JPH0783314A - Drive gear - Google Patents

Drive gear

Info

Publication number
JPH0783314A
JPH0783314A JP5232952A JP23295293A JPH0783314A JP H0783314 A JPH0783314 A JP H0783314A JP 5232952 A JP5232952 A JP 5232952A JP 23295293 A JP23295293 A JP 23295293A JP H0783314 A JPH0783314 A JP H0783314A
Authority
JP
Japan
Prior art keywords
gear
gears
drive gear
drive
spur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5232952A
Other languages
Japanese (ja)
Inventor
Masaaki Ichikawa
匡明 市川
Hiroyuki Ishii
博之 石井
Ryukichi Inoue
隆吉 井上
Toshiyuki Takano
敏行 高野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5232952A priority Critical patent/JPH0783314A/en
Publication of JPH0783314A publication Critical patent/JPH0783314A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize integral formation and increase the rate of meshing by minimizing the transmission loss of drive force. CONSTITUTION:Between a flat gear 1 and an auxiliary flat gear 2, an opening 3 whose diameter is smaller than the value of the smaller one of the tooth root circle diameters of the flat gear 1 and the auxiliary flat gear 2, is formed, and a drive gear G1 is obtained by integral formation. As the opening 3 is formed between both gears 1, 2, the protrusion of the material at the time of integral formation is provided, and the integral formation of the drive gear G1 becomes possible. Also, by the combination of the two gears 1, 2, increasing a meshing rate by restraining the transmission loss of drive force at the minimum becomes possible, too.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、駆動力を伝達するため
の駆動歯車に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive gear for transmitting a driving force.

【0002】[0002]

【従来の技術】従来の駆動歯車の例を図11乃至図14
にそれぞれ示す。
2. Description of the Related Art Examples of conventional drive gears are shown in FIGS.
Are shown respectively.

【0003】図11は平歯車G5を示し、該平歯車G5
の噛み合い率ε0 は次式によって求められる。
FIG. 11 shows a spur gear G5, which is a spur gear G5.
The meshing ratio ε 0 of is calculated by the following equation.

【0004】[0004]

【数1】 ここに、dK1:駆動側歯先円直径 dK2:従動側歯先円直径 dg1:駆動側基礎円直径 dg2:従動側基礎円直径 a:中心間距離 α:圧力角 m:モジュール ここで、画像形成装置の駆動歯車1枚当りの最大歯数を
120歯前後として考えると、圧力角αが20°の場合
の噛み合い率ε0 は1.8程度となり、ε0 =2.0以
上を得ることはできない。
[Equation 1] Where d K1 : diameter of tip circle on driven side d K2 : diameter of tip circle on driven side d g1 : diameter of base circle on driven side d g2 : diameter of base circle on driven side a: center distance α: pressure angle m: module here Then, assuming that the maximum number of teeth per drive gear of the image forming apparatus is around 120 teeth, the meshing ratio ε 0 when the pressure angle α is 20 ° is about 1.8, and ε 0 = 2.0 or more. Can't get

【0005】一方、圧力角αが14.5°の場合は噛み
合い率ε0 の限界値はε0 =2.3程度になるが、駆動
歯車と従動歯車の歯数の和が160〜180歯となるた
めに歯車比を大きく取ることができず、設計上の制約が
大きい。
On the other hand, when the pressure angle α is 14.5 °, the limit value of the meshing ratio ε 0 is about ε 0 = 2.3, but the sum of the number of teeth of the drive gear and the driven gear is 160 to 180 teeth. Therefore, a large gear ratio cannot be obtained, and there are large design restrictions.

【0006】又、図12ははすば歯車G6を示し、該は
すば歯車G6の噛み合い率εH は次式によって求められ
る。
FIG. 12 shows a helical gear G6, and the meshing ratio ε H of the helical gear G6 is obtained by the following equation.

【0007】[0007]

【数2】 εH =ε0 +εSP=ε0 +btanβ/(πmS ) ここに、ε0 :正面歯形に対する噛み合い率([Equation 2] ε H = ε 0 + ε SP = ε 0 + btan β / (πm S ), where ε 0 : meshing ratio with respect to the front tooth profile (

【数1】参照) εSP:ねじれた歯すじに対する噛み合い率 β:ねじれ角 b:噛み合い歯幅 mS :軸直角モジュール 而して、はすば歯車G6においては、ε0 は既に1.4
〜1.8あるため、εSPが0.6以上になるように歯幅
bとねじれ角βを決めれば良く、実際にεH =2.0以
上は容易に得られるが、ねじれ角βによって回転軸のス
ラスト方向へ駆動力が分散してしまうため、平歯車に比
較して駆動力の伝達損失が大きい。
(Equation 1) ε SP : Engagement ratio for twisted tooth lines β: Twist angle b: Engagement tooth width m S : Module at right angles to the axis Thus, in helical gear G6, ε 0 is already 1.4.
Therefore, it is sufficient to determine the tooth width b and the twist angle β so that ε SP is 0.6 or more. Actually, ε H = 2.0 or more can be easily obtained, but depending on the twist angle β, Since the driving force is dispersed in the thrust direction of the rotary shaft, the transmission loss of the driving force is larger than that of the spur gear.

【0008】更に、図13は段歯車G7を示しており、
該段歯車G7は平歯車の欠点を補うために2枚の平歯車
21,22で構成されており、その2枚の平歯車21,
22の位相を互いにずらすことによって噛み合い率の向
上を図っている。
Further, FIG. 13 shows a stepped gear G7,
The stepped gear G7 is composed of two spur gears 21 and 22 in order to make up for the drawbacks of the spur gear.
The meshing ratio is improved by shifting the phases of 22 from each other.

【0009】又、図14はやまば歯車G8を示してお
り、該やまば歯車G8ははすば歯車の欠点を補うために
2枚のはすば歯車31,32で構成されており、2枚の
はすば歯車31,32のねじれ角を反対にして組み合せ
ることによってスラスト力を相殺し、駆動力の伝達損失
を小さく抑えて伝達効率の向上を図っている。
FIG. 14 shows a helical gear G8. The helical gear G8 is composed of two helical gears 31 and 32 in order to make up for the defects of the helical gear. By combining the helical gears 31 and 32 with the opposite twist angles, the thrust force is offset, the transmission loss of the driving force is suppressed to a small level, and the transmission efficiency is improved.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、図11
に示す平歯車G5を用いた駆動力の伝達においては、平
歯車G5の噛み合い率を大きくするには次のような問題
があった。
However, as shown in FIG.
In the transmission of the driving force using the spur gear G5 shown in (1), there were the following problems in increasing the meshing ratio of the spur gear G5.

【0011】(1)圧力角αを20°にすると、実用領
域において噛み合い率ε0 を1.8以上にはできないた
め、駆動力を伝達するときの法線荷重が変動する。
(1) When the pressure angle α is set to 20 °, the meshing ratio ε 0 cannot be set to 1.8 or more in a practical range, so that the normal load when transmitting the driving force fluctuates.

【0012】(2)圧力角αを14.5°にすると、
2.0以上の噛み合い率ε0 を得ることはできるが、駆
動側と従動側の歯数の制約から歯車比を大きく取ること
ができない。
(2) When the pressure angle α is set to 14.5 °,
Although a meshing ratio ε 0 of 2.0 or more can be obtained, a large gear ratio cannot be obtained due to the restriction of the number of teeth on the driving side and the driven side.

【0013】又、図12に示すはすば歯車G6による駆
動力の伝達においては、はすば歯車G6の噛み合い率を
大きくするには次のような問題があった。
Further, in the transmission of the driving force by the helical gear G6 shown in FIG. 12, there were the following problems in increasing the meshing ratio of the helical gear G6.

【0014】(3)噛み合い率を大きくするためにねじ
れ角βを大きくすると、それに伴ってねじれ角βによっ
て分散される駆動力も大きくなり、駆動力の伝達効率が
悪くなる。
(3) When the twist angle β is increased in order to increase the meshing ratio, the driving force dispersed by the twist angle β also increases and the transmission efficiency of the driving force deteriorates.

【0015】更に、図13に示す段歯車G7や図14に
示すやまば歯車G8を製作するには、次のような問題が
あった。
Further, there were the following problems in manufacturing the step gear G7 shown in FIG. 13 and the helical gear G8 shown in FIG.

【0016】(4)1枚の段歯車G7又はやまば歯車G
8を製作するのに2枚の平歯車21,22又ははすば歯
車31,32を製作し、両歯車21,22又は31,3
2を接着・溶着・ビス締め等によって固定する必要があ
り、通常の歯車に比較して加工費が高くなる。
(4) One step gear G7 or helical gear G
In order to produce 8, two spur gears 21 and 22 or helical gears 31 and 32 are produced, and both gears 21, 22 or 31, 3
2 needs to be fixed by adhesion, welding, screw tightening, etc., and the processing cost is higher than that of a normal gear.

【0017】(5)段歯車G7ややまば歯車G8の一体
成形を行なうと、異なる歯車21,22又は31,32
の合わせ面に素材のはみ出しが発生した場合に歯車精度
が低下し、駆動力を伝達する歯車としての機能が低下す
る。
(5) When the step gear G7 and the helical gear G8 are integrally molded, different gears 21, 22 or 31, 32 are formed.
When the material protrudes from the mating surface of the gear, the accuracy of the gear deteriorates, and the function of the gear that transmits the driving force also deteriorates.

【0018】本発明は上記問題に鑑みてなされたもの
で、その目的とする処は、一体成形が可能となるととも
に、駆動力の伝達損失を最小限に抑えて噛み合い率を大
きくすることができる駆動歯車を提供することにある。
The present invention has been made in view of the above problems. The object of the present invention is to enable integral molding and to minimize the transmission loss of the driving force to increase the engagement rate. To provide a drive gear.

【0019】[0019]

【課題を解決するための手段】上記目的を達成すべく本
発明は、2枚の歯車の間に、これら2枚の歯車の歯元円
直径の小さい方の値よりも小さな直径の隙間を形成して
一体成形によって駆動歯車を得るようにしたことをその
特徴とする。
In order to achieve the above object, the present invention forms a gap between two gears having a diameter smaller than the smaller value of the diameter of the root circle of these two gears. The feature is that the drive gear is obtained by integral molding.

【0020】[0020]

【作用】本発明によれば、2枚の歯車の間に隙間を形成
したため、一体成形時の素材のはみ出しが防がれ、当該
駆動歯車の一体成形が可能となる。
According to the present invention, since the gap is formed between the two gears, it is possible to prevent the material from protruding during the integral molding and to integrally mold the drive gear.

【0021】又、2枚の歯車の組み合せにより、駆動力
の伝達損失を最小限に抑えて噛み合い率を大きくするこ
とも可能となる。
Also, by combining two gears, it is possible to minimize the transmission loss of the driving force and increase the meshing ratio.

【0022】[0022]

【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0023】<第1実施例>図1は本発明の第1実施例
に係る駆動歯車の斜視図である。
<First Embodiment> FIG. 1 is a perspective view of a drive gear according to a first embodiment of the present invention.

【0024】本実施例に係る駆動歯車G1は一体成形品
であって、これは主たる駆動を行なう平歯車1と、該平
歯車1の歯の噛み合いが次の歯へ移動して行くときに発
生する法線荷重の変動を抑えるための補助用平歯車2と
で構成されており、両平歯車1,2の間には、該平歯車
1,2の歯元円直径の小さい方の値よりも小さな直径の
隙間3が形成されている。
The drive gear G1 according to the present embodiment is an integrally molded product, which occurs when the spur gear 1 that performs the main drive and the meshing of the teeth of the spur gear 1 move to the next tooth. It is composed of an auxiliary spur gear 2 for suppressing the fluctuation of the normal load, and between the spur gears 1 and 2 is smaller than the smaller value of the root diameter of the spur gears 1 and 2. A gap 3 having a small diameter is formed.

【0025】而して、駆動歯車G1の成形は、図2に示
すように平歯車1の形状1’を金型15の片面に彫り込
み、同様に補助用平歯車2の形状2’を不図示の金型の
面に彫り込んで行なうが、例えば、図示のように平歯車
1の金型15側に、前記隙間3の形状3’が彫り込まれ
た2分割のスライド板16a,16bを設け、このスラ
イド板16a,16bによって歯車2との間に隙間3を
形成することでお互いの歯車1,2からの素材のはみ出
しの影響を無くすことができ、当該駆動歯車G1の一体
成形が可能となる。尚、図2ではスライド板16a,1
6bを平歯車1の金型15側に設けた例を示したが、ス
ライド板16a,16bは補助用平歯車2の金型側に設
けても良い。
In order to form the driving gear G1, the shape 1'of the spur gear 1 is engraved on one side of the mold 15 as shown in FIG. 2, and the shape 2'of the auxiliary spur gear 2 is likewise not shown. This is carried out by engraving on the surface of the die of, for example, as shown in the figure, on the die 15 side of the spur gear 1, two slide plates 16a, 16b in which the shape 3'of the gap 3 is engraved are provided. By forming the gap 3 with the gear 2 by the slide plates 16a and 16b, it is possible to eliminate the influence of the protrusion of the material from the gears 1 and 2, and it is possible to integrally form the drive gear G1. In FIG. 2, the slide plates 16a, 1
Although the example in which 6b is provided on the mold 15 side of the spur gear 1 is shown, the slide plates 16a and 16b may be provided on the mold side of the auxiliary spur gear 2.

【0026】ここで、駆動歯車G1における法線荷重の
変動を図3及び図4を用いて説明する。
Now, the fluctuation of the normal load in the driving gear G1 will be described with reference to FIGS.

【0027】図3は通常の平歯車における1組当りの歯
面に加わる法線荷重の変動を表わしたものであり、同図
において、噛み合い長さを線分E12 とし、点E1
(噛み合い開始点)及び点E2 (噛み合い終了点)から
それぞれ法線ピッチ分だけ隔たった位置を点B1 、点B
2 とする。
FIG. 3 shows the fluctuation of the normal load applied to the tooth surface per set in an ordinary spur gear. In the figure, the mesh length is a line segment E 1 E 2 , and the point E 1
Positions separated by a normal pitch from the (meshing start point) and the point E 2 (meshing end point) are points B 1 and B.
Set to 2 .

【0028】而して、歯の噛み合いが点B1 〜点B2
範囲で行なわれると、隣りの歯はこの噛み合いから外れ
て実際には噛み合わないことになるため、点E1 〜点B
2 と点B1 〜点E2 の範囲は2組の歯の噛み合い範囲と
なる。
When the teeth are meshed in the range from point B 1 to point B 2 , the adjacent teeth deviate from this mesh and do not actually mesh, and therefore points E 1 to B
The range between 2 and point B 1 to point E 2 is the meshing range of two sets of teeth.

【0029】斯かる平歯車の場合、駆動力の伝達に必要
な歯面における法線荷重をPとすると、該法線荷重Pは
図示のように50%の変動を繰り返すことになる。
In the case of such a spur gear, when the normal load on the tooth surface required for transmitting the driving force is P, the normal load P repeats 50% fluctuation as shown in the figure.

【0030】これに対し、図4は本実施例に係る駆動歯
車G1の1組当りの歯面に加わる法線荷重Pの変動を表
わしたものであり、該駆動歯車G1は平歯車1に対して
位相を1/2ピッチずらした補助用平歯車2を用いたた
め、図3に示す通常の平歯車のメカニズムと異なり、平
歯車1の点E1 〜点E2 の噛み合いに補助用平歯車2の
点E1 ’〜点E2 ’の噛み合いが合成される。従って、
該駆動歯車G1は常に3組乃至4組の歯面で駆動力を伝
達することとなり、これにより法線荷重Pの変動が約8
%に抑えられた。
On the other hand, FIG. 4 shows the fluctuation of the normal load P applied to the tooth surface per set of the drive gear G1 according to the present embodiment. Since the auxiliary spur gear 2 whose phase is shifted by 1/2 pitch is used, unlike the mechanism of the ordinary spur gear shown in FIG. 3, the auxiliary spur gear 2 is engaged in meshing between points E 1 and E 2 of the spur gear 1. meshing of the points E 1 '~ point E 2' are combined. Therefore,
The driving gear G1 always transmits the driving force by three to four sets of tooth flanks, which results in a variation of the normal load P of about 8
It was suppressed to%.

【0031】而して、本実施例によれば、次の効果が得
られる。
According to this embodiment, the following effects can be obtained.

【0032】(1)駆動歯車G1の実質の噛み合い率が
向上することで法線荷重の変動が減少する。
(1) Since the substantial meshing ratio of the drive gear G1 is improved, the fluctuation of the normal load is reduced.

【0033】(2)駆動歯車G1の一体成形が可能にな
ったことで通常の平歯車と同じ製造コストで該駆動歯車
G1を製作することができる。
(2) Since the drive gear G1 can be integrally molded, the drive gear G1 can be manufactured at the same manufacturing cost as a normal spur gear.

【0034】<第2実施例>次に、本発明の第2実施例
を図5及び図6に基づいて説明する。
<Second Embodiment> Next, a second embodiment of the present invention will be described with reference to FIGS.

【0035】図5は本実施例に係る駆動歯車G2の斜視
図であり、同図において、4は主たる駆動を行なう平歯
車、5は平歯車4の補助用平歯車であって、これはモジ
ュールを歯車4のモジュールの2倍、3倍といった整数
倍にした歯車を歯の噛み合う組数が一番多くなる位相に
合わせて成形して得られる。
FIG. 5 is a perspective view of the drive gear G2 according to the present embodiment. In FIG. 5, reference numeral 4 is a spur gear for main driving, and 5 is an auxiliary spur gear for the spur gear 4, which is a module. Is obtained by molding a gear that is an integral multiple of twice or three times as large as the module of the gear 4 in accordance with the phase in which the number of sets in which teeth mesh with each other is largest.

【0036】而して、本実施例に係る駆動歯車G2も前
記第1実施例に係る駆動歯車G1と同様に一体成形さ
れ、両平歯車4,5の間には、該平歯車4,5の歯元円
直径の小さい方の値よりも小さな直径の隙間6が形成さ
れている。
Thus, the drive gear G2 according to the present embodiment is integrally formed in the same manner as the drive gear G1 according to the first embodiment, and the spur gears 4, 5 are located between the spur gears 4, 5. A gap 6 having a diameter smaller than the smaller value of the root circle diameter is formed.

【0037】図6は補助用平歯車5のモジュールを平歯
車4のそれの2倍にし、1歯飛びに位相を合わせて構成
される駆動歯車G2の1組の当りの歯面に加わる法線荷
重Pの変動を表わしたものである。該駆動歯車G2の基
本的なメカニズムは図4に示した駆動歯車G1のそれと
同じであるが、平歯車4と補助用平歯車5の歯数は上述
の整数値を公約数に持たなければならない。
FIG. 6 shows a normal line applied to the tooth surface of one set of the driving gear G2 which is configured by doubling the module of the auxiliary spur gear 5 to that of the spur gear 4 and matching the phase with one tooth jump. This shows the variation of the load P. The basic mechanism of the drive gear G2 is the same as that of the drive gear G1 shown in FIG. 4, but the number of teeth of the spur gear 4 and the auxiliary spur gear 5 must have the above integer value as a common divisor. .

【0038】而して、本実施例によれば、前記第1実施
例での前記(1),(2)の効果に加え、次の効果が得
られる。
Thus, according to this embodiment, the following effects can be obtained in addition to the effects (1) and (2) in the first embodiment.

【0039】(3)一般に歯元の曲げ強度はモジュール
に比例するため、補助用平歯車5の歯も曲げ強度は平歯
車4の整数倍となり、荷重を平歯車4と補助用平歯車5
に均一に分散すれば、補助用平歯車5の歯幅を従来の1
/整数にするこ とが可能となり、全歯幅を薄くする
ことができる。
(3) Generally, the bending strength of the tooth root is proportional to the module, so the bending strength of the teeth of the auxiliary spur gear 5 is also an integral multiple of the spur gear 4, and the load is the spur gear 4 and the auxiliary spur gear 5.
If evenly distributed, the tooth width of the auxiliary spur gear 5 will be
/ It becomes possible to make it an integer, and it is possible to reduce the total tooth width.

【0040】<第3実施例>次に、本発明の第3実施例
を図7及び図8に基づいて説明する。
<Third Embodiment> Next, a third embodiment of the present invention will be described with reference to FIGS.

【0041】図7は本実施例に係る駆動歯車G3の斜視
図であり、同図において、7は主たる駆動を行なう平歯
車、8は平歯車7の補助用歯車であって、平歯車7のモ
ジュールに軸直角モジュールが合うように作られたはす
ば歯車である。
FIG. 7 is a perspective view of a drive gear G3 according to the present embodiment. In FIG. 7, reference numeral 7 is a spur gear for main driving, 8 is an auxiliary gear for the spur gear 7, and It is a helical gear made so that the module fits the module at right angles to the axis.

【0042】而して、本実施例に係る駆動歯車G3も前
記第1及び第2実施例に係る駆動歯車G1,G2と同様
に一体成形され、両歯車7,8の間には、該平歯車7,
8の歯元円直径の小さい方の値よりも小さな直径の隙間
9が形成されている。
The drive gear G3 according to the present embodiment is also integrally formed in the same manner as the drive gears G1 and G2 according to the first and second embodiments. Gear 7,
A gap 9 having a diameter smaller than the smaller value of the root circle diameter of 8 is formed.

【0043】ここで、噛み合い率ε≧2.0となるはす
ば歯車8と平歯車7で駆動歯車G3を構成したとき、該
駆動歯車G3の1組当りの歯面に加わる法線荷重Pの変
動を図8に示す。該駆動歯車G3の基本的なメカニズム
は図4に示した駆動歯車G1のそれと同じであるが、本
実施例によれば、次の効果が得られる。
Here, when the drive gear G3 is constituted by the helical gear 8 and the spur gear 7 with the engagement ratio ε ≧ 2.0, the normal load P applied to the tooth surface of each set of the drive gear G3 is P. FIG. 8 shows the fluctuation of Although the basic mechanism of the drive gear G3 is the same as that of the drive gear G1 shown in FIG. 4, according to this embodiment, the following effects can be obtained.

【0044】(4)はすば歯車8側が常に2組以上で噛
み合うことが可能なため、常に噛み合い率ε≧3.0と
なり、安定した駆動力の伝達ができる。
(4) Since the helical gear 8 side can always mesh with two or more sets, the meshing ratio ε ≧ 3.0, so that stable driving force can be transmitted.

【0045】<第4実施例>次に、本発明の第4実施例
を図9及び図10に基づいて説明する。
<Fourth Embodiment> Next, a fourth embodiment of the present invention will be described with reference to FIGS. 9 and 10.

【0046】図9は本実施例に係る駆動歯車G4の斜視
図であり、該駆動歯車G4は、同じ大きさで方向が正反
対のねじれ角を持つはすば歯車10,11で構成されて
いる。
FIG. 9 is a perspective view of a drive gear G4 according to this embodiment. The drive gear G4 is composed of helical gears 10 and 11 having the same size but having opposite torsion angles. .

【0047】尚、本実施例に係る駆動歯車G4も前記第
1乃至第3実施例に係る駆動歯車G1,G2,G3と同
様に一体成形され、両はすば歯車10,11の間には、
該はすば歯車10,11の歯元円直径の小さい方の値よ
りも小さな直径の隙間12が形成されている。
The drive gear G4 according to the present embodiment is integrally molded in the same manner as the drive gears G1, G2 and G3 according to the first to third embodiments, and between the helical gears 10 and 11 is formed. ,
A gap 12 having a diameter smaller than the smaller value of the root diameter of the helical gears 10 and 11 is formed.

【0048】而して、本実施例に係る駆動歯車G4によ
れば、はすば歯車10,11のねじれ角の方向が互いに
反対であるため、図10に示すように、駆動力の伝達損
失となるスラスト力f1 及びf2 が互いに打ち消され
る。
Thus, according to the drive gear G4 of this embodiment, the helical gears 10 and 11 have opposite torsion angles, so that as shown in FIG. Thrust forces f 1 and f 2 are canceled out by each other.

【0049】従って、本実施例によれば、前記(4)に
対し、次の効果が追加される。
Therefore, according to this embodiment, the following effect is added to the above (4).

【0050】(5)はすば歯車を用いた場合に特有のス
ラスト力による駆動力の伝達損失を解消することができ
る。
(5) The transmission loss of the driving force due to the thrust force peculiar to the case of using the helical gear can be eliminated.

【0051】[0051]

【発明の効果】以上の説明で明らかな如く、本発明によ
れば、2枚の歯車の間に、これら2枚の歯車の歯元円直
径の小さい方の値よりも小さな直径の隙間を形成して一
体成形によって駆動歯車を得るようにしたため、当該駆
動歯車の一体成形が可能となるとともに、駆動力の伝達
損失を最小限に抑えて噛み合い率を大きくすることがで
きるという効果が得られる。
As is apparent from the above description, according to the present invention, a gap having a diameter smaller than the smaller value of the root circle diameter of these two gears is formed between the two gears. Since the drive gear is obtained by integral molding, the drive gear can be integrally molded, and the transmission loss of the driving force can be minimized to increase the meshing ratio.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る駆動歯車の斜視図で
ある。
FIG. 1 is a perspective view of a drive gear according to a first embodiment of the present invention.

【図2】本発明の第1実施例に係る駆動歯車の成形方法
を示す金型の斜視図である。
FIG. 2 is a perspective view of a mold showing a method for molding a drive gear according to the first embodiment of the present invention.

【図3】従来の平歯車の歯面に作用する法線荷重の変動
図である。
FIG. 3 is a variation diagram of a normal load acting on a tooth surface of a conventional spur gear.

【図4】本発明の第1実施例に係る駆動歯車の歯面に作
用する法線荷重の変動図である。
FIG. 4 is a variation diagram of a normal load acting on a tooth surface of the drive gear according to the first embodiment of the present invention.

【図5】本発明の第2実施例に係る駆動歯車の斜視図で
ある。
FIG. 5 is a perspective view of a drive gear according to a second embodiment of the present invention.

【図6】本発明の第2実施例に係る駆動歯車の歯面に作
用する法線荷重の変動図である。
FIG. 6 is a variation diagram of a normal load acting on a tooth surface of a drive gear according to a second embodiment of the present invention.

【図7】本発明の第3実施例に係る駆動歯車の斜視図で
ある。
FIG. 7 is a perspective view of a drive gear according to a third embodiment of the present invention.

【図8】本発明の第3実施例に係る駆動歯車の歯面に作
用する法線荷重の変動図である。
FIG. 8 is a variation diagram of a normal load acting on a tooth surface of a drive gear according to a third embodiment of the present invention.

【図9】本発明の第4実施例に係る駆動歯車の斜視図で
ある。
FIG. 9 is a perspective view of a drive gear according to a fourth embodiment of the present invention.

【図10】本発明の第4実施例に係る駆動歯車における
スラスト力のベクトル図である。
FIG. 10 is a vector diagram of thrust force in a drive gear according to a fourth embodiment of the present invention.

【図11】従来の平歯車の斜視図である。FIG. 11 is a perspective view of a conventional spur gear.

【図12】従来のはすば歯車の斜視図である。FIG. 12 is a perspective view of a conventional helical gear.

【図13】従来の段歯車の斜視図である。FIG. 13 is a perspective view of a conventional stepped gear.

【図14】従来のやまば歯車の斜視図である。FIG. 14 is a perspective view of a conventional helical gear.

【符号の説明】[Explanation of symbols]

G1〜G4 駆動歯車 1,4,7 平歯車 2,5 補助用平歯車 3,6,9,12 隙間 8 補助用はすば歯車 10,11 はすば歯車 G1 to G4 Drive gears 1, 4, 7 Spur gears 2, 5 Auxiliary spur gears 3, 6, 9, 12 Gap 8 Auxiliary helical gears 10, 11 Helical gears

フロントページの続き (72)発明者 高野 敏行 東京都大田区下丸子3丁目30番2号キヤノ ン株式会社内Front Page Continuation (72) Inventor Toshiyuki Takano 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 2枚の歯車の間に、これら2枚の歯車の
歯元円直径の小さい方の値よりも小さな直径の隙間を形
成して一体成形されることを特徴とする駆動歯車。
1. A drive gear which is integrally formed by forming a gap having a diameter smaller than the smaller value of the root diameters of the two gears between the two gears.
【請求項2】 前記2枚の歯車は、同じモジュールで位
相を互いに1/2ずらした歯車であることを特徴とする
請求項1記載の駆動歯車。
2. The drive gear according to claim 1, wherein the two gears are gears which are out of phase with each other in the same module.
【請求項3】 前記2枚の歯車は、モジュールが整数倍
で、且つ、それぞれの歯数がその整数値を公約数とした
関係を有する2種類の歯車であることを特徴とする請求
項1記載の駆動歯車。
3. The two gears are two types of gears, each module having an integral multiple, and the number of teeth of each of which is a common divisor. The drive gear described.
【請求項4】 前記2枚の歯車は、軸直角モジュールを
同じにしたねじれ角の異なる2種類の歯車であることを
特徴とする請求項1記載の駆動歯車。
4. The drive gear according to claim 1, wherein the two gears are two types of gears having the same axial right angle module but different twist angles.
【請求項5】 前記2枚の歯車は、同じねじれ角でねじ
れ方向が正反対の2種類の歯車であることを特徴とする
請求項1記載の駆動歯車。
5. The drive gear according to claim 1, wherein the two gears are two types of gears having the same helix angle and opposite twist directions.
JP5232952A 1993-09-20 1993-09-20 Drive gear Pending JPH0783314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5232952A JPH0783314A (en) 1993-09-20 1993-09-20 Drive gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5232952A JPH0783314A (en) 1993-09-20 1993-09-20 Drive gear

Publications (1)

Publication Number Publication Date
JPH0783314A true JPH0783314A (en) 1995-03-28

Family

ID=16947440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5232952A Pending JPH0783314A (en) 1993-09-20 1993-09-20 Drive gear

Country Status (1)

Country Link
JP (1) JPH0783314A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19623809A1 (en) * 1996-06-14 1997-12-18 Siemens Ag Spur wheel for gas turbine drive
DE10105835C2 (en) * 2001-02-07 2003-12-24 Karl-Heinz Goebel transmission
JP2004346989A (en) * 2003-05-21 2004-12-09 Chiba Dies:Kk Gear
US7151717B2 (en) 2003-06-30 2006-12-19 Brother Kogyo Kabushiki Kaisha Recording medium transport device and image forming apparatus
JP2008240880A (en) * 2007-03-27 2008-10-09 Enplas Corp Resin-made gear
JP2009052743A (en) * 2007-08-27 2009-03-12 Ford Global Technologies Llc Planetary gear train
KR20190068416A (en) 2017-12-08 2019-06-18 나부테스코 가부시키가이샤 Gear unit and method of assembling the same
US20200240503A1 (en) * 2019-01-28 2020-07-30 Ims Gear Se & Co. Kgaa Gear for use in a gear transmission, gear pairing of a gear transmission and gear transmission with such a gear pair
WO2022045373A1 (en) * 2020-08-31 2022-03-03 キヤノン株式会社 Photoreceptor unit, cartridge, and electrophotographic image forming device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181050U (en) * 1982-05-28 1983-12-03 東洋電機製造株式会社 Yamaba small gear
JPS6286453U (en) * 1985-11-19 1987-06-02
JPH03107658A (en) * 1989-09-21 1991-05-08 Sumitomo Special Metals Co Ltd Magnetic gear
JPH0560204A (en) * 1991-08-27 1993-03-09 Canon Inc Stepped intermediate gear

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181050U (en) * 1982-05-28 1983-12-03 東洋電機製造株式会社 Yamaba small gear
JPS6286453U (en) * 1985-11-19 1987-06-02
JPH03107658A (en) * 1989-09-21 1991-05-08 Sumitomo Special Metals Co Ltd Magnetic gear
JPH0560204A (en) * 1991-08-27 1993-03-09 Canon Inc Stepped intermediate gear

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19623809A1 (en) * 1996-06-14 1997-12-18 Siemens Ag Spur wheel for gas turbine drive
DE10105835C2 (en) * 2001-02-07 2003-12-24 Karl-Heinz Goebel transmission
JP2004346989A (en) * 2003-05-21 2004-12-09 Chiba Dies:Kk Gear
JP4508552B2 (en) * 2003-05-21 2010-07-21 株式会社チバダイス gear
US7151717B2 (en) 2003-06-30 2006-12-19 Brother Kogyo Kabushiki Kaisha Recording medium transport device and image forming apparatus
JP2008240880A (en) * 2007-03-27 2008-10-09 Enplas Corp Resin-made gear
JP2009052743A (en) * 2007-08-27 2009-03-12 Ford Global Technologies Llc Planetary gear train
KR20190068416A (en) 2017-12-08 2019-06-18 나부테스코 가부시키가이샤 Gear unit and method of assembling the same
US20200240503A1 (en) * 2019-01-28 2020-07-30 Ims Gear Se & Co. Kgaa Gear for use in a gear transmission, gear pairing of a gear transmission and gear transmission with such a gear pair
US11927257B2 (en) * 2019-01-28 2024-03-12 IMS Gear SE &Co. KGaA Gear for use in a gear transmission, gear pairing of a gear transmission and gear transmission with such a gear pair
WO2022045373A1 (en) * 2020-08-31 2022-03-03 キヤノン株式会社 Photoreceptor unit, cartridge, and electrophotographic image forming device

Similar Documents

Publication Publication Date Title
US4651588A (en) Low-excitation gearing
WO1988003239A1 (en) Gear having small relative curvature at contact point
JPH0783314A (en) Drive gear
US8555505B2 (en) Maximum meshable tooth profile having non-positive deflection in flat wave gear device
EP0323858A2 (en) Differential planet gear unit
EP0501522B1 (en) Wave gear drive
JP5734102B2 (en) Wave gear device having a tapered flexible external gear
US6101892A (en) Gear form constructions
US4850237A (en) Tooth profile in meshing mechanism
EP0016180B1 (en) High-torque low-noise gearing
CN110848332B (en) Intersecting-axis non-circular-face gear transmission mechanism
JP2644097B2 (en) Transmission series
JP2001271912A (en) Gear and gear device
JPH08312755A (en) Gear pair with parallel axes
JPS63259249A (en) Motion transmission gear by external gear
AU634253B2 (en) High-efficiency gear transmission
JPH08285048A (en) Three-dimensional tooth surface modification structure in helical/double-helical gear
JPH0215743B2 (en)
EP1694986A2 (en) Gear tooth profile curvature
JPH1194052A (en) Gear
JPH0780234B2 (en) Drive transmission device for twin screw extruder
JP3127757B2 (en) Gears and gear cutting tools
JPH05332404A (en) Flexure mesh type gear meshing structure
CA2621561A1 (en) Conical gear with connecting toothing
KR100438684B1 (en) Harmonic drive