JPH0784954B2 - Refrigerant retention device for air conditioner - Google Patents

Refrigerant retention device for air conditioner

Info

Publication number
JPH0784954B2
JPH0784954B2 JP63313262A JP31326288A JPH0784954B2 JP H0784954 B2 JPH0784954 B2 JP H0784954B2 JP 63313262 A JP63313262 A JP 63313262A JP 31326288 A JP31326288 A JP 31326288A JP H0784954 B2 JPH0784954 B2 JP H0784954B2
Authority
JP
Japan
Prior art keywords
refrigerant
condenser
stopped
temperature
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63313262A
Other languages
Japanese (ja)
Other versions
JPH02157568A (en
Inventor
隆 松崎
伸一 中石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP63313262A priority Critical patent/JPH0784954B2/en
Publication of JPH02157568A publication Critical patent/JPH02157568A/en
Publication of JPH0784954B2 publication Critical patent/JPH0784954B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、複数台の室内機を有し、各室内機別に暖房運
転可能としたマルチ形式の空気調和装置において、所定
の室内機の暖房運転中に他の停止中の室内機に滞溜する
冷媒を制限,抑制するようにした空気調和装置の冷媒滞
溜抑制装置の改良に関する。
TECHNICAL FIELD The present invention relates to a multi-type air conditioner having a plurality of indoor units and capable of performing heating operation for each indoor unit. The present invention relates to an improvement of a refrigerant accumulation suppressing device for an air conditioner that limits and suppresses refrigerant accumulated in other stopped indoor units during operation.

(従来の技術) 本出願人は、この種の空気調和装置の冷媒滞溜抑制装置
として、先に特開昭62−258968号公報に開示されるよう
に、マルチ形式の空気調和装置において、停止中の室内
機に内蔵する凝縮器の入口側冷媒(過熱ガス冷媒)及び
出口側冷媒(過冷却液冷媒)間の温度差を検出し、この
温度差が大値の状況では、該停止中の凝縮器の冷媒出口
側通の通路面積を電動弁で拡大することにより、通過す
る冷媒量を増やして上記温度差を縮小する一方、温度差
が小値の状況では通路面積を縮小して通過する冷媒量を
減らして上記温度差を広げることを繰返して、その温度
差を設定値に保持し、よって停止中の凝縮器に対する冷
媒流量を自然放熱による凝縮量に見合うだけの冷媒量に
制限して、その冷媒滞溜量を一定値に保持,抑制するよ
うにしたものを提案している。
(Prior Art) As disclosed in Japanese Patent Application Laid-Open No. 62-258968, the applicant of the present invention, as a refrigerant retention suppressing device for an air conditioner of this type, stops the operation in a multi-type air conditioner. The temperature difference between the inlet side refrigerant (superheated gas refrigerant) and the outlet side refrigerant (supercooled liquid refrigerant) of the condenser built in the inside indoor unit is detected, and when this temperature difference is a large value, the By enlarging the passage area on the refrigerant outlet side of the condenser with a motor-operated valve, the amount of passing refrigerant is increased to reduce the temperature difference, while in the situation where the temperature difference is a small value, the passage area is reduced to pass. Repeatedly increasing the temperature difference by reducing the amount of refrigerant, hold the temperature difference at the set value, and thus limit the refrigerant flow rate to the stopped condenser to the amount of refrigerant commensurate with the amount of condensation by natural heat dissipation. , So that the amount of accumulated refrigerant is kept constant or suppressed Have proposed a thing was.

(発明が解決しようとする課題) しかるに、上記提案のものでは、停止中の凝縮器入口側
の冷媒の状態が過熱ガス冷媒である通常時であることが
前提である。このため、凝縮器入口側の冷媒の状態が過
冷却液冷媒となった特殊な場合、例えばサーモOFF(室
温が適温に収束した暖房運転の停止時)の時点で既にこ
の停止した凝縮器の全体に(冷媒入口側まで)液冷媒が
滞溜している場合、又は暖房運転中での急激な温度変化
等に起因して液冷媒が滞溜し過ぎた場合には、凝縮器の
出入口間の冷媒が共に過冷却冷媒となり、両者の冷媒温
度差は小さくなる。その結果、冷媒出口側通路の通路面
積は縮小制御されて、冷媒は滞溜し続けることになる。
(Problems to be Solved by the Invention) However, in the above proposal, it is premised that the state of the refrigerant on the inlet side of the condenser when stopped is the normal time when the refrigerant is the superheated gas refrigerant. Therefore, in a special case where the refrigerant on the inlet side of the condenser becomes supercooled liquid refrigerant, for example, at the time of thermo-OFF (when the heating operation is stopped when the room temperature converges to an appropriate temperature), the entire condenser that has already stopped Between the inlet and outlet of the condenser when the liquid refrigerant is stagnant (up to the refrigerant inlet side) or when the liquid refrigerant is too stagnant due to a rapid temperature change during heating operation. Both refrigerants become supercooled refrigerants, and the temperature difference between the refrigerants becomes small. As a result, the passage area of the refrigerant outlet passage is controlled to be reduced, and the refrigerant continues to accumulate.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、凝縮器入口側の冷媒状態が過熱ガス冷媒の場合で
も過冷却液冷媒の場合でも、共に停止中の凝縮器に滞溜
した液冷媒を必要に応じて適宜回収することにある。
The present invention has been made in view of such a point, and an object thereof is to stay in the stopped condenser both when the refrigerant state on the condenser inlet side is a superheated gas refrigerant or a supercooled liquid refrigerant. This is to appropriately collect the liquid refrigerant that has been formed.

(課題を解決するための手段) その目的を達成するため、本出願の請求項(1)に係る
発明では、停止中の凝縮器入口側の冷媒の過熱度を検出
し、この過熱度が設定値以下の場合には停止中の凝縮器
内への液冷媒の滞溜時と判断することにより、停止中の
凝縮器の入口側が過熱ガス冷媒である通常時の場合は勿
論のこと、冷媒の過冷却状態となった特殊な場合でも確
実に滞溜冷媒を回収することにある。
(Means for Solving the Problem) In order to achieve the object, in the invention according to claim (1) of the present application, the superheat degree of the refrigerant at the inlet side of the condenser which is stopped is detected, and this superheat degree is set. If it is less than the value, it is judged that the liquid refrigerant is staying in the stopped condenser. Even in a special case of a supercooled state, it is necessary to reliably collect the stagnant refrigerant.

その場合、停止中の凝縮器入口側における冷媒の過熱度
の変化時には、その凝縮器出口側の冷媒の過冷却度も変
化し、上記過熱度の減少時には過冷却度は逆に増大変化
して、両者は対応するから、本出願の請求項(2)に係
る発明では、上記過熱度の検出に代えて停止中の凝縮器
出口側の冷媒の過冷却度を検出して、請求項(1)に係
る発明と同様の目的を達成することにある。
In that case, when the superheat degree of the refrigerant at the condenser inlet side is stopped, the supercooling degree of the refrigerant at the condenser outlet side also changes, and when the superheat degree decreases, the supercooling degree increases conversely. Therefore, in the invention according to claim (2) of the present application, instead of detecting the degree of superheat, the degree of supercooling of the refrigerant at the outlet side of the stopped condenser is detected, and ) To achieve the same object as that of the invention.

つまり、請求項(1)に係る発明の具体的な構成は、単
一の室外機(A)と複数台の室内機(B)〜(F)とで
冷媒循環系統(14)を形成し、各室内機(B)〜(F)
別に暖房運転可能とした空気調和装置に対する冷媒滞溜
抑制装置を前提とする。そして、上記各室内機(B)〜
(F)に内蔵する凝縮器(10)の冷媒出口側に各々配置
され、対応する室内機の停止要求時に閉じてその内蔵す
る凝縮機(10)に対する冷媒の流通を阻止する制御弁
(11)と、上記各凝縮器(10)の冷媒入口側の冷媒の温
度と冷媒の凝縮圧力相当飽和温度との差である過熱度を
検出する過熱度検出手段(40)と、該過熱度検出手段
(40)の出力を受け、停止中の凝縮器(10)の冷媒入口
側の過熱度の設定値に対する大小関係に応じて(設定値
以下のとき)、該停止中の凝縮器(10)の冷媒出口側の
通路を開いて滞溜した冷媒を冷媒循環系統(14)に戻す
冷媒戻し手段(41)とを設ける構成としている。
That is, in the specific configuration of the invention according to claim (1), a single outdoor unit (A) and a plurality of indoor units (B) to (F) form a refrigerant circulation system (14), Each indoor unit (B)-(F)
Separately, it is premised on a refrigerant retention suppressing device for an air conditioner capable of heating operation. And each indoor unit (B)-
A control valve (11) arranged on the refrigerant outlet side of the condenser (10) built in (F) and closed when the corresponding indoor unit is requested to stop to prevent the flow of the refrigerant to the built-in condenser (10). A superheat degree detecting means (40) for detecting a superheat degree which is a difference between the temperature of the refrigerant on the refrigerant inlet side of each of the condensers (10) and the saturation temperature corresponding to the condensation pressure of the refrigerant, and the superheat degree detecting means ( 40), the refrigerant in the stopped condenser (10) is cooled according to the magnitude relationship with the set value of the superheat degree on the refrigerant inlet side of the stopped condenser (10) (when the value is less than the set value). Refrigerant returning means (41) is provided for returning the accumulated refrigerant by opening the passage on the outlet side to the refrigerant circulation system (14).

また、請求項(2)に係る発明では、上記請求項(2)
に係る発明の過熱度検出手段(40)に代えて、各凝縮器
(10)の冷媒出口側の冷媒の温度と冷媒の凝縮圧力相当
飽和温度との差である過冷却度を検出する過冷却度検出
手段(42)を設ける構成としている。
In the invention according to claim (2), the above claim (2)
In place of the superheat detection means (40) of the invention according to the invention, supercooling for detecting the degree of supercooling, which is the difference between the temperature of the refrigerant on the refrigerant outlet side of each condenser (10) and the saturation temperature equivalent to the condensation pressure of the refrigerant. The degree detecting means (42) is provided.

(作用) 以上の構成により、請求項(1)及び(2)に係る発明
では、暖房運転時、各室内機(B)〜(F)では、例え
ばサーモOFF時には、対応する制御弁(11)が閉じてそ
の凝縮器(10)の冷媒出口側の通路が閉じられる。この
ため、冷媒は該凝縮器(10)に流れ込むものの冷媒出口
側からは流れ出ず、該凝縮器(10)内に溜り込み易くな
る。
(Operation) With the above configuration, in the inventions according to claims (1) and (2), the corresponding control valve (11) is applied to each of the indoor units (B) to (F) during heating operation, for example, when the thermostat is turned off. Is closed and the passage on the refrigerant outlet side of the condenser (10) is closed. For this reason, the refrigerant flows into the condenser (10) but does not flow out from the refrigerant outlet side, and easily accumulates in the condenser (10).

今、停止中の凝縮器(10)への冷媒滞溜量が増大する
と、該凝縮器(10)の冷媒入口側の過熱度が小値になる
と共に、該停止中の凝縮器(10)出口側の冷媒の過冷却
度が大値になって、上記過熱度が設定値以下にまで低下
し、または過冷却度が設定値以上に増大すると、この状
況では停止中の凝縮器(10)入口側の冷媒が過熱ガス冷
媒である通常時又は過冷却液冷媒である特殊時であるの
で、冷媒戻し手段(41)が作動して、上記停止中の凝縮
器(10)の冷媒出口側の通路が開かれる。その結果、該
停止中の凝縮器(10)に冷媒が流通して、内部に滞溜し
た冷媒がこの流通冷媒と共に冷媒循環系統(14)に戻さ
れ、回収されることになる。この際、冷媒の流通により
停止中の凝縮器(10)に対する冷媒循環量が増大して、
該凝縮器(10)に至るまでの冷媒の熱損失が減少するの
で、凝縮器(10)入口側の過熱度は大値に戻ると共に出
口側の過冷却度も小値に戻って、ほぼ通常値にまで復帰
する。
When the amount of accumulated refrigerant in the stopped condenser (10) increases, the degree of superheat on the refrigerant inlet side of the condenser (10) becomes small and the outlet of the stopped condenser (10) also decreases. When the supercooling degree of the refrigerant on the side becomes a large value and the superheat degree falls below the set value or the supercooling degree rises above the set value, in this situation, the condenser (10) inlet that is stopped Since the refrigerant on the side is a normal time when it is a superheated gas refrigerant or a special time when it is a supercooled liquid refrigerant, the refrigerant return means (41) operates and the passage on the refrigerant outlet side of the stopped condenser (10). Is opened. As a result, the refrigerant circulates in the stopped condenser (10), and the refrigerant that has accumulated inside is returned to the refrigerant circulation system (14) together with the circulating refrigerant and is collected. At this time, the circulation amount of the refrigerant to the stopped condenser (10) increases due to the circulation of the refrigerant,
Since the heat loss of the refrigerant to the condenser (10) is reduced, the superheat degree on the inlet side of the condenser (10) returns to a large value and the supercooling degree on the outlet side also returns to a small value. Returns to the value.

(発明の効果) 以上説明したように、本出願の請求項(1)及び(2)
に係る発明によれば、マルチ形式の空気調和装置におい
て、一部の室内機の暖房運転中に、残る停止中の室内機
の凝縮器に滞溜する液冷媒量が増大して、該凝縮器入口
側の冷媒過熱度及び出口側の冷媒の過冷却度が変化し、
過熱度が設定値以下に、または過冷却度が設定値以上に
なると、該停止中の凝縮器出口側の通路を開いて冷媒を
流通させたので、停止中の凝縮器入口側の冷媒が過熱ガ
ス冷媒である通常時又は過冷却液冷媒である特殊時に拘
らず、上記滞溜した液冷媒を冷媒循環系統に戻し,回収
して,滞溜液冷媒量の低減の確実化を図ることができ
る。
(Effects of the Invention) As described above, the claims (1) and (2) of the present application
According to the invention of claim 1, in the multi-type air conditioner, during the heating operation of some indoor units, the amount of liquid refrigerant accumulated in the remaining stopped condensers of the indoor units increases, and The superheat degree of the refrigerant on the inlet side and the supercooling degree of the refrigerant on the outlet side change,
When the degree of superheat is equal to or lower than the set value, or the degree of supercooling is equal to or higher than the set value, the passage on the outlet side of the stopped condenser is opened to allow the refrigerant to flow, so that the refrigerant on the inlet side of the stopped condenser is overheated. Regardless of the normal time, which is a gas refrigerant, or the special time, which is a supercooled liquid refrigerant, the accumulated liquid refrigerant can be returned to the refrigerant circulation system and recovered to ensure reduction of the amount of accumulated liquid refrigerant. .

(実施例) 以下、本発明の実施例を第2図以下の図面に基いて説明
する。
(Embodiment) An embodiment of the present invention will be described below with reference to the drawings starting from FIG.

第2図において、(A)は単一の室外ユニット(室外
機)、(B)〜(F)は同一内部構成の複数台(5台)
の室内ユニット(室内機)であって、上記室外ユニット
(A)の内部には、互いに並列に接続された第1の圧縮
機(1)及び第2の圧縮機(2)と、四路切換弁(3)
と、室外送風ファン(4a)を有する室外熱交換機(4)
と、膨張弁(5)とが備えられ、該各機器(1)〜
(5)は各々冷媒配管(6)…で冷媒の流通可能に接続
されている。また、上記各室内ユニット(B)〜(F)
は、各々、室内送風ファン(10a)を有する室内熱交換
器(10)と、膨張弁(制御弁)(11)とを備え、該各機
器(10),(11)は冷媒配管(12)…で冷媒の流通可能
に接続されている。上記膨張弁(11)は、その弁開度が
電気的に増減調整できる空調能力調整用の室内電動膨張
弁で構成されている。
In FIG. 2, (A) is a single outdoor unit (outdoor unit), and (B) to (F) are multiple units (5 units) having the same internal configuration.
The indoor unit (indoor unit) of, wherein the outdoor unit (A) includes a first compressor (1) and a second compressor (2) connected in parallel with each other, and a four-way switching. Valve (3)
And an outdoor heat exchanger (4) having an outdoor blower fan (4a)
And an expansion valve (5), and each of the devices (1) to
Each of (5) is connected to a refrigerant pipe (6) so that the refrigerant can flow therethrough. In addition, the above indoor units (B) to (F)
Each include an indoor heat exchanger (10) having an indoor blower fan (10a) and an expansion valve (control valve) (11), and each of the devices (10) and (11) is a refrigerant pipe (12). Is connected so that the refrigerant can flow. The expansion valve (11) is composed of an indoor electric expansion valve for adjusting the air conditioning capacity whose valve opening degree can be electrically increased or decreased.

そして、上記5台の室内ユニット(B)〜(F)は、各
々冷媒配管(13)…で互いに並列に接続されて上記室外
ユニット(A)に冷媒の循環可能に接続されて冷媒循環
系統(14)が形成されていて、冷房運転時には、四路切
換弁(3)を図中破線の如く切換えて冷媒を図中破線矢
印の如く循環させることにより、各室内熱交換器(10)
…で室内から吸熱した熱量を室外熱交換器(4)で外気
に放熱することを繰返して各室内を冷房する一方、暖房
運転時には、四路切換弁(3)を図中実線の如く切換え
て冷媒を図中実線矢印の如く循環させることにより、熱
量の授受を上記とは逆にして、室内を暖房するようにし
ている。而して、各室内電動膨張弁(制御弁)(11)
は、暖房運転時の冷媒出口側に配置されていて、該各電
動膨張弁(11)の閉制御により、各室内ユニット(B)
〜(F)を個別に冷房運転及び暖房運転可能としてい
る。
The five indoor units (B) to (F) are connected in parallel to each other by refrigerant pipes (13) ... And are connected to the outdoor unit (A) so that the refrigerant can circulate. 14) is formed, and during the cooling operation, the four-way switching valve (3) is switched as shown by the broken line in the drawing to circulate the refrigerant as shown by the broken line arrow in the drawing, whereby each indoor heat exchanger (10) is
The indoor heat exchanger (4) repeatedly radiates the amount of heat absorbed from the room to the outside air to cool each room, while switching the four-way selector valve (3) as shown by the solid line during heating operation. By circulating the refrigerant as shown by the solid line arrow in the figure, the heat quantity is exchanged in the opposite manner to heat the room. Thus, each indoor electric expansion valve (control valve) (11)
Is disposed on the refrigerant outlet side during heating operation, and each indoor unit (B) is controlled by closing control of each electric expansion valve (11).
(F) can be individually cooled and heated.

また、上記第1の圧縮機(1)にはインバータ(15)が
接続されていて、該インバータ(15)の30%から100%
まで10%刻みの周波数設定信号の出力により、第1の圧
縮機(1)の運転周波数を8段階に高低調整して、その
容量を複数段階(停止時を含んで9段階)に増減調整す
るようにしている。
An inverter (15) is connected to the first compressor (1), and 30% to 100% of the inverter (15) is connected.
The operating frequency of the first compressor (1) is adjusted in eight steps by the output of the frequency setting signal in 10% steps, and the capacity is adjusted in multiple steps (9 steps including the stop). I am trying.

また、第2の圧縮機(2)は、パイロット電磁弁(17)
の開閉に応じて容量がフルロード(100%)と、50%の
アンロード状態との二段階に調整されるものである。
Further, the second compressor (2) has a pilot solenoid valve (17).
Depending on the opening and closing of, the capacity is adjusted in two stages: full load (100%) and unload state of 50%.

また、第2図において、(20)は四路切換弁(3)前後
の冷媒配管(6),(6)(吐出管と吸入管)を接続す
る均圧ホットガスバイパス回路であって、該バイパス回
路(20)には、冷房運転状態での低負荷時及び室外熱交
換器(4)の除霜運転時等に開作動するホットガス電磁
弁(21)が介設されている。
Further, in FIG. 2, (20) is a pressure equalizing hot gas bypass circuit that connects the refrigerant pipes (6), (6) (the discharge pipe and the suction pipe) before and after the four-way switching valve (3), The bypass circuit (20) is provided with a hot gas solenoid valve (21) which is opened during a low load in a cooling operation state, a defrosting operation of the outdoor heat exchanger (4), and the like.

さらに、(22)は暖房運転時に吐出管となる冷媒配管
(6)に接続された暖房過負荷時バイパス回路であっ
て、該バイパス回路(22)には、補助コンデンサ(23)
及び、冷媒の高圧時に開く高圧制御弁(24)が介設され
ており、暖房過負荷時に圧縮機(1),(2)からの冷
媒を該バイパス回路(22)を介して各室内熱交換器(1
0)…をバイパスして、各室内熱交換器(10)…下流側
の冷媒配管(6)にバイパスするようにしている。
Further, (22) is a heating overload bypass circuit connected to the refrigerant pipe (6) serving as a discharge pipe during the heating operation, and the bypass circuit (22) includes an auxiliary capacitor (23).
Further, a high pressure control valve (24) which is opened when the pressure of the refrigerant is high is interposed, and the refrigerant from the compressors (1) and (2) is exchanged with the heat of each room through the bypass circuit (22) at the time of heating overload. Bowl (1
0) are bypassed, and each indoor heat exchanger (10) is bypassed to the refrigerant pipe (6) on the downstream side.

加えて、(25)は上記暖房過負荷時バイパス回路(22)
の補助コンデンサ(23)下流側を、四路切換弁(3)下
流側の冷媒配管(6)(吸入管)に接続するリキッドイ
ンジェクションバイパス回路であって、該リキッドイン
ジェクションバイパス回路(25)には圧縮機(1),
(2)の作動に連動して開閉するインジェクション用電
磁弁(26)と、膨張弁(27)とが介設されている。
In addition, (25) is the heating overload bypass circuit (22).
Is a liquid injection bypass circuit that connects the downstream side of the auxiliary condenser (23) to the refrigerant pipe (6) (suction pipe) on the downstream side of the four-way switching valve (3), and the liquid injection bypass circuit (25) includes Compressor (1),
An injection solenoid valve (26) that opens and closes in conjunction with the operation of (2) and an expansion valve (27) are interposed.

また、(30)はレシーバ、(31)はアキュムレータ、
(32)は過冷却コイル、(33)は油分離器であって、該
油分離器(33)で分離された潤滑油は油通路(34)を介
して両圧縮機(1),(2)に戻される。
Also, (30) is the receiver, (31) is the accumulator,
(32) is a supercooling coil, (33) is an oil separator, and the lubricating oil separated by the oil separator (33) passes through an oil passage (34) to both compressors (1), (2 ).

さらに、各室内ユニット(B)〜(F)において、(TH
1)は対応する室内の空気の温度(吸込空気温度)を検
出する室温センサ、(TH2)及び(TH3)は各々暖房運転
時に凝縮器(及び冷房運転時に蒸発器)として作用する
室内熱交換器(10)…前後の冷媒温度を検出する温度セ
ンサである。また、室外ユニット(A)において、(TH
4)は第1及び第2圧縮機(1),(12)を冷媒吐出温
度を検出する温度センサ、(TH5)は暖房運転時に室外
熱交換機(4)での冷媒の蒸発温度を検出する蒸発温度
センサ、(TH6)は第1及び第2圧縮機(1),(2)
への吸入ガス温度を検出する吸入ガス温度センサであ
る。また、(P1)は暖房運転時には吐出ガス圧力を、冷
房運転時には吸入ガス圧力を各々検出する圧力センサ、
(HPS)は圧縮機保護用の高圧圧力開閉器である。
Furthermore, in each indoor unit (B) to (F), (TH
1) is a room temperature sensor that detects the temperature of the corresponding indoor air (intake air temperature), and (TH2) and (TH3) are indoor heat exchangers that act as condensers (and evaporators during cooling operation), respectively. (10) ... A temperature sensor that detects the temperature of the refrigerant before and after. In the outdoor unit (A), (TH
4) is a temperature sensor that detects the refrigerant discharge temperature of the first and second compressors (1) and (12), and (TH5) is evaporation that detects the refrigerant evaporation temperature in the outdoor heat exchanger (4) during heating operation. Temperature sensor, (TH6) is the first and second compressor (1), (2)
Is a suction gas temperature sensor for detecting the temperature of the suction gas. Also, (P1) is a pressure sensor that detects the discharge gas pressure during heating operation and the suction gas pressure during cooling operation,
(HPS) is a high pressure switch for compressor protection.

次に、上記各室内ユニット(B)〜(F)の各電動膨張
弁(11)の暖房運転時における作動制御を第3図の制御
フローに基いて説明する。
Next, the operation control of the electric expansion valves (11) of the indoor units (B) to (F) during the heating operation will be described based on the control flow of FIG.

先ず、対応する室内ユニット(B)〜(F)のサーモOF
F時(運転の停止要求時)にスタートして、ステップS1
で室内熱交換器(凝縮器)(10)の冷媒入口温度T1を温
度センサ(TH3)の出力に基いて読込むと共に、圧力セ
ンサ(P1)で検出する吐出ガス圧力に基いて冷媒の凝縮
圧力相当飽和温度Tcを算出し、その後、ステップS2でこ
の両温度に基いて凝縮器(10)の入口での冷媒の過熱度
SH(=T1−Tc)を算出する。
First, the thermo-OF of the corresponding indoor units (B) to (F)
Start at F (when requesting operation stop), and then step S 1
Reads the refrigerant inlet temperature T 1 of the indoor heat exchanger (condenser) (10) based on the output of the temperature sensor (TH3), and condenses the refrigerant based on the discharge gas pressure detected by the pressure sensor (P1). calculates a pressure corresponding saturation temperature Tc, then, the degree of superheat of refrigerant at the inlet of the condenser based on the both temperatures in the step S 2 (10)
To calculate the SH (= T 1 -Tc).

しかる後、ステップS3でこの過熱度SHを冷媒の滞溜し易
い状況の設定値α(例えば5℃)と比較し、SH>αの通
常時には、ステップS4で電動膨張弁(11)の開度を零値
又は微小開度に制御して、対応する凝縮器(10)の冷媒
出口側の通路を閉じ、よって対応する室内ユニット
(B)〜(F)に対する冷媒の流通を阻止して、ステッ
プS1に戻る。
Thereafter, the superheat degree SH is compared with a set value of Todokotamari easy availability of the refrigerant alpha (e.g. 5 ° C.) in step S 3, during normal SH> alpha, in step S 4 the electric expansion valve (11) The opening degree is controlled to a zero value or a minute opening degree to close the passage on the refrigerant outlet side of the corresponding condenser (10), thereby preventing the refrigerant from flowing to the corresponding indoor units (B) to (F). , Return to step S 1 .

一方、SH≦αの冷媒滞溜し易い状況では、滞溜した冷媒
を回収すべく、ステップS5で冷媒回収の終了条件(後
述)を判別し、当初はその非成立時であるので、ステッ
プS6で電動膨張弁(11)の開度を設定開度(例えば半開
値)に開制御し、対応する凝縮器(10)の冷媒出口側通
路を開いて該凝縮器(10)に冷媒を流通させ、滞溜した
冷媒を冷媒循環系統(14)に回収する。
On the other hand, in the situation where the refrigerant is liable to accumulate in SH ≤ α, in order to recover the accumulated refrigerant, the termination condition for refrigerant recovery (discussed later) is determined in step S 5 , and it is initially not established. In S 6 , the opening of the electric expansion valve (11) is controlled to a set opening (for example, a half-open value), the refrigerant outlet side passage of the corresponding condenser (10) is opened, and the refrigerant is supplied to the condenser (10). The refrigerant that circulates and accumulates is collected in the refrigerant circulation system (14).

その後は、再びステップS7で凝縮器(10)の冷媒入口温
度T1を読込むと共に冷媒の凝縮圧力相当飽和温度Tcを算
出して、ステップS8で凝縮器(10)の入口での冷媒の過
熱度SH(=T1−TC)を算出し、その後、ステップS5で冷
媒の回収の終了条件を、凝縮器(10)入口側での冷媒の
過熱度SHと冷媒回収後(電動膨張弁(11)の半開制御
後)の経過時間とで判別し、SH>α+β(βはディファ
レンシャル値で例えば5℃)の場合、又は設定時間(例
えば5分)経過すると、滞溜冷媒の回収が終了したと判
断して、ステップS4に戻って電動膨張弁(11)の開度を
零値又は微小開度に設定して通常の状況に戻して、ステ
ップS1に戻ることを繰返す。
After that, in step S 7 , the refrigerant inlet temperature T 1 of the condenser (10) is read again, and the saturation temperature Tc equivalent to the condensation pressure of the refrigerant is calculated, and in step S 8 , the refrigerant at the inlet of the condenser (10) is calculated. The superheat degree SH (= T 1 −T C ) of the refrigerant is calculated, and then, in step S 5 , the refrigerant recovery end condition is set as the refrigerant superheat degree SH at the inlet side of the condenser (10) and after refrigerant recovery (electric When SH> α + β (β is a differential value of 5 ° C, for example) or when the set time (for example, 5 minutes) has elapsed, the accumulated refrigerant is recovered after the expansion valve (11) is opened halfway. When it is determined that the process has been completed, the process returns to step S 4 , the opening of the electric expansion valve (11) is set to a zero value or a minute opening, the normal condition is restored, and the process returns to step S 1 .

よって、上記第3図の制御フローにおいて、ステップS1
及びS2により、室内熱交換器(凝縮器)(10)の冷媒入
口側の過熱度SHを検出するようにした過熱度検出手段
(40)を構成している。また、ステップS3及びS6によ
り、停止中(サーモOFF)の凝縮器(10)の冷媒入口側
の過熱度SHが設定値α以下のとき、該停止中の凝縮器
(10)の冷媒出口側の通路を、対応する電動膨張弁(1
1)の開制御により開いて、該停止中の凝縮器(10)に
冷媒を流通させ、この冷媒と共に該停止中の凝縮器(1
0)内に滞溜した冷媒を冷媒循環系統(14)に戻すよう
にした冷媒戻し手段(41)を構成している。
Therefore, in the control flow of FIG. 3 above, step S 1
And S 2 constitute a superheat degree detecting means (40) for detecting the superheat degree SH on the refrigerant inlet side of the indoor heat exchanger (condenser) (10). Further, in step S 3 and S 6, the refrigerant outlet of the stopped when the refrigerant inlet side of the superheat degree SH of the condenser of the (thermo OFF) (10) is equal to or less than the set value alpha, a condenser in said stop (10) Side passage to the corresponding electric expansion valve (1
The refrigerant is circulated by the open control of (1) to allow the refrigerant to flow through the stopped condenser (10), and the stopped condenser (1
Refrigerant returning means (41) is configured to return the refrigerant accumulated in (0) to the refrigerant circulation system (14).

したがって、上記実施例においては、暖房運転時、所定
の室内ユニット(例えば(B))がサーモOFFにより運
転を停止する(室内送風ファン(10a)は低回転で運転
を続行する)場合には、対応する電動膨張弁(11)が閉
作動し、凝縮器(10)の冷媒出口側の通路が閉じられて
該凝縮器(10)に対する冷媒の流通が停止する。
Therefore, in the above embodiment, when a predetermined indoor unit (for example, (B)) is stopped by the thermostat during the heating operation (the indoor blower fan (10a) continues to operate at low speed), The corresponding electric expansion valve (11) is closed, the passage on the refrigerant outlet side of the condenser (10) is closed, and the flow of the refrigerant to the condenser (10) is stopped.

その状態で、第5図に示す如く、凝縮器(10)の入口側
の冷媒が過熱ガスであり、出口側の冷媒が杉冷却液であ
る場合には、第4図に示すモリエル線図上、入口温度T1
は冷媒の吐出ガス温度T0から冷媒配管での熱損失分TL
け低い過熱ガス温度値にあり、出口温度T2は凝縮圧力相
当飽和温度TCより過冷却度SC分だけ低い過冷却液温度値
にある。
In that state, as shown in FIG. 5, when the refrigerant on the inlet side of the condenser (10) is superheated gas and the refrigerant on the outlet side is cedar cooling liquid, on the Mollier diagram shown in FIG. , Inlet temperature T 1
Is the superheated gas temperature value that is lower than the discharge gas temperature T 0 of the refrigerant by the heat loss amount TL in the refrigerant pipe, and the outlet temperature T 2 is the supercooled liquid that is lower than the condensation pressure equivalent saturation temperature T C by the supercooling degree SC amount. There is a temperature value.

今、停止中の凝縮器(10)に滞溜する液冷媒量が増大す
ると、入口温度T1が低下して凝縮器(10)入口側の過熱
度SHが減少し飽和蒸気線に近付くに従って冷媒の流体密
度が大値になり液冷媒として凝縮器(10)内に滞溜し易
くなる。しかし、入口での過熱度SHがSH≦αとなると
(飽和蒸気線に一致した時点でSH=0、第6図の如く凝
縮器(10)の冷媒入口まで滞溜する場合には過冷却状態
となり、図中の温度値T1′(T1′<0)に低下する)、
凝縮器(10)の入口の冷媒状態が過熱ガスが過冷却液か
に拘らず、電動膨張弁(11)が開制御されて該停止中の
凝縮器(10)に冷媒が流通し、これと共に内部に滞溜し
た液冷媒が冷媒循環系統(14)に戻し回収される。この
場合、冷媒の循環量の増大に伴い単位量当りの冷媒配管
での熱損失分TLが減少して、凝縮器(10)入口の冷媒温
度T1は上昇し、入口の冷媒の過熱度SHは大値となり、SH
>α+βとなった時点で、電動膨張弁(11)が閉じて滞
溜冷媒の戻し回収が停止する。
Now, when the amount of liquid refrigerant accumulated in the stopped condenser (10) increases, the inlet temperature T 1 decreases, the superheat SH at the inlet side of the condenser (10) decreases, and the refrigerant increases as it approaches the saturated vapor line. Has a large fluid density and easily accumulates in the condenser (10) as a liquid refrigerant. However, when the superheat degree SH at the inlet becomes SH ≤ α (SH = 0 at the time when it coincides with the saturated vapor line, and when it reaches the refrigerant inlet of the condenser (10) as shown in Fig. 6, it is in a supercooled state. And decreases to the temperature value T 1 ′ (T 1 ′ <0) in the figure),
Regardless of whether the refrigerant state at the inlet of the condenser (10) is superheated gas or supercooled liquid, the electric expansion valve (11) is controlled to open and the refrigerant circulates in the stopped condenser (10). The liquid refrigerant accumulated inside is returned to the refrigerant circulation system (14) and recovered. In this case, as the circulation amount of the refrigerant increases, the heat loss amount T L in the refrigerant pipe per unit amount decreases, the refrigerant temperature T 1 at the inlet of the condenser (10) rises, and the superheat degree of the refrigerant at the inlet is increased. SH becomes a large value, SH
At the time of> α + β, the electric expansion valve (11) is closed and the return collection of the accumulated refrigerant is stopped.

そして、再び冷媒が滞溜し、過熱度SH<αになると、上
記と同様の動作を繰返して、滞溜冷媒の戻し,回収が行
われ、長期的には滞溜冷媒量が所定の一定量に少なく制
限ないし抑制されることになる。
Then, when the refrigerant stays again and the superheat degree becomes SH <α, the operation similar to the above is repeated to return and collect the staying refrigerant, and in the long term, the quantity of the staying refrigerant reaches a predetermined amount. It will be limited or suppressed to a very small amount.

また、上記サーモOFF時(暖房運転の不必要時)では、
停止中の室内ユニット(例えばB)の室内送風ファン
(10a)は低回転で運転を続行すると共に、膨張弁(1
1)の半開作動により冷媒が流通し暖房能力が発揮され
るが、この冷媒の流通は滞溜冷媒の戻し,回収時に限ら
れているので、膨張弁(11)の開度を常時設定開度に開
制御しておく場合に比べて、不必要な暖房能力の発揮を
少なく止めることができる。
Also, when the above thermo is off (when heating operation is unnecessary),
The indoor blower fan (10a) of the indoor unit (for example, B) that is stopped continues to operate at low rotation speed, and the expansion valve (1
Due to the half-open operation of 1), the refrigerant flows and the heating capacity is exhibited, but since the circulation of this refrigerant is limited to the time of returning and collecting the stagnant refrigerant, the opening of the expansion valve (11) is always set to the opening. Compared with the case where the opening control is performed in the above, the unnecessary heating capacity can be suppressed to a small extent.

以上、停止中の凝縮器(10)の入口側の過熱度SHがSH≦
αの状況で滞溜冷媒を戻し回収する場合を説明したが、
過熱度SH≦αの状況では停止中の凝縮器(10)出口側の
冷媒の過冷却度SCが設定値γ以上(SC≧γ)となるの
で、この過冷却度SCの検出手段(42)を、凝縮器(10)
出口側の温度センサ(TH2)で検出される温度信号T2
と、圧力センサ(P1)の出力に基いて算出される凝縮圧
力相当飽和温度TCとに基いて、その差(T2−TC)である
過冷却度SCを検出するよう構成して、滞溜冷媒を回収し
てもよい。
As described above, the superheat degree SH on the inlet side of the stopped condenser (10) is SH ≤
The case of returning and collecting the accumulated refrigerant in the situation of α has been explained.
When the superheat degree SH ≦ α, the supercooling degree SC of the refrigerant at the outlet side of the stopped condenser (10) becomes equal to or greater than the set value γ (SC ≧ γ). Therefore, the means for detecting the supercooling degree SC (42) The condenser (10)
Temperature signal T2 detected by the temperature sensor (TH2) on the outlet side
And the condensing pressure equivalent saturation temperature T C calculated based on the output of the pressure sensor (P1), the difference (T2-T C ) which is the supercooling degree SC is detected, and The accumulated refrigerant may be recovered.

尚、以上の説明では、凝縮器(10)の入口側の過熱度S
H、及び凝縮器(10)出口側の過冷却度の検出に際し
て、凝縮圧力相当飽和温度TCの算出用として四路切換弁
(3)下流側で吐出圧力を検出する圧力センサ(P1)を
設けたが、この圧力センサ(P1)に代えて、圧縮器
(1),(2)の吐出ガス温度を検出する温度センサを
設けてもよい。
In the above description, the superheat degree S on the inlet side of the condenser (10) is
At the time of detecting H and the degree of supercooling on the outlet side of the condenser (10), a pressure sensor (P1) for detecting the discharge pressure on the downstream side of the four-way switching valve (3) is used for calculating the condensation temperature equivalent saturation temperature T C. Although the pressure sensor (P1) is provided, a temperature sensor that detects the discharge gas temperature of the compressors (1) and (2) may be provided instead of the pressure sensor (P1).

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の構成を示すブロック図である。第2図
ないし第6図は本発明の実施例を示し、第2図は全体構
成を示す冷媒配管系統図、第3図は暖房運転時での電動
膨張弁の開度制御示すフローチャート図、第4図はモリ
エル線図、第5図及び第6図は各々停止中の凝縮器に滞
溜する冷媒の様子の説明図である。 (A)……室外ユニット(室外機)、(B)〜(F)…
…室内ユニット(室内機)、(11)……室内電動膨張弁
((制御弁)、(14)……冷媒循環系統、(TH2),(T
H3)……温度センサ、(P1)……圧力センサ、(40)…
…過熱度検出手段、(41)……冷媒戻し手段、(42)…
…過冷却度検出手段。
FIG. 1 is a block diagram showing the configuration of the present invention. 2 to 6 show an embodiment of the present invention, FIG. 2 is a refrigerant piping system diagram showing the overall configuration, FIG. 3 is a flow chart diagram showing the opening control of the electric expansion valve during heating operation, FIG. FIG. 4 is a Mollier diagram, and FIGS. 5 and 6 are explanatory views of the state of the refrigerant accumulated in the stopped condenser. (A) ... Outdoor unit (outdoor unit), (B) to (F) ...
… Indoor unit (indoor unit), (11) …… Indoor electric expansion valve ((control valve), (14) …… Refrigerant circulation system, (TH2), (T
H3) ... Temperature sensor, (P1) ... Pressure sensor, (40) ...
… Superheat detection means (41)… Refrigerant return means (42)…
... Supercooling degree detection means.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】単一の室外機(A)と複数台の室内機
(B)〜(F)とで冷媒循環系統(14)を形成し、各室
内機(B)〜(F)別に暖房運転可能とした空気調和装
置の冷媒滞溜抑制装置であって、上記各室内機(B)〜
(F)に内蔵する凝縮器(10)の冷媒出口側に各々配置
され、対応する室内機の停止要求時に閉じてその内蔵す
る凝縮機(10)に対する冷媒の流通を阻止する制御弁
(11)と、上記各凝縮器(10)の冷媒入口側の冷媒の温
度と冷媒の凝縮圧力相当飽和温度との差である過熱度を
検出する過熱度検出手段(40)と、該過熱度検出手段
(40)の出力を受け、停止中の凝縮器(10)の冷媒入口
側の過熱度の設定値に対する大小関係に応じて停止中の
凝縮器(10)の冷媒出口側の通路を開いて滞溜した冷媒
を冷媒循環系統(14)に戻す冷媒戻し手段(41)とを備
えたことを特徴とする空気調和装置の冷媒滞溜抑制装
置。
1. A single outdoor unit (A) and a plurality of indoor units (B) to (F) form a refrigerant circulation system (14), and each indoor unit (B) to (F) is heated. A refrigerant retention suppressing device of an air conditioner which is operable, wherein each of the indoor units (B) to
A control valve (11) arranged on the refrigerant outlet side of the condenser (10) built in (F) and closed when the corresponding indoor unit is requested to stop to prevent the flow of the refrigerant to the built-in condenser (10). A superheat degree detecting means (40) for detecting a superheat degree which is a difference between the temperature of the refrigerant on the refrigerant inlet side of each of the condensers (10) and the saturation temperature corresponding to the condensation pressure of the refrigerant, and the superheat degree detecting means ( 40), the passage on the refrigerant outlet side of the stopped condenser (10) is opened according to the magnitude relationship with the set value of the superheat degree on the refrigerant inlet side of the stopped condenser (10), and the passage is accumulated. And a refrigerant return means (41) for returning the refrigerant to the refrigerant circulation system (14).
【請求項2】請求項(1)記載の空気調和装置の冷媒滞
溜抑制装置において、過熱度検出手段(40)に代えて、
各凝縮器(10)の冷媒出口側の冷媒の温度と冷媒の凝縮
圧力相当飽和温度との差である過冷却度を検出する過冷
却度検出手段(42)を備えたことを特徴とする空気調和
装置の冷媒滞溜抑制装置。
2. The refrigerant retention suppressing device for an air conditioner according to claim 1, wherein the superheat detection means (40) is replaced by
Air comprising a supercooling degree detecting means (42) for detecting a supercooling degree which is a difference between a temperature of the refrigerant on the refrigerant outlet side of each condenser (10) and a saturation temperature corresponding to the condensation pressure of the refrigerant. Refrigerant stagnation suppression device for air conditioner.
JP63313262A 1988-12-12 1988-12-12 Refrigerant retention device for air conditioner Expired - Fee Related JPH0784954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63313262A JPH0784954B2 (en) 1988-12-12 1988-12-12 Refrigerant retention device for air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63313262A JPH0784954B2 (en) 1988-12-12 1988-12-12 Refrigerant retention device for air conditioner

Publications (2)

Publication Number Publication Date
JPH02157568A JPH02157568A (en) 1990-06-18
JPH0784954B2 true JPH0784954B2 (en) 1995-09-13

Family

ID=18039089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63313262A Expired - Fee Related JPH0784954B2 (en) 1988-12-12 1988-12-12 Refrigerant retention device for air conditioner

Country Status (1)

Country Link
JP (1) JPH0784954B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4758367B2 (en) * 2007-02-13 2011-08-24 シャープ株式会社 Air conditioner
US7824725B2 (en) 2007-03-30 2010-11-02 The Coca-Cola Company Methods for extending the shelf life of partially solidified flowable compositions
CN102725599B (en) * 2010-01-29 2014-11-26 大金工业株式会社 Heat pump system
JP6141425B2 (en) * 2013-05-24 2017-06-07 三菱電機株式会社 Refrigeration cycle equipment
JP2017171209A (en) * 2016-03-25 2017-09-28 パナソニックIpマネジメント株式会社 Vehicular air conditioning apparatus and air condition control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243269U (en) * 1985-09-02 1987-03-16

Also Published As

Publication number Publication date
JPH02157568A (en) 1990-06-18

Similar Documents

Publication Publication Date Title
US6460358B1 (en) Flash gas and superheat eliminator for evaporators and method therefor
JP3584862B2 (en) Air conditioner refrigerant circuit
JP2009257759A (en) Refrigerator
JP4304832B2 (en) Air conditioner
JP6267952B2 (en) Refrigeration cycle equipment
JP6715655B2 (en) Cooling system
JP3334222B2 (en) Air conditioner
JPH0784954B2 (en) Refrigerant retention device for air conditioner
JPH01118080A (en) Heat pump type air conditioner
JP2684845B2 (en) Operation control device for air conditioner
KR20220045359A (en) Multi-air conditioner for heating and cooling operations
JP3237206B2 (en) Air conditioner
JP2523534B2 (en) Air conditioner
JP2002277066A (en) Air conditioning equipment for vehicle
JP3906398B2 (en) Thermal storage air conditioner
JP3378712B2 (en) Air conditioner
JP2518358B2 (en) Air conditioner oil recovery device
JPH0320571A (en) Air conditioner
JP2541173B2 (en) Air conditioner
JPH0730959B2 (en) Air conditioner
JPS5969663A (en) Refrigeration cycle
JP2719456B2 (en) Air conditioner
JPH0578744B2 (en)
JPS5825233Y2 (en) air conditioner
JPH07117261B2 (en) Operation control device for heat storage type air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070913

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees