JP3623750B2 - Multi-wavelength light source - Google Patents

Multi-wavelength light source Download PDF

Info

Publication number
JP3623750B2
JP3623750B2 JP2001104943A JP2001104943A JP3623750B2 JP 3623750 B2 JP3623750 B2 JP 3623750B2 JP 2001104943 A JP2001104943 A JP 2001104943A JP 2001104943 A JP2001104943 A JP 2001104943A JP 3623750 B2 JP3623750 B2 JP 3623750B2
Authority
JP
Japan
Prior art keywords
light
signal light
wavelength
light source
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001104943A
Other languages
Japanese (ja)
Other versions
JP2002303903A (en
Inventor
和夫 藤浦
晃次 圓佛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2001104943A priority Critical patent/JP3623750B2/en
Priority to EP02007153A priority patent/EP1248143A3/en
Priority to US10/108,996 priority patent/US6795232B2/en
Publication of JP2002303903A publication Critical patent/JP2002303903A/en
Application granted granted Critical
Publication of JP3623750B2 publication Critical patent/JP3623750B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光通信に用いられる多波長光源に関し、より詳細には、低ノイズな信号光が多波長必要な波長多重通信に利用される多波長光源に関する。
【0002】
【従来の技術】
現在、通信の大容量化の実現に向けて波長多重通信(WDM)システムの導入が加速されている。このWDMシステムは、1本の光ファイバに波長の異なる信号を多数伝送することによって、システムの低コスト化を実現しており、新たなファイバを敷設することなく、伝送容量を増加できる方式である。
【0003】
【発明が解決しようとする課題】
しかしながら、この方式ではファイバの敷設コストなどで大きなメリットがあるものの、高密度化には波長精度の高い光源を多数必要とするという問題があった。これまでは、信号光の波長に厳密に適合した半導体レーザを選別し、必要数並べるという方式が主に用いられている。但し、この方式では、波長の適合したレーザを選別するためコスト高になるという問題があった。
【0004】
また、半導体のモードロックレーザやファイバのリングレーザを用いる方法や、それら短パルス光源と非線形ファイバで発生したスーパーコンティニウム光(SC光)をアレイ格子型合分波器で切り出すスペクトルスライス型の光源も提案されているが、SC光の発生には長尺の非線形ファイバが必要で小型化に難があるという問題があった。
【0005】
本発明は、このような問題に鑑みてなされたもので、その目的とするところは、波長数や波長帯の制御を、電界を印加する電極を選択することで実現できるようにした多波長光源を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、このような目的を達成するために、請求項1に記載の発明は、KTa1−xNbおよび/あるいはK1−yLiTa1−xNbなる組成を有し、中心対称性を有する立方晶の結晶材料によって形成された屈折率が高いコア部分と、該コア部分を取り巻くクラッドからなる導波構造を有する平面型の光導波路である多波長光源において、前記導波路の平面上に一定の周期の幅を有する電極を具備し、少なくとも1つあるいは2つ以上の波長からなる信号光を発生する信号光発生手段と、該信号光発生手段からの信号光と異なる波長のポンプ光を発生するポンプ光発生手段とを備え、前記電極により前記コアに電界を印加することにより2次の非線形光学効果を発現させ、前記信号光と前記ポンプ光とを同時に入射することにより、少なくとも2波長以上の信号光を生成することを特徴とするものである。
【0007】
また、請求項2に記載の発明は、請求項1に記載の発明において、前記電極幅の周期が、前記信号光とポンプ光とのエネルギー差で差周波発生を得るに必要な疑似位相整合条件を満たすことを特徴とするものである。
【0008】
また、請求項3に記載の発明は、請求項1又は2に記載の発明において、前記電極が、前記信号光のTE偏波の電界方向に平行な方向と、TM偏波に平行な方向のいずれか1つあるいは両方向に電界を印加する構造であることを特徴とするものである。
【0009】
また、請求項4に記載の発明は、請求項1,2又は3に記載の発明において、前記電極に印加する電圧を変調することによって前記信号光を変調することを特徴とするものである。
【0010】
また、請求項5に記載の発明は、請求項1乃至4いずれかに記載の発明において、前記周期の異なる電極を複数備えたことを特徴とするものである。
【0011】
本発明は、光を導波する媒体としてKTa1−xNbおよび/あるいはK1−yLiTa1−xNbなる組成を有する結晶を用いることを特徴としている。これらKTNならびにKLTN結晶は、使用温度域で中心対称性を有する立方晶であり、非線形光学効果を有していないが、電界を印加することで、2次の非線形効果を発現するという特徴を有している。このため、信号光とポンプ光に位相整合する周期を有する電極を作成し、電場を印加することで差周波発生による多波長化が可能となる。
【0012】
さらに、周期の異なる電極を光の導波方向に並べておき、それぞれの周期に位相整合するポンプ光を入射し、すべての電極に電界を印加すれば、電極の数に対応した差周波を得ることができる。また、最初に入射する信号光が多波長である場合は、最初に入射する信号光の波長数をnとし、電極の数をmとすると、このデバイスで得られる波長数はn×2となる。従って、例えば、最初に入射する波長数が10で4電極構成で有れば、160波を発生することが可能である。
【0013】
さらに、この方法によって発生する信号光の間隔は、最初に入射した信号光の間隔と、ポンプ光の半分のエネルギーに対応する波長とのエネルギー差で決まるため、例えば、ITU−Tグリッドに正確に合った均一幅の光を発生することができる。さらに、この非線形光学効果の効率は、印加する電界に比例して増加し、かつ実用的な印加電界の範囲で既存の非線形光学結晶であるLiNbOの2倍以上の効率が実現できる。従って、既存のLNの差周波発生と同じ相互作用長で有れば4倍以上の効率、同じ効率ならば1/2以下の相互作用長で波長変換を実現できる。
【0014】
また、LN結晶は三方晶であり、最も高い非線形効果を得るには、c軸と入射光の偏光を合致させる必要があり、疑似位相整合もc軸方向の自発分極を反転させることで実現されている。したがって、LNの差周波発生では、作製された疑似位相整合の方向で変換可能な光の偏波方向が規定され、その他の偏光では変換されない。一方、KTNおよびKLTNは等方的な結晶であり、電界の印加方向に非線形性が発現されるため、例えば電極を直交する2方向に電界がかかるような構成とすれば容易に偏波を個別に制御した光源が実現できるという利点がある。
【0015】
また、LNで必要とする結晶のポーリングも不必要で、電極を形成で容易に疑似位相整合を実現できるという利点もある。これは、異なる周期の電極を数種類、結晶表面上に形成しておけば、その周期に応じたポンプ光の波長を選択することが可能であり、波長変換デバイスに機能を付与することが可能である。さらに、本発明で用いる波長変換の原理は、2次の非線形効果である差周波発生によるものであり、発生する差周波は、信号光とポンプ光の相互作用で生成するため、パルス幅の狭い光と同じパルスに整形される。従って、ポンプ光が、ファイバリングレーザ等のような短パルス列であれば、信号光が半導体レーザのようなジッタを含むような幅広い光源であっても、高品質な光を発生することが可能である。
【0016】
さらに、THz以上の高速性と原理的にノイズフリーという利点もある。また、異なる波長に疑似位相整合する電極を作製し、順に電界を印加すれば、波長可変光源として動作する。この光源では、電界を別に変調すれば、変調信号が得られ、変調器を組み込んだ可変波長光源としても動作可能である。
【0017】
なお、本実施例では、矩形の埋め込み導波路を使用したが、イオンの拡散に依って作製した拡散導波路でも同様の特性が得られた。
【0018】
【発明の実施の形態】
以下、図面を参照して本発明の実施例について説明する。
【0019】
[実施例1]
フォトリソグラフィーと液相エピタキシー技術を用いて矩形の導波構造を作製した。作製した導波路の屈折率差は2.5%であり、高次モードのカットオフ波長は0.6μmであり、これより長波長は単一モード導波路として機能する。作製した導波路長は3cmであり、導波路の損失は0.15dB/cmであった。基板は導電性のあるLa添加のSrTiOを用い、上部には金蒸着で、電極パターンを構成した。
【0020】
図1は、作成した波長可変波長光源の構成図で、効率および信号波長を安定化するためにデバイスはペルチェ素子で温度制御している。電極のピッチは、0.770、0.775、0.780、0.785μmをポンプ光とし1.55μm帯の光の差周波発生に必要な疑似位相整合を実現するグレーティングピッチに対応している。この場合、電極ピッチは12〜13μmとなる。電極に1kV/cmに対応する電圧を印加し、入射端から偏波保持ファイバを用いて、信号光発生部からの1.53μmの信号光と、ポンプ光発生部からの0.770、0.775、0.780、0.785μmのポンプ光とを同時に入射し、出射光を光スペクトラムアナライザを用いて測定した。
【0021】
図2は、電極に順に電界を印加することにより発生した光のスペクトルを示す図で、差周波発生による波長可変光源が実現されていることがわかる。さらに、信号光および変換光はパラメトリック増幅されており、入力信号光に対する変換光の利得は約15dBに達している。これは、従来のLNの波長変換デバイスでは実現できない高い利得である。また、この場合の変換効率も印加電界の強度で変化させることが可能であり、電界をOFFにすると信号光のみが出力される。
【0022】
さらに、ポンプ光強度を一定にし、入力信号光強度を変化させ、出力信号光強度をモニターしながら出力変換光強度が一定になるように電界を制御することも可能であった。また、利得飽和領域で使用することにより、出力光の強度をほぼ一定にすることを可能であった。あるいは、電極毎に印加する電界を変え、すなわち出力側の電極に近いほど電界を高くすることによって出力光強度を一定にすることも可能であった。
【0023】
図1は、電極を面に垂直方向に配置した構成であるが、さらに面に水平方向に電極を配置し、面に垂直方向に配置した電極と独立に電界を印加することにより、TE、TM両偏光を独立に発生させることが可能である。図4に本発明の平面型光導波路を、電極の位置で導波路と垂直に切った断面図を示す。(a)は電極を面に垂直方向に配置した構成で、(b)は電極面を水平方向に配置した構成である。なお、図中符号11は基板、12は導波路である。
【0024】
[実施例2]
実施例1と同様の構成で、10GHzで変調した電界を、各電極に純に印加した。これにより、1550、1560、1570、1580nmに10GHzで変調した光信号を随時取り出すことができた。これは、10Gbit/sの可変波長光源として機能していることが明らかである。また、この信号間隔は、設定する電極のピッチ、すなわち位相整合するポンプ光の波長と信号光の波長を設定することで、容易に変化させることが可能である。また、1530nmで用いている信号光がファイバ−リングレーザの100GHzのパルス列であれば、可変波長光源で発生できる信号光も100GHzとなる。
【0025】
また、作製する電極パターン数を増やすことによって、容易に可変可能な波長数を増やすことも可能であり、異なる電極パターンを有するチップを並列に並べることによって、容易に、1250−1700nm領域をカバーできる波長可変光源を実現することが出来た。
【0026】
[実施例3]
実施例1の多波長光源に入射するポンプ光を、767.75、774.75、784.75、804.75nm、信号光を1528、1529、1530、1531、1532、1533、1534、1535、1536、1537nmの10波長とすること以外は、実施例1と同様の方法で、多波長化を実施した。各電極に電界を随時印加して得られる波長を図3に示す。この図3に示すように、電極をそれぞれONにした場合は、その差周波に対応する波長の信号がえられる。従って、それぞれの電極に電界印加することによって、波長数を2倍にすることが可能である。
【0027】
さらに、全部の電極をONにした場合には、各電極で発生した差周波がさらに次の電極で差周波発生するため、4電極後には160波の信号光が得られる。このように、本発明を用いれば、容易に多波長光源を1チップのデバイスで実現することができる。もちろん、各チップに1つの電極を構成したものをファイバで接続した構成でも同様の光源を実現することが可能であった。また、図3で明らかなように、電界を印加する電極を選択することにより、必要な波長帯に必要な波長数の信号を得ることが可能であるということも明らかである。
【0028】
[実施例4]
上述した実施例3で実施した多波長光源において、最初に入射する10波長を、実施例1と同様の構成で10種類の電極を有する多波長光源で実現し、その際に用いる最初の信号光をファイバリングレーザあるいは半導体モードロックレーザの100GHzのパルスとし、実施例3と同様の実験を行った。得られた波長はすべて実施例3と同様であったが、それらの信号はすべて100GHzに変調された、短パルスであった。このように、本発明の方法を用いれば、短パルスからなる多波長の信号光を容易に発生できるという利点が明らかである。
【0029】
【発明の効果】
以上説明したように本発明によれば、KTa 1−x Nb および/あるいはK 1−y Li Ta 1−x Nb なる組成を有し、中心対称性を有する立方晶の結晶材料によって形成された屈折率が高いコア部分と、このコア部分を取り巻くクラッドからなる導波構造を有する平面型の光導波路である多波長光源において、導波路の平面上に一定の周期の幅を有する電極を具備し、少なくとも1つあるいは2つ以上の波長からなる信号光を発生する信号光発生手段と、信号光発生手段からの信号光と異なる波長のポンプ光を発生するポンプ光発生手段とを備え、電極によりコアに電界を印加することにより2次の非線形光学効果を発現させ、信号光とポンプ光とを同時に入射することにより、少なくとも2波長以上の信号光を生成するようにしたので、従来では実現できなかった多波長光源を一つのチップ上に実現でき、さらに波長数や波長帯の制御を、電界を印加する電極を選択することで実現できた。さらに、従来では実現できなかった短パルスの信号光を容易に生成できるという利点がある。これにより、波長多重通信に利用する多波長光源を、簡易で安価な構成で実現できる。
【図面の簡単な説明】
【図1】本発明の多波長光源の一実施例を示す構成図である。
【図2】実施例1で発生させた信号光を示す図である。
【図3】各電極に電界を随時印加して得られる波長を示す図である。
【図4】本発明の平面型光導波路を電極の位置で導波路と垂直に切った断面図で、(a)は電極を面に垂直方向に配置した構成、(b)は電極面を水平方向に配置した構成を示した図である。
【符号の説明】
1 KTNあるいはKLTN導波路
2 電極
3 下部電極かつ基板
11 基板
12 導波路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multi-wavelength light source used for optical communication, and more particularly to a multi-wavelength light source used for wavelength multiplexing communication in which low-noise signal light requires multiple wavelengths.
[0002]
[Prior art]
Currently, the introduction of wavelength division multiplexing (WDM) systems is being accelerated toward the realization of an increase in communication capacity. In this WDM system, a large number of signals having different wavelengths are transmitted to one optical fiber, thereby realizing a reduction in the system cost and a transmission capacity can be increased without installing a new fiber. .
[0003]
[Problems to be solved by the invention]
However, this method has a great advantage in terms of the fiber laying cost, but there is a problem that a large number of light sources with high wavelength accuracy are required for high density. Until now, a method of selecting and arranging the required number of semiconductor lasers strictly matching the wavelength of the signal light has been mainly used. However, this method has a problem in that the cost increases because a laser having a wavelength matched is selected.
[0004]
Also, a method using a semiconductor mode-locked laser or a fiber ring laser, or a spectrum slice type light source that cuts out supercontinuum light (SC light) generated by these short pulse light source and nonlinear fiber with an array grating type multiplexer / demultiplexer. However, there is a problem in that generation of SC light requires a long nonlinear fiber and is difficult to reduce in size.
[0005]
The present invention has been made in view of such problems, and an object of the present invention is to provide a multi-wavelength light source capable of controlling the number of wavelengths and the wavelength band by selecting an electrode to which an electric field is applied. Is to provide.
[0006]
[Means for Solving the Problems]
In order to achieve such an object, the present invention provides a composition of KTa 1-x Nb x O 3 and / or K 1-y Li y Ta 1-x Nb x O 3. have a, a cubic crystal material core is high formation index of refraction by the portion of the crystal having a center symmetric, the multi-wavelength light source which is a planar optical waveguide having a waveguide structure comprising a clad surrounding the core portion A signal light generating means for generating signal light having at least one or two or more wavelengths, and an electrode having a constant period width on the plane of the waveguide, and a signal from the signal light generating means a pump light generator for generating a pump light of the light with different wavelengths, the electrode and the core to express second-order nonlinear optical effect by applying an electric field to the simultaneous and said signal light said pump light By entering, it is characterized in that to generate at least two or more wavelengths of the signal light.
[0007]
According to a second aspect of the present invention, in the first aspect of the present invention, the period of the electrode width is a quasi phase matching condition necessary for obtaining a difference frequency due to an energy difference between the signal light and the pump light. It is characterized by satisfying.
[0008]
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the electrode has a direction parallel to the electric field direction of the TE polarization of the signal light and a direction parallel to the TM polarization. It has a structure in which an electric field is applied in any one or both directions.
[0009]
According to a fourth aspect of the present invention, in the invention of the first, second, or third aspect, the signal light is modulated by modulating a voltage applied to the electrode.
[0010]
The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein a plurality of electrodes having different periods are provided.
[0011]
The present invention is characterized by using crystals having KTa 1-x Nb x O 3 and / or K 1-y Li y Ta 1 -x Nb x O 3 having a composition of light as a medium to be guided. These KTN and KLTN crystals are cubic crystals having central symmetry in the operating temperature range and do not have a nonlinear optical effect, but have a characteristic that a second-order nonlinear effect is manifested by applying an electric field. doing. For this reason, an electrode having a period that matches the phase of the signal light and the pump light is created and an electric field is applied, so that multiple wavelengths can be obtained by generating a difference frequency.
[0012]
Furthermore, if electrodes with different periods are arranged in the light guiding direction, pump light that is phase-matched to each period is incident, and an electric field is applied to all electrodes, a difference frequency corresponding to the number of electrodes can be obtained. Can do. In addition, when the first incident signal light has multiple wavelengths, the number of wavelengths of the first incident signal light is n, and the number of electrodes is m. The number of wavelengths obtained by this device is n × 2 m . Become. Therefore, for example, if the number of wavelengths incident first is 10 and a four-electrode configuration is used, 160 waves can be generated.
[0013]
Further, the interval between the signal lights generated by this method is determined by the energy difference between the interval between the first incident signal light and the wavelength corresponding to half the energy of the pump light. It is possible to generate light having a uniform width. Furthermore, the efficiency of this nonlinear optical effect increases in proportion to the applied electric field, and can achieve an efficiency more than twice that of the existing nonlinear optical crystal, LiNbO 3 , within the practical applied electric field range. Therefore, if the interaction length is the same as the existing LN difference frequency generation, the wavelength conversion can be realized with an efficiency of 4 times or more, and if the same efficiency, the wavelength conversion can be realized with an interaction length of 1/2 or less.
[0014]
The LN crystal is a trigonal crystal, and in order to obtain the highest nonlinear effect, it is necessary to match the polarization of the c-axis and the incident light. Pseudo phase matching is also realized by reversing the spontaneous polarization in the c-axis direction. ing. Therefore, in the generation of the difference frequency of LN, the polarization direction of light that can be converted in the direction of the produced pseudo phase matching is defined, and it is not converted by other polarized light. On the other hand, KTN and KLTN are isotropic crystals, and non-linearity is manifested in the direction in which the electric field is applied. For example, if the electric field is applied in two directions perpendicular to the electrodes, the polarization can be easily separated. There is an advantage that a controlled light source can be realized.
[0015]
In addition, there is no need for the crystal poling required for LN, and there is an advantage that pseudo phase matching can be easily realized by forming electrodes. If several types of electrodes with different periods are formed on the crystal surface, the wavelength of the pump light can be selected according to the period and functions can be added to the wavelength conversion device. is there. Further, the principle of wavelength conversion used in the present invention is based on the difference frequency generation which is a second-order nonlinear effect, and the generated difference frequency is generated by the interaction between the signal light and the pump light, so that the pulse width is narrow. It is shaped into the same pulse as light. Therefore, if the pump light is a short pulse train such as a fiber ring laser, high-quality light can be generated even if the signal light is a wide light source including jitter such as a semiconductor laser. is there.
[0016]
Furthermore, there are also the advantages of high speed over THz and in principle noise free. In addition, if electrodes that are pseudo-phase matched to different wavelengths are produced and an electric field is applied in order, the device operates as a wavelength tunable light source. In this light source, if the electric field is separately modulated, a modulated signal is obtained, and the light source can be operated as a variable wavelength light source incorporating a modulator.
[0017]
In this example, a rectangular buried waveguide was used, but similar characteristics were also obtained with a diffusion waveguide fabricated by ion diffusion.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0019]
[Example 1]
A rectangular waveguide structure was fabricated using photolithography and liquid phase epitaxy technology. The refractive index difference of the manufactured waveguide is 2.5%, the cutoff wavelength of the higher mode is 0.6 μm, and longer wavelengths function as a single mode waveguide. The produced waveguide length was 3 cm, and the loss of the waveguide was 0.15 dB / cm. The substrate was made of conductive La-added SrTiO 3 , and an electrode pattern was formed on the upper part by gold vapor deposition.
[0020]
FIG. 1 is a configuration diagram of a tunable wavelength light source that has been created. In order to stabilize efficiency and signal wavelength, the temperature of the device is controlled by a Peltier element. The pitch of the electrodes corresponds to the grating pitch that realizes the quasi-phase matching necessary for generating the difference frequency of light in the 1.55 μm band, using 0.770, 0.775, 0.780, and 0.785 μm as pump light. . In this case, the electrode pitch is 12 to 13 μm. A voltage corresponding to 1 kV / cm is applied to the electrode, and a polarization maintaining fiber is used from the incident end, and 1.53 μm signal light from the signal light generator and 0.770, 0. Simultaneously, 775, 0.780, and 0.785 μm pump light was incident, and the emitted light was measured using an optical spectrum analyzer.
[0021]
FIG. 2 is a diagram showing a spectrum of light generated by sequentially applying an electric field to the electrodes, and it can be seen that a wavelength tunable light source by generating a difference frequency is realized. Further, the signal light and the converted light are parametrically amplified, and the gain of the converted light with respect to the input signal light reaches about 15 dB. This is a high gain that cannot be realized by a conventional LN wavelength conversion device. Also, the conversion efficiency in this case can be changed by the intensity of the applied electric field, and only the signal light is output when the electric field is turned off.
[0022]
Furthermore, it was also possible to control the electric field so that the output converted light intensity is constant while monitoring the output signal light intensity while keeping the pump light intensity constant, changing the input signal light intensity. In addition, the intensity of the output light can be made almost constant by using it in the gain saturation region. Alternatively, it is possible to make the output light intensity constant by changing the electric field applied to each electrode, that is, by increasing the electric field as it is closer to the output-side electrode.
[0023]
FIG. 1 shows a configuration in which electrodes are arranged in a direction perpendicular to a surface. Further, by arranging electrodes in a horizontal direction on a surface and applying an electric field independently of the electrodes arranged in a direction perpendicular to the surface, TE, TM Both polarizations can be generated independently. FIG. 4 shows a cross-sectional view of the planar optical waveguide of the present invention cut perpendicularly to the waveguide at the position of the electrode. (A) is the structure which has arrange | positioned the electrode to the orthogonal | vertical direction to the surface, (b) is the structure which has arrange | positioned the electrode surface to the horizontal direction. In the figure, reference numeral 11 denotes a substrate, and 12 denotes a waveguide.
[0024]
[Example 2]
In the same configuration as in Example 1, an electric field modulated at 10 GHz was applied purely to each electrode. As a result, optical signals modulated at 1 GHz at 1550, 1560, 1570, and 1580 nm were extracted as needed. It is clear that this functions as a 10 Gbit / s variable wavelength light source. The signal interval can be easily changed by setting the pitch of electrodes to be set, that is, the wavelength of pump light and the wavelength of signal light that are phase-matched. If the signal light used at 1530 nm is a 100 GHz pulse train of a fiber ring laser, the signal light that can be generated by the variable wavelength light source is 100 GHz.
[0025]
In addition, it is possible to increase the number of wavelengths that can be easily changed by increasing the number of electrode patterns to be manufactured. By arranging chips having different electrode patterns in parallel, the region of 1250 to 1700 nm can be easily covered. A tunable light source could be realized.
[0026]
[Example 3]
Pump light incident on the multi-wavelength light source of Example 1 is 767.75, 774.75, 784.75, 804.75 nm, and signal light is 1528, 1529, 1530, 1531, 1532, 1533, 1534, 1535, 1536. The number of wavelengths was increased by the same method as in Example 1 except that the wavelength was 1537 nm. The wavelength obtained by applying an electric field to each electrode as needed is shown in FIG. As shown in FIG. 3, when each electrode is turned on, a signal having a wavelength corresponding to the difference frequency is obtained. Therefore, the number of wavelengths can be doubled by applying an electric field to each electrode.
[0027]
Further, when all the electrodes are turned on, the difference frequency generated at each electrode is further generated at the next electrode, and therefore 160 signal lights are obtained after four electrodes. As described above, by using the present invention, a multi-wavelength light source can be easily realized with a one-chip device. Of course, a similar light source can be realized even in a configuration in which one chip is formed on each chip and connected by a fiber. Further, as is apparent from FIG. 3, it is also clear that a signal having a necessary number of wavelengths in a necessary wavelength band can be obtained by selecting an electrode to which an electric field is applied.
[0028]
[Example 4]
In the multi-wavelength light source implemented in the above-described third embodiment, the first incident light is realized by the multi-wavelength light source having ten types of electrodes having the same configuration as in the first embodiment, and the first signal light used in that case. The same experiment as in Example 3 was carried out using a 100 GHz pulse of a fiber ring laser or a semiconductor mode-locked laser. All of the obtained wavelengths were the same as in Example 3, but their signals were all short pulses modulated to 100 GHz. Thus, it is clear that the use of the method of the present invention can easily generate multi-wavelength signal light composed of short pulses.
[0029]
【The invention's effect】
As described above, according to the present invention, a cubic crystal having a composition of KTa 1-x Nb x O 3 and / or K 1-y Li y Ta 1-x Nb x O 3 and having central symmetry. In a multi-wavelength light source, which is a planar optical waveguide having a waveguide structure composed of a core part having a high refractive index formed of a crystal material and a clad surrounding the core part, the width of a constant period on the plane of the waveguide A signal light generating means for generating signal light having at least one or two or more wavelengths, and a pump light generating means for generating pump light having a wavelength different from that of the signal light from the signal light generating means with the door, to express second-order nonlinear optical effect by applying an electric field to the core by the electrode, by entering the signal light and the pump light at the same time, at least two wavelengths of the signal light Since so as to formed, conventionally can achieve multi-wavelength light source that can not be implemented on a single chip, further control of the number of wavelengths or wavelength bands, could be realized by selecting an electrode for applying an electric field. Furthermore, there is an advantage that it is possible to easily generate short-pulse signal light that could not be realized conventionally. Thereby, the multi-wavelength light source used for wavelength multiplexing communication can be realized with a simple and inexpensive configuration.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of a multi-wavelength light source according to the present invention.
FIG. 2 is a diagram illustrating signal light generated in the first embodiment.
FIG. 3 is a diagram showing wavelengths obtained by applying an electric field to each electrode as needed.
4A and 4B are cross-sectional views of the planar optical waveguide according to the present invention cut perpendicularly to the waveguide at the position of the electrodes, where FIG. 4A is a configuration in which the electrodes are arranged in a direction perpendicular to the surface, and FIG. It is the figure which showed the structure arrange | positioned in the direction.
[Explanation of symbols]
1 KTN or KLTN waveguide 2 Electrode 3 Lower electrode and substrate 11 Substrate 12 Waveguide

Claims (5)

KTa1−xNbおよび/あるいはK1−yLiTa1−xNbなる組成を有し、中心対称性を有する立方晶の結晶材料によって形成された屈折率が高いコア部分と、該コア部分を取り巻くクラッドからなる導波構造を有する平面型の光導波路である多波長光源において、前記導波路の平面上に一定の周期の幅を有する電極を具備し、少なくとも1つあるいは2つ以上の波長からなる信号光を発生する信号光発生手段と、該信号光発生手段からの信号光と異なる波長のポンプ光を発生するポンプ光発生手段とを備え、前記電極により前記コアに電界を印加することにより2次の非線形光学効果を発現させ、前記信号光と前記ポンプ光とを同時に入射することにより、少なくとも2波長以上の信号光を生成することを特徴とする多波長光源。KTa 1-x Nb x O 3 and / or K 1-y Li y Ta 1 -x Nb x O 3 having a composition have a, a high refractive index formed by the crystalline material of the cubic with central symmetry with core A multi-wavelength light source that is a planar optical waveguide having a waveguide structure composed of a portion and a clad surrounding the core portion, the electrode having a constant period width on the plane of the waveguide, and at least one Alternatively, it comprises signal light generating means for generating signal light having two or more wavelengths, and pump light generating means for generating pump light having a wavelength different from that of the signal light from the signal light generating means, and the core is configured by the electrodes. to to express second-order nonlinear optical effect by applying an electric field, by incident and said pump light and said signal light at the same time, to generate at least two or more wavelengths of the signal light Multi-wavelength light source to symptoms. 前記電極幅の周期が、前記信号光とポンプ光とのエネルギー差で差周波発生を得るに必要な疑似位相整合条件を満たすことを特徴とする請求項1に記載の多波長光源。2. The multi-wavelength light source according to claim 1, wherein the period of the electrode width satisfies a quasi-phase matching condition necessary for obtaining a difference frequency generation by an energy difference between the signal light and the pump light. 前記電極が、前記信号光のTE偏波の電界方向に平行な方向と、TM偏波に平行な方向のいずれか1つあるいは両方向に電界を印加する構造であることを特徴とする請求項1又は2に記載の多波長光源。2. The electrode has a structure in which an electric field is applied in one or both of a direction parallel to an electric field direction of TE polarization of the signal light and a direction parallel to TM polarization. Or the multi-wavelength light source of 2. 前記電極に印加する電圧を変調することによって前記信号光を変調することを特徴とする請求項1,2又は3に記載の多波長光源。4. The multiwavelength light source according to claim 1, wherein the signal light is modulated by modulating a voltage applied to the electrode. 前記周期の異なる電極を複数備えたことを特徴とする請求項1乃至4いずれかに記載の多波長光源。The multi-wavelength light source according to claim 1, comprising a plurality of electrodes having different periods.
JP2001104943A 2001-04-02 2001-04-03 Multi-wavelength light source Expired - Fee Related JP3623750B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001104943A JP3623750B2 (en) 2001-04-03 2001-04-03 Multi-wavelength light source
EP02007153A EP1248143A3 (en) 2001-04-02 2002-03-28 Wavelength converter
US10/108,996 US6795232B2 (en) 2001-04-02 2002-03-29 Wavelength converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001104943A JP3623750B2 (en) 2001-04-03 2001-04-03 Multi-wavelength light source

Publications (2)

Publication Number Publication Date
JP2002303903A JP2002303903A (en) 2002-10-18
JP3623750B2 true JP3623750B2 (en) 2005-02-23

Family

ID=18957726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001104943A Expired - Fee Related JP3623750B2 (en) 2001-04-02 2001-04-03 Multi-wavelength light source

Country Status (1)

Country Link
JP (1) JP3623750B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1605303B1 (en) * 2003-03-19 2018-01-03 Nippon Telegraph And Telephone Corporation Optical switch
CN100353193C (en) 2003-07-16 2007-12-05 日本电信电话株式会社 Optical waveguide material and optical waveguide

Also Published As

Publication number Publication date
JP2002303903A (en) 2002-10-18

Similar Documents

Publication Publication Date Title
CN101911403B (en) Cross modulation-based opto-electronic oscillator with tunable electro-optic optical whispering gallery mode resonator
Patel et al. Liquid crystal and grating-based multiple-wavelength cross-connect switch
US5781669A (en) Acoustooptical waveguide device for wavelength selection and process for making same
WO1998005995A1 (en) Ultra-fast tunable optical filters
JP2006504145A (en) Light beam modulation method and apparatus having ring resonator with charge modulation region
JP6666423B2 (en) High index contrast photonic devices and their applications
US9509114B1 (en) Multi-wavelength laser cavity
RU2200970C2 (en) Electrically tunable optical filter
US6795232B2 (en) Wavelength converter
US6424763B1 (en) Tunable add/drop filter using side-coupled resonant tunneling
CN101464609B (en) Production method of double-pump wavelength-adjustable broad band full-wavelength converter
JP4636527B2 (en) Optical frequency comb generator and multi-wavelength light source using the same
Jackel et al. A passband-flattened acousto-optic filter
JP3623750B2 (en) Multi-wavelength light source
US6356370B1 (en) Wavelength add-drop multiplexing using four-wave-mixing
WO2007107186A1 (en) Integrated laser optical source
Petrov et al. Electrically controlled integrated optical filter
JP3623749B2 (en) Wavelength conversion device
Heismann et al. Mirror-folded polarization-independent wavelength filter
CN117311055A (en) On-chip multi-wavelength light source based on optical frequency comb
Murata RF Photonics-Optical Pulse Synthesizer
CN116316022A (en) Tunable filter based on quantum storage
CN117060211A (en) Tunable laser and optical semiconductor element
Arora et al. Synthesis of the transfer function of a spectral Bragg filter using electro-optical phase-shift keying
Shamray et al. A novel integrated optical device for wavelength control in optical telecommunication systems

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041125

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees