality of channel optical waveguides. And an integrated optical circuit.
【請求項3】 光学的に結合しない程度に離れ、同一の
導波特性を有し、複数の波長の光を導波する複数本のチ
ャンネル光導波路と、これらのチャンネル導波路の間に
形成され、チャンネル光導波路より等価屈折率が小さ
く、かつ、特定の波長の光を導波する平面導波路と、前
チャンネル導波路に屈折率周期変化を与える手段とを
有することを特徴とする集積光回路。
3. A plurality of channel optical waveguides, which are separated from each other to the extent that they are not optically coupled, have the same waveguide characteristics, and guide light of a plurality of wavelengths, and are formed between these channel waveguides. Integrated light having a smaller equivalent refractive index than that of the channel optical waveguide and having a planar waveguide for guiding light of a specific wavelength, and means for changing the refractive index period of the channel waveguide. circuit.
JP5664193A 1993-03-17 1993-03-17 Integrated optical circuit Expired - Fee Related JPH0785150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5664193A JPH0785150B2 (en) 1993-03-17 1993-03-17 Integrated optical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5664193A JPH0785150B2 (en) 1993-03-17 1993-03-17 Integrated optical circuit

Publications (2)

Publication Number Publication Date
JPH06265944A JPH06265944A (en) 1994-09-22
JPH0785150B2 true JPH0785150B2 (en) 1995-09-13

Family

ID=13032971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5664193A Expired - Fee Related JPH0785150B2 (en) 1993-03-17 1993-03-17 Integrated optical circuit

Country Status (1)

Country Link
JP (1) JPH0785150B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5318702B2 (en) * 2009-08-18 2013-10-16 大日本スクリーン製造株式会社 Pattern drawing device
JP5643373B2 (en) * 2013-04-18 2014-12-17 株式会社Screenホールディングス Spatial light modulator

Also Published As

Publication number Publication date
JPH06265944A (en) 1994-09-22

Similar Documents

Publication Publication Date Title
US7088875B2 (en) Optical modulator
US4070094A (en) Optical waveguide interferometer modulator-switch
EP0817988B1 (en) Polarization-insensitive, electro-optic modulator
Ohmachi et al. LiNbO 3 TE-TM mode converter using collinear acoustooptic interaction
US4690489A (en) Integrated optical wavelength multiplexer and demultiplexer device for monomode transmission systems and its use
US4196964A (en) Optical waveguide system for electrically controlling the transmission of optical radiation
JPS6220532B2 (en)
Tian et al. Polarization-independent integrated optical, acoustically tunable double-stage wavelength filter in LiNbO/sub 3
US5513283A (en) Te-Me mode converter on polymer waveguide
JPH06194696A (en) Optical switch
JP3200629B2 (en) Optical modulator using photonic bandgap structure and optical modulation method
JP3272064B2 (en) 4-section optical coupler
US3990775A (en) Thin-film optical waveguide
JP2000028979A (en) Optical control element independent of polarization
JPH08286160A (en) Acoustooptic filter
JPH0785150B2 (en) Integrated optical circuit
Goel et al. Design considerations for low switching voltage crossing channel switches
JP4573726B2 (en) Light switch
JP2003066393A (en) Integrated optical waveguide device
JPH05303022A (en) Single mode optical device
JPH037910A (en) Waveguide type optical circuit element
JP3119965B2 (en) Optical waveguide type optical element
RU2129721C1 (en) Method for switching and modulation of unidirectional parent-distribution waves and device which implements said method
JP3623750B2 (en) Multi-wavelength light source
JP2658381B2 (en) Waveguide type wavelength conversion element

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960305

LAPS Cancellation because of no payment of annual fees