JPH07850A - Sieve's vibration frequency controlling system for vibration sieve for coal-water slurry - Google Patents

Sieve's vibration frequency controlling system for vibration sieve for coal-water slurry

Info

Publication number
JPH07850A
JPH07850A JP16633493A JP16633493A JPH07850A JP H07850 A JPH07850 A JP H07850A JP 16633493 A JP16633493 A JP 16633493A JP 16633493 A JP16633493 A JP 16633493A JP H07850 A JPH07850 A JP H07850A
Authority
JP
Japan
Prior art keywords
sieve
screen
cwm
frequency
sieving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16633493A
Other languages
Japanese (ja)
Inventor
Yoshio Kuwamura
与志夫 桑村
Masao Suzuki
雅夫 鈴木
Masaaki Mikamo
政昭 三鴨
Seiichiro Uchida
誠一郎 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP16633493A priority Critical patent/JPH07850A/en
Publication of JPH07850A publication Critical patent/JPH07850A/en
Pending legal-status Critical Current

Links

Landscapes

  • Combined Means For Separation Of Solids (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

PURPOSE:To effectively prevent the deterioration of wet-way sieving function and surely separate coarse particles from coal-water slurry by activating the vibrating state of a sieving face of a vibrating sieve. CONSTITUTION:A vibrating sieve 10 performs wet sieving of coal-water slurry and sieving face of the vibrating sieve 10 is connected to an oscillator 18 through a transmitting element 16 and the vibrating sieve 10 is provided with a vibration freuquency controlling means to detect the frequency of the sieving face and control the number of revolution of the oscillator 18 to vibrate the sieving face at a frequency near the resonance point.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、石炭・水スラリー中の
粗粒子の分離に用いられる振動篩の篩面振動数制御構造
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a screen surface frequency control structure of a vibrating screen used for separating coarse particles in a coal / water slurry.

【0002】[0002]

【従来の技術】石炭・水スラリー(以下、「CWM」と
記す。)は、微粉砕した石炭と水とに若干の添加剤を加
えた石炭濃度60重量%以上の混合物で、直接燃焼可能
な燃料であり、その燃焼性,輸送性及び貯蔵性などを満
足させるため、150μm以上の粗粒子の含有率を低減
させることが求められており、湿式ボールミルなどで調
製される高濃度CWM中から粗粒子を除去するには、通
常、振動篩を用いた湿式篩分け方法がとられている。
2. Description of the Related Art Coal / water slurry (hereinafter referred to as "CWM") is a mixture of finely pulverized coal and water with some additives and a coal concentration of 60% by weight or more, and can be directly burned. Since it is a fuel, it is required to reduce the content of coarse particles of 150 μm or more in order to satisfy its flammability, transportability and storability. In order to remove particles, a wet sieving method using a vibrating screen is usually used.

【0003】上記湿式篩分け方法は、高濃度CWMを傾
斜した振動篩の上端部に供給し、篩面に法線方向の面内
において振幅の小さい高速度の振動を与えることによ
り、高濃度CWMが跳躍やすべりを繰り返されつつ篩面
を下降する間に篩分けされ、篩上産物である高濃度粗粒
CWMと篩下産物である所望の高濃度微粒CWMとに分
離され高濃度粗粒CWMが振動篩の下端部から排出され
るものである。
In the above wet sieving method, high-concentration CWM is supplied to the upper end of an inclined vibrating sieve, and high-velocity vibration with small amplitude is applied to the surface of the sieve in the normal direction, whereby the high-concentration CWM is obtained. Is sieved while descending on the surface of the sieve while repeating leaps and slips, and is separated into a high-concentration coarse grain CWM which is an on-sieving product and a desired high-concentration fine grain CWM which is an under-sieving product. Are discharged from the lower end of the vibrating screen.

【0004】上記湿式篩分け操作においては、篩の目開
きが微小であるため、高粘度を呈するCWMが篩面上を
移動する際に、篩面に付着し、その進展に伴って篩目の
開口を減少させ、ついには開口を閉塞させCWM中から
の粗粒子の分離が不可能となってしまうことがあるが、
これはCWMの移動に伴い、篩面の法線方向の面内にお
ける振動状態、すなわち振幅,振動数を低下させること
によって発生されるものである(特公平4−23585
号公報)。この形式の振動篩では、篩面の法線方向の面
内において篩面に振動を与えるために、篩面に伝達子を
介して発振機に接続されている。
In the above-mentioned wet sieving operation, since the mesh opening of the sieve is very small, the CWM having high viscosity adheres to the sieve surface as it moves on the sieve surface, and with the progress thereof, the sieve mesh Although the number of openings may be reduced and finally the openings may be closed, it may become impossible to separate coarse particles from the CWM.
This is generated by reducing the vibration state, that is, the amplitude and the frequency, in the plane in the direction normal to the screen surface as the CWM moves (Japanese Patent Publication No. 4-23585).
Issue). In this type of vibrating screen, in order to vibrate the screen in the plane in the direction normal to the screen, the screen is connected to an oscillator via a transmitter.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来の石炭・水スラリー用振動篩の篩面振動構造では、篩
面振動数制御構造を備えていないので、高粘性を呈する
CWMが篩面を移動する際に、CWMと篩面の開口との
付着を増大させて上記篩面の運動状態,振動状態を低下
させることとなり、振動篩の湿式篩分け性能を低下さ
せ、CWM中からの粗粒子の分離を不可能とさせる虞れ
がある。
However, since the above-mentioned conventional diaphragm / vibrating structure for a coal / water slurry vibrating screen does not have a screen surface frequency control structure, a CWM exhibiting high viscosity moves on the screen surface. In this case, the adhesion between the CWM and the opening of the sieve surface is increased to reduce the motion state and the vibration state of the sieve surface, the wet sieving performance of the vibrating sieve is deteriorated, and the coarse particles from the CWM are removed. There is a risk that separation will be impossible.

【0006】本発明は、上述した従来技術の問題点を解
決するためになされたものであり、振動篩の篩面の法線
方向の面内における振動状態を活発にさせて、CWMの
篩面の開口との付着力に対抗させることにより、付着を
減少させ、振動篩の湿式篩分け性能の低下を有効に防止
し、CWM中からの粗粒子の分離を確実にできる石炭・
水スラリー用振動篩の篩面振動数制御構造を提供するこ
とを目的とする。
The present invention has been made in order to solve the above-mentioned problems of the prior art, and activates the vibration state in the plane of the vibrating screen in the normal direction to the screen surface of the CWM. Coal that can reduce the adhesion, effectively prevent the deterioration of the wet sieving performance of the vibrating screen, and ensure the separation of coarse particles from the CWM
An object of the present invention is to provide a screen surface frequency control structure of a vibration screen for water slurry.

【0007】[0007]

【課題を解決するための手段】かかる目的を達成するた
めに、本発明では、石炭・水スラリーの湿式篩分けを行
う振動篩であって、振動篩は篩面に伝達子を介して発振
機に接続され、篩面の振動数を検出し篩面を共振点近傍
の振動数にて振動させるために発振機の回転数を制御さ
せるための振動数制御手段を備えたことを特徴とするも
のである。
In order to achieve the above object, the present invention provides a vibrating screen for wet-sieving coal / water slurry, the vibrating screen including an oscillator through a transmitter on the screen surface. And a frequency control means for detecting the frequency of the screen surface and controlling the rotational speed of the oscillator to vibrate the screen surface at a frequency near the resonance point. Is.

【0008】[0008]

【作用】このようにすれば、発振機の不平衡重錘の回転
がなされて周期的起振力が発生され伝達子を介して篩面
に伝達され、篩面の法線方向の面内において所要の振幅
及び振動数のもとでの振動が行われ、しかも篩面の振動
数を検出し、篩面の固有振動数に対応した共振点近傍の
振動数にて篩面を振動させるために振動数制御手段の出
力信号により発振機の回転数を制御するようにさせてい
るので、CWMの性状の影響を受けることなく、振動篩
の篩面の振動状態を活発にさせて、振動篩の湿式篩分け
性能の低下を有効に防止し、CWM中からの粗粒子の分
離を確実にさせることができる。
By doing so, the unbalanced weight of the oscillator is rotated to generate a periodic exciting force, which is transmitted to the sieve surface via the transmitter, and in the plane in the normal direction of the sieve surface. In order to vibrate at the required amplitude and frequency, and to detect the frequency of the screen surface, and to vibrate the screen surface at the frequency near the resonance point corresponding to the natural frequency of the screen surface. Since the rotation speed of the oscillator is controlled by the output signal of the frequency control means, the vibration state of the screen surface of the vibrating screen is activated without being affected by the properties of the CWM, and the vibrating screen of the vibrating screen is activated. It is possible to effectively prevent deterioration of the wet sieving performance and ensure separation of coarse particles from the CWM.

【0009】また、篩面が特定振動数のもとで振動され
る場合、篩面の振動モードにしたがって、複数の節線を
形成することとなり、節線部では振幅の中点にされてい
るので、CWMの移動を停滞させることとなるが、制御
回路の順序回路からの出力信号により発振機の回転数を
経時的に逐次変化させると、節線位置は上記変化に追従
して篩面上を移動することとなるので、CWMの停滞の
発生を解消させながら上述した共振点近傍の振動数のも
とでCWMの移動を最適にさせて篩分け操作を行うこと
ができるようになる。
When the screen surface is vibrated at a specific frequency, a plurality of nodal lines are formed according to the vibration mode of the screen surface, and the nodal line portion is set to the midpoint of the amplitude. Therefore, the movement of the CWM will be delayed, but if the rotational speed of the oscillator is sequentially changed with the output signal from the sequential circuit of the control circuit, the nodal line position will follow the above change and will be on the screen surface. Therefore, the sieving operation can be performed by optimizing the movement of the CWM under the frequency near the resonance point described above while eliminating the occurrence of the stagnation of the CWM.

【0010】[0010]

【実施例】以下、図面を参照にして本発明の実施例につ
いて説明する。図1は、本発明の一実施例を示す石炭・
水スラリー用振動篩の全体構成図、図2は、同篩面振動
数制御構造の回路図である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a coal
FIG. 2 is an overall configuration diagram of a vibrating screen for water slurry, and FIG. 2 is a circuit diagram of the screen surface frequency control structure.

【0011】図1,2において、10は、CWMを湿式
篩分けする振動篩を示し、振動篩10の篩枠14には、
所要の目開き寸法を有する篩面12、例えば篩網が張設
されていて、篩面12は伝達子16を介して可変速動作
を行う発振機18に接続され、上記発振機18は弾性手
段20を介して取付台21上に支持される。そして、発
振機16による発振力は伝達子16を介して篩面12を
法線方向に伝達され、所要数の発振機18ならびに伝達
子16を篩面12に配設させ、篩面12の振動が行われ
る。
In FIGS. 1 and 2, reference numeral 10 denotes a vibrating screen for wet-sieving a CWM.
A screen 12 having a required opening size, for example, a screen is stretched, and the screen 12 is connected via a transmission element 16 to an oscillator 18 which operates at a variable speed, and the oscillator 18 is elastic means. It is supported on a mount 21 via 20. Then, the oscillating force of the oscillator 16 is transmitted in the normal direction of the sieve surface 12 via the transmitter 16, and the required number of oscillators 18 and the transmitters 16 are arranged on the sieve surface 12 to cause the vibration of the sieve surface 12. Is done.

【0012】22は、分散機を示し、振動篩10の上部
にある支持部材上に付設され、分散機22は振動篩16
の幅方向を指向した分散軸24を備え、分散軸24は両
側にて支持部材上にある軸受により回転自在に軸承さ
れ、駆動源により回転力が伝動される。分散軸24の軸
方向には複数の分散部材26が所要間隔のもとで配設さ
れており、この分散軸24及び分散部材26との集合体
は筒状からなる供給樋28内に収容されている。供給樋
28の上部に設けた上部ケーシング40の開口部を介し
てCWMを供給樋28に供給するための供給管42が接
続されている。
Reference numeral 22 denotes a disperser, which is attached to a support member above the vibrating screen 10. The disperser 22 is a vibrating screen 16.
The dispersion shaft 24 is oriented in the width direction of the dispersion shaft 24. The dispersion shaft 24 is rotatably supported on both sides by bearings on the support member, and the rotational force is transmitted by the drive source. A plurality of dispersion members 26 are arranged at required intervals in the axial direction of the dispersion shaft 24, and the assembly of the dispersion shaft 24 and the dispersion member 26 is housed in a cylindrical supply gutter 28. ing. A supply pipe 42 for supplying the CWM to the supply gutter 28 is connected through an opening of an upper casing 40 provided at the upper part of the supply gutter 28.

【0013】供給樋28の下部には底部に近接した位置
には軸方向に延びて開口している供給口30が設けら
れ、供給樋28の外周には外周に沿って摺動可能な可動
カバー32が設けられている。この可動カバー32は外
側に支軸34が取付けられ、接続された移動棒36を介
して圧力シリンダ38に取付けられ、圧力シリンダ38
の操作により摺動可能とされている。可動カバー32の
端部は供給口30の開口と重なり合うようにされ、しか
も、摺動によって重なり合いが可変とされて、供給口3
0の開口面積を可変とされ、振動篩10へのCWM供給
流量を制御させ、また、CWMの混合分散状態を調整さ
せることができる。
A lower portion of the supply gutter 28 is provided with a supply port 30 that extends in the axial direction and is open at a position close to the bottom, and an outer periphery of the supply gutter 28 is slidable along the outer periphery of the movable cover. 32 is provided. A support shaft 34 is attached to the outside of the movable cover 32, and is attached to a pressure cylinder 38 via a connected moving rod 36.
It is slidable by the operation. The end of the movable cover 32 is made to overlap the opening of the supply port 30, and the overlap is made variable by sliding, so that the supply port 3
The opening area of 0 is variable, the CWM supply flow rate to the vibrating screen 10 can be controlled, and the mixed dispersion state of CWM can be adjusted.

【0014】振動篩10の上方には篩面12の上部にC
WM移動流れの上流側には固定ノズル34が、また下流
側には抜差し管62に取付けた複数の移動ノズル60が
配設され、いずれも、図示しない給水管に接続されて、
洗浄水が篩網12上で全面に拡がるように噴射され、篩
目の洗浄を自動的に、かつ、効率的に行わせることがで
きる。
Above the vibrating screen 10 is a C above the screen surface 12.
A fixed nozzle 34 is provided on the upstream side of the WM moving flow, and a plurality of moving nozzles 60 attached to an insertion / removal pipe 62 are provided on the downstream side, all of which are connected to a water supply pipe (not shown),
The cleaning water is sprayed so as to spread over the entire surface of the screen 12, so that the cleaning of the mesh can be performed automatically and efficiently.

【0015】一方、振動篩10の底部に片開きに開閉自
在な切換ダンパー48が設けられ、切換ダンパー48が
実線のごとく(a)位置とされた場合には、開放とされ
て振動篩10の湿式篩分け操作が行われ、篩上産物であ
る粗粒CWMは、振動篩10の下端部の排出口54から
排出され、引続き粗粒通路56へ導かれるとともに、篩
下産物である微粒CWMは、直接に微粒通路58へ導か
れて、次工程へ搬送される。
On the other hand, a switching damper 48 is provided at the bottom of the vibrating screen 10 so that it can be opened and closed, and when the switching damper 48 is in the position (a) as indicated by the solid line, it is opened and the vibrating screen 10 is opened. The wet sieving operation is performed, and the coarse CWM which is the on-screen product is discharged from the discharge port 54 at the lower end of the vibrating sieve 10 and is continuously guided to the coarse particle passage 56, while the fine CWM which is the under-screen product is , And is directly guided to the fine grain passage 58 and conveyed to the next step.

【0016】振動篩10の篩面12が目詰まりした場合
には、切換ダンパー48は鎖線のごとく(b)位置とさ
れて、閉鎖されるとともに供給樋22からのCWMの供
給を停止し、ついで、洗浄水を送水させて、篩面12を
振動させた状態にて篩目の洗浄が行われる。そして洗浄
によって希釈されたCWMは、篩上産物は排出口54か
ら粗粒通路56へ導かれるとともに、篩下産物は排出口
54から別の通路60へ導かれて、上記微粒通路58に
おけるCWMに混入されることを防止させている。
When the sieve surface 12 of the vibrating sieve 10 is clogged, the switching damper 48 is set to the position (b) as shown by a chain line, and is closed and the supply of the CWM from the supply gutter 22 is stopped, and then the supply damper 22 is stopped. Then, washing water is sent to wash the sieve mesh with the sieve surface 12 being vibrated. In the CWM diluted by the washing, the on-screen product is guided from the discharge port 54 to the coarse grain passage 56, and the under-screen product is guided from the discharge port 54 to another passage 60 to be the CWM in the fine grain passage 58. It is prevented from being mixed.

【0017】図2において、70は篩面振動数制御構造
を示し、光線72からの光はミラー74を用いるか、ま
たは用いることなく直接に入射光76としてA印のごと
く任意の振動数をもって振動している篩面12上に照射
され、篩面12からの反射光78をレンズ79を通して
集光器80上に受光して結像を読込み、集光器80によ
り読込んだ信号は増幅及び信号変換されて画像信号は制
御回路82に入力される。篩面12の振動に伴い前記反
射光78は周期的に光強度を変化させているので、前記
結像を読込んだ集光器80からの画像信号により篩面1
2の振動数を検出することができる。
In FIG. 2, reference numeral 70 denotes a screen surface frequency control structure, in which light from the light ray 72 vibrates at an arbitrary frequency as indicated by A as incident light 76 without using a mirror 74 or directly. The reflected light 78 from the sieving surface 12 is received by the condenser 80 through the lens 79 onto the condenser 80 to read an image, and the signal read by the condenser 80 is amplified and signaled. The converted image signal is input to the control circuit 82. Since the reflected light 78 periodically changes the light intensity with the vibration of the screen surface 12, the screen surface 1 is read by the image signal from the condenser 80 that reads the image formation.
A frequency of 2 can be detected.

【0018】一方、振動篩10の篩面12は発振機18
とともに振動系を構成し、篩面12は発振機18による
周期的起振力によって強制振動され、この起振力の振動
数が振動系の固有振動数と一致すると共振状態となって
篩面12の振幅は著しく増大してしまう。この固有振動
数は篩面12の構造パラメータである単位面積当り質
量,単位長さ当り張力などにより支配されるものであ
る。
On the other hand, the sieving surface 12 of the vibrating sieve 10 has an oscillator 18
Together with the vibration system, the sieve surface 12 is forcibly vibrated by the periodic exciting force generated by the oscillator 18, and when the frequency of this exciting force matches the natural frequency of the vibrating system, the sieve surface 12 becomes a resonance state. Would significantly increase the amplitude of. This natural frequency is governed by the structural parameters of the sieve surface 12, such as mass per unit area and tension per unit length.

【0019】前記共振状態のもとでは振動篩10の構造
に過大な振動力が伝達されて部材の損傷を発生させると
ともに篩面12上におけるCWMの移動を不円滑にさせ
る虞れがある。また振動数比が共振点よりも離れていて
振動される場合には篩面12の振幅は僅少となり、CW
Mの移動を停滞させる虞れがある。したがって、上記振
動数比を共振点近傍となるように振動させてCWMの移
動を最適にするようにされている。篩面12の振動数が
検出されて制御回路82に入力され、また、制御回路8
2には規範モデルも組込まれ、基準入力として振動系の
共振点近傍に相当する発振機18の振動数を選定すると
振動系の固有振動数に対応する規範モデルの出力振動数
に篩面12の検出振動数が追従するように制御装置のパ
ラメータを調整し、最適な制御入力を用いて発振機18
の振動数,すなわち回転数を制御する。発振機18は誘
導電動機を用いており、その可変速駆動のために可変速
駆動回路84、例えばVVVFインバータと接続されて
おり、前記制御入力のもとで可変速駆動回路84を作動
させて発振機18は回転数制御される。
Under the resonance condition, an excessive vibration force may be transmitted to the structure of the vibrating screen 10, causing damage to the member and making the movement of the CWM on the screen surface 12 unsmooth. Further, when the frequency ratio is far from the resonance point and is vibrated, the amplitude of the sieve surface 12 becomes small and the CW
The movement of M may be delayed. Therefore, the frequency ratio is vibrated so as to be in the vicinity of the resonance point to optimize the movement of the CWM. The frequency of the sieve surface 12 is detected and input to the control circuit 82, and the control circuit 8
2 also incorporates a reference model, and when the frequency of the oscillator 18 corresponding to the vicinity of the resonance point of the vibration system is selected as a reference input, the output frequency of the reference model corresponding to the natural frequency of the vibration system is set to the screen surface 12 The parameters of the control device are adjusted so that the detected frequency follows, and the oscillator 18 is adjusted by using the optimum control input.
Controls the frequency of rotation, that is, the rotation speed. The oscillator 18 uses an induction motor, and is connected to a variable speed drive circuit 84, for example, a VVVF inverter for variable speed drive thereof, and oscillates by operating the variable speed drive circuit 84 under the control input. The rotation speed of the machine 18 is controlled.

【0020】したがって、篩面12の振幅を最適に増大
できるので、CWMの移動を効率よく達成させることが
できる。そして、制御回路82の規範モデルの組込みに
より制御特性の向上ができ、不可避的に発生する振動系
の固有振動数の変化に対しても上記モデルを自在に調整
できるので、上記発振機18の回転数制御は、直接制御
方式と異なり制御精度,安定性を向上できるようにな
る。
Therefore, the amplitude of the sieving surface 12 can be optimally increased, so that the CWM can be efficiently moved. The control characteristic can be improved by incorporating the reference model of the control circuit 82, and the model can be adjusted freely even if the natural frequency of the vibration system inevitably changes. Therefore, the rotation of the oscillator 18 is prevented. Unlike the direct control method, the numerical control can improve control accuracy and stability.

【0021】前記篩面12は周囲の篩枠に固定された平
面膜を形成しており、篩面12が特定振動数のもとで振
動される場合、上述したような構造パラメータのもとで
の運動により特定な振動モードをもつ振動系を呈し、振
動モードの組合せによって複数の節線を形成することと
なり、節線部では振幅の中点にされ、節線に囲まれ相互
に隣接する領域では夫々、反対方向に運動し特定振動数
のもとで振動する。そして発振機18の回転数を変化さ
せる場合、篩面12は前記振動形と異る振動形を呈し、
節線位置が移動される。節線部は振幅の中点とされてい
るのでCWMの移動を停滞させるか、上述したように発
振機18の回転数を変化させる場合、節線位置が移動し
て旧時点にて停滞していたCWMは新時点にて振幅が増
大して篩分けが行われて停滞が解消されるとともに新た
な節線位置にてCWMの停滞を発生する。したがって発
振機18の回転数を経時的に逐次変化させる場合、節線
位置は上記変化に追従して篩面12上を移動することと
なるので、CWMの停滞の発生を解消させながら上述し
た共振点近傍の振動数のもとでCWMの移動を最適にさ
せて篩分け操作を行うことができる。上記発振機18の
回転数の経時的な逐次変化は、制御回路82に組合わさ
れた順序回路のもとで行われる。
The sieving surface 12 forms a flat membrane fixed to the surrounding sieving frame, and when the sieving surface 12 is vibrated at a specific frequency, it is generated under the structural parameters as described above. The motion of the gyro presents a vibration system with a specific vibration mode, and a plurality of nodal lines are formed by the combination of the vibration modes. Then, each moves in the opposite direction and vibrates at a specific frequency. When changing the number of revolutions of the oscillator 18, the screen surface 12 exhibits a vibration type different from the vibration type,
The nodal position is moved. Since the nodal line portion is at the midpoint of the amplitude, when the movement of the CWM is stagnant, or when the rotation speed of the oscillator 18 is changed as described above, the nodal line position is moved and stagnated at the previous time. In addition, the amplitude of the CWM increases at a new time point, and the stagnation is eliminated by performing sieving and the stagnation of the CWM occurs at a new node line position. Therefore, when the rotational speed of the oscillator 18 is sequentially changed over time, the nodal line position moves on the sieve surface 12 following the above change, so that the resonance described above is eliminated while eliminating the occurrence of CWM stagnation. The sieving operation can be performed by optimizing the movement of the CWM under the frequency near the point. The sequential change of the rotational speed of the oscillator 18 with time is performed under the sequential circuit combined with the control circuit 82.

【0022】このように、本実施例では、供給管42か
ら流入されるCWMは、分散機22の供給樋28内にて
撹拌混合がなされて濃度,粒度などが均一な分散状態と
されたCWMは供給口30、すなわち可動カバー32の
縁部から均一膜状流となって下方に流れ、振動篩10の
篩面12の幅方向に均等に拡散されるように振動篩10
の上部から供給されて湿式篩分けが行われる。篩面12
は発振機18の発振力が伝達されて振動が与えられ、均
等に拡散されたCWMは跳躍やすべりが繰返えされつつ
均一な移動速度のもとで篩面12を下降する間に篩分け
され、篩上産物である粗粒CWMと篩下産物である微粒
CWMとに分離されて排出される。
As described above, in this embodiment, the CWM flowing from the supply pipe 42 is agitated and mixed in the supply gutter 28 of the disperser 22 so that the CWM is in a dispersed state in which the concentration, particle size, etc. are uniform. Flows downward from the supply port 30, that is, the edge of the movable cover 32 in the form of a uniform film flow, and is uniformly diffused in the width direction of the screen surface 12 of the vibrating screen 10.
Wet sieving is performed by being supplied from the upper part of. Sieve surface 12
The oscillating force of the oscillator 18 is transmitted to give a vibration, and the CWM that has been evenly dispersed is sieved while descending the sieving surface 12 at a uniform moving speed while repeating jumping and sliding. It is separated into a coarse CWM which is a product on the screen and a fine CWM which is a product under the screen, and discharged.

【0023】発振機18の不平衡重錘の回転がなされて
周期的起振力が発生され伝達子16を介して篩面12に
伝達され、篩面12の法線方向の面内において所要の振
幅及び振動数のもとでの振動が行われるに際し、篩面1
2の振動数を検出し、篩面12の固有振動数に対応した
共振点近傍の振動数にて篩面12を振動させるために振
動数制御手段82の出力信号により発振機18の回転数
を制御するようにさせているので、CWMの性状の影響
を受けることなく、振動篩10の篩面12の振動状態を
活発にさせて、振動篩10の湿式篩分け性能の低下を有
効に防止し、CWM中からの粗粒子の分離を確実にさせ
ることができる。
The unbalanced weight of the oscillator 18 is rotated to generate a periodic motive force, which is transmitted to the sieving surface 12 via the transmitting element 16 and required in the plane of the sieving surface 12 in the normal direction. When vibrating under the amplitude and frequency, the sieve surface 1
The frequency of 2 is detected, and in order to vibrate the screen surface 12 at the frequency near the resonance point corresponding to the natural frequency of the screen surface 12, the rotation frequency of the oscillator 18 is controlled by the output signal of the frequency control means 82. Since it is controlled, the vibrating state of the screen surface 12 of the vibrating screen 10 is activated without being affected by the properties of the CWM, and the deterioration of the wet screening performance of the vibrating screen 10 is effectively prevented. The separation of coarse particles from the CWM can be ensured.

【0024】次に、篩面12が特定振動数のもとで振動
される場合、上述したような構造パラメータのもとでの
運動により特定な振動モードをもつ振動形を呈し、振動
モードの組合せによって複数の節線を形成することとな
り、節線部では振幅の中点にされているので、CWMの
移動を停滞させることとなるか、制御回路82の順序回
路からの出力信号により発振機18の回転数を経時的に
逐次変化させる場合、節線位置は上記変化に追従して篩
面12上を移動することとなるので、CWMの停滞の発
生を解消させながら上述した共振点近傍の振動数のもと
でCWMの移動を最適にさせて篩分け操作を行うことが
できる。
Next, when the sieving surface 12 is vibrated under a specific frequency, it exhibits a vibrating form having a specific vibration mode due to the movement under the structural parameters as described above, and a combination of vibration modes. As a result, a plurality of nodal lines are formed, and since the nodal line portion is set to the midpoint of the amplitude, the movement of the CWM is stagnated, or the oscillator 18 is generated by the output signal from the sequential circuit of the control circuit 82. When the number of revolutions of the No. 2 is sequentially changed over time, the nodal line position moves on the sieve surface 12 following the above change, so that the vibration near the resonance point is eliminated while eliminating the occurrence of the CWM stagnation. The sieving operation can be performed by optimizing the movement of the CWM based on the number.

【0025】[0025]

【発明の効果】このように、本発明によれば高粘性を呈
するCWMの湿式篩分け時に、振動数制御手段を用いて
高い制御精度,安定性のもとで振動数制御が行われ、振
動篩の篩面の法線方向の面内における振動状態を活発に
させて、振動篩の湿式篩分け性能の低下を有効に防止
し、CWM中からの粗粒子の分離を確実にさせることが
できる。
As described above, according to the present invention, during wet sieving of CWM exhibiting high viscosity, the frequency control means is used to perform frequency control with high control accuracy and stability, and vibration By vibrating the vibration state in the plane in the normal direction of the sieve surface of the sieve, it is possible to effectively prevent the deterioration of the wet sieving performance of the oscillating sieve and ensure the separation of coarse particles from the CWM. .

【0026】また、発振機の回転数を経時的に逐次変化
させることにより、篩面における節線位置は上記変化に
追従して篩面上を移動させることとなるので、CWMの
停滞の発生を解消させながら上述した共振点近傍の振動
数のもとでCWMの移動を最適にさせて篩分け操作を行
うことができるなど、多大な効果を奏する。
Further, by sequentially changing the rotational speed of the oscillator with time, the nodal line position on the screen surface moves on the screen surface in accordance with the above change, so that the stagnation of CWM occurs. It is possible to perform a sieving operation while optimizing the movement of the CWM under the frequency near the resonance point described above while eliminating the above-mentioned effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す石炭・水スラリー用振
動篩の全体構成図。
FIG. 1 is an overall configuration diagram of a vibrating screen for coal / water slurry showing an embodiment of the present invention.

【図2】同篩面振動数制御構造の回路図。FIG. 2 is a circuit diagram of the sieve surface frequency control structure.

【符号の説明】[Explanation of symbols]

10 振動篩 12 篩面 16 伝達子 18 発振機 70 篩面振動数制御構造 10 Vibration Screen 12 Screen Surface 16 Transmitter 18 Oscillator 70 Screen Frequency Control Structure

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三鴨 政昭 千葉県八千代市上高野1780番地 川崎重工 業株式会社八千代工場内 (72)発明者 内田 誠一郎 千葉県八千代市上高野1780番地 川崎重工 業株式会社八千代工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masaaki Mikamo 1780 Kamitakano, Yachiyo-shi, Chiba Kawasaki Heavy Industries, Ltd. Yachiyo factory (72) Seiichiro Uchida 1780 Uetakano, Yachiyo-shi, Chiba Kawasaki Heavy Industries Ltd. Company Yachiyo factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 石炭・水スラリーの湿式篩分けを行う振
動篩であって、振動篩は篩面に伝達子を介して発振機に
接続され、篩面の振動数を検出し篩面を共振点近傍の振
動数にて振動させるために発振機の回転数を制御させる
ための振動数制御手段を備えたことを特徴とする石炭・
水スラリー用振動篩の篩面振動数制御構造。
1. A vibrating screen for wet sieving coal / water slurry, wherein the vibrating screen is connected to an oscillator via a transmitter on the screen surface, detects the frequency of the screen surface, and resonates the screen surface. Coal characterized by having a frequency control means for controlling the number of revolutions of the oscillator in order to vibrate at a frequency near the point
Sieve surface frequency control structure of vibrating sieve for water slurry.
【請求項2】 振動数制御手段は発振機の回転数を経時
的に逐次変化させるための回路を備えたことを特徴とす
る請求項第1項に記載の石炭・水スラリー用振動篩の篩
面振動数制御構造。
2. The vibrating sieve for coal / water slurry according to claim 1, wherein the frequency control means includes a circuit for sequentially changing the rotational speed of the oscillator with time. Surface frequency control structure.
JP16633493A 1993-06-11 1993-06-11 Sieve's vibration frequency controlling system for vibration sieve for coal-water slurry Pending JPH07850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16633493A JPH07850A (en) 1993-06-11 1993-06-11 Sieve's vibration frequency controlling system for vibration sieve for coal-water slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16633493A JPH07850A (en) 1993-06-11 1993-06-11 Sieve's vibration frequency controlling system for vibration sieve for coal-water slurry

Publications (1)

Publication Number Publication Date
JPH07850A true JPH07850A (en) 1995-01-06

Family

ID=15829442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16633493A Pending JPH07850A (en) 1993-06-11 1993-06-11 Sieve's vibration frequency controlling system for vibration sieve for coal-water slurry

Country Status (1)

Country Link
JP (1) JPH07850A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810879B2 (en) * 1976-09-25 1983-02-28 三菱電機株式会社 Wiring connection method
JPS5946176A (en) * 1982-09-08 1984-03-15 神鋼電機株式会社 Vibrating screen
JPH0346841U (en) * 1989-09-14 1991-04-30
JPH0415306A (en) * 1990-04-27 1992-01-20 Kuroda Precision Ind Ltd Fluid pressure cylinder and method of fitting cover member to cylinder main body thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5810879B2 (en) * 1976-09-25 1983-02-28 三菱電機株式会社 Wiring connection method
JPS5946176A (en) * 1982-09-08 1984-03-15 神鋼電機株式会社 Vibrating screen
JPH0346841U (en) * 1989-09-14 1991-04-30
JPH0415306A (en) * 1990-04-27 1992-01-20 Kuroda Precision Ind Ltd Fluid pressure cylinder and method of fitting cover member to cylinder main body thereof

Similar Documents

Publication Publication Date Title
CN106944335B (en) A kind of straight line uniform thickness separating sieve
KR100961292B1 (en) Sifting device
KR100863605B1 (en) Apparatus for producing revival aggregate from construction waste smashed in construction waste's intermediate handling using revival aggregate sorting screen having multi-step's angle change
JPH07850A (en) Sieve's vibration frequency controlling system for vibration sieve for coal-water slurry
US2702633A (en) Vibrating trommel screen
JPH04180873A (en) Vibrating sieve apparatus
JP2582718B2 (en) Vibrating sieve for coal / water slurry with disperser
CN115532419A (en) Construction waste crushing and screening device
KR20040006072A (en) A coke screen capable of preventing grizzly being clogged
CN106513309B (en) The control method of Near resonance oscillating formula vibrating sieving machine
CA2276451A1 (en) A screenless vibrator separator
CN218591081U (en) Sand screening machine convenient to change filter screen for construction
CN220697446U (en) Hierarchical sieving mechanism of carborundum
SU1142215A1 (en) Device for sieving loose materials
SU1764715A1 (en) Screen
JP2000218237A (en) Sorting device for waste
RU1830293C (en) Vibropneumatic machine for separating of grain processing products
SU1567287A1 (en) Method of screening
CN207103111U (en) A kind of control device for preventing compass screen surface from blocking
SU816571A1 (en) Method of apparatus for separating limestone from loam soil
SU1168301A1 (en) Screen
RU1804350C (en) Sieving method
US3928187A (en) Suspension flow control apparatus
GB1146883A (en) A vibratory centrifugal strainer
SU1080884A1 (en) Method of screening material