JPH0783140B2 - Group 2-6 compound semiconductor p-type electrode structure - Google Patents

Group 2-6 compound semiconductor p-type electrode structure

Info

Publication number
JPH0783140B2
JPH0783140B2 JP24966992A JP24966992A JPH0783140B2 JP H0783140 B2 JPH0783140 B2 JP H0783140B2 JP 24966992 A JP24966992 A JP 24966992A JP 24966992 A JP24966992 A JP 24966992A JP H0783140 B2 JPH0783140 B2 JP H0783140B2
Authority
JP
Japan
Prior art keywords
type
semiconductor layer
electrode
semiconductor
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24966992A
Other languages
Japanese (ja)
Other versions
JPH06104485A (en
Inventor
岩田普
鈴木徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP24966992A priority Critical patent/JPH0783140B2/en
Publication of JPH06104485A publication Critical patent/JPH06104485A/en
Publication of JPH0783140B2 publication Critical patent/JPH0783140B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Led Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、p形2−6族化合物半
導体層を有する半導体装置、特に青色発光素子、発光ダ
イオード、半導体レーザに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a p-type 2-6 group compound semiconductor layer, and more particularly to a blue light emitting element, a light emitting diode and a semiconductor laser.

【0002】[0002]

【従来の技術】従来の2−6族化合物半導体装置の例と
して、特開平1−296687号公報、特開昭62−8
8329号公報、特開昭61−46031号公報、特開
昭62−172766号公報等があるが、良好な電極構
造をもつ半導体装置は実現されていない。
2. Description of the Related Art As examples of conventional 2-6 group compound semiconductor devices, JP-A-1-296687 and JP-A-62-8 are known.
Although there are 8329, JP 61-46031, and JP 62-172766, a semiconductor device having a good electrode structure has not been realized.

【0003】また、イオウ(S)またはセレン(Se)
を含む2−6族化合物半導体材料(ZnSe、ZnS、
ZnSSe、ZnCdSSe等)は、禁制帯幅が大きく
青色発光素子の材料として用いられている。ホールを注
入するためのp電極は、p形ZnSe上にAuを蒸着し
た構造である。例えばアプライド フィジックス レタ
ーズ[Applied Physics Letter
s]第59巻1272項 1991年参照。
Further, sulfur (S) or selenium (Se)
2-6 group compound semiconductor material containing (ZnSe, ZnS,
ZnSSe, ZnCdSSe, etc.) have a large forbidden band width and are used as materials for blue light emitting devices. The p electrode for injecting holes has a structure in which Au is vapor-deposited on p-type ZnSe. For example, Applied Physics Letters [Applied Physics Letter]
s] Vol. 59, para. 1272, 1991.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、イオウ
またはセレンを含む2−6族化合物半導体材料の価電子
帯端のエネルギー位置が金属のフェルミレベルよりかな
り低いため、このような構造ではショットキー性の電極
になってしまい、抵抗が大きく立ち上がり電圧が高いと
いう問題を有していた。
However, since the energy position of the valence band edge of the 2-6 group compound semiconductor material containing sulfur or selenium is much lower than the Fermi level of the metal, the Schottky property of such a structure is not improved. There is a problem that it becomes an electrode and has a large resistance and a high rising voltage.

【0005】本発明の目的は、p形2−6族化合物半導
体の電極の抵抗の小さくすることにある。
An object of the present invention is to reduce the resistance of an electrode of a p-type 2-6 group compound semiconductor.

【0006】[0006]

【課題を解決するための手段】本発明のp形電極構造
は、イオウ(S)またはセレン(Se)を含むp形2−
6族化合物半導体材料からなるp形2−6半導体層を有
する半導体装置において、前記p形2−6半導体層に隣
接して、これと格子長が等しいかまたは格子長が異なる
臨界膜厚以下のp形Inx Gay Alz P(x+y+z
=1、0≦x<1、0≦y≦1、0≦z≦1)半導体ま
たは超格子からなるp形3−5半導体層を有し、前記p
形3−5半導体層上に直接または第二p形3−5半導体
層を介してp電極を有し、前記p形3−5半導体層の価
電子帯端のエネルギー位置が前記p電極部で高く、前記
p形2−6半導体層に近着くにつれ連続的にまたは階段
状に低くなっており、前記第二p形3−5半導体層が前
記p形3−5半導体層の価電子帯端のエネルギー位置よ
りも価電子帯端が高いp形3−5族化合物半導体層一層
以上からなる事を特徴とする。
The p-type electrode structure of the present invention comprises a p-type 2-containing sulfur (S) or selenium (Se).
In a semiconductor device having a p-type 2-6 semiconductor layer made of a Group 6 compound semiconductor material, adjacent to the p-type 2-6 semiconductor layer, the lattice length is equal to or different from the critical thickness p-type In x Ga y Al z P ( x + y + z
= 1, 0 ≦ x <1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1) p-type 3-5 semiconductor layer made of semiconductor or superlattice,
A p-electrode is provided directly on the type 3-5 semiconductor layer or via a second p-type 3-5 semiconductor layer, and the energy position of the valence band edge of the p-type 3-5 semiconductor layer is at the p-electrode part. High, and decreases continuously or stepwise as it approaches the p-type 2-6 semiconductor layer, wherein the second p-type 3-5 semiconductor layer is a valence band edge of the p-type 3-5 semiconductor layer. The p-type 3-5 group compound semiconductor layer has one or more higher valence band edges than the energy position of 1.

【0007】[0007]

【作用】イオウまたはセレンを含む2−6族化合物半導
体材料の価電子帯端のエネルギー位置は金属のフェルミ
レベルより1eV以上低い。このため、2−6半導体に
ホールを注入しようとすると、そのヘテロ界面に1eV
以上の障壁が存在し、抵抗が大きく、立ち上がり電圧は
20V以上である。また、半導体基板として広く用いら
れているp形GaAs上にp形2−6半導体層を形成
し、GaAs層よりホールを注入しようとすると、やは
り2−6半導体とGaAsの価電子帯端のエネルギー位
置の違いにより1eV程度の障壁が存在し、抵抗が大き
く、立ち上がり電圧が20V以上となる。
The energy position of the valence band edge of the 2-6 group compound semiconductor material containing sulfur or selenium is lower than the Fermi level of metal by 1 eV or more. Therefore, when holes are injected into the 2-6 semiconductor, 1 eV is applied to the hetero interface.
The above barrier exists, the resistance is large, and the rising voltage is 20 V or more. In addition, when a p-type 2-6 semiconductor layer is formed on p-type GaAs widely used as a semiconductor substrate and holes are to be injected from the GaAs layer, the energy at the valence band edge of the 2-6 semiconductor and GaAs is also reduced. There is a barrier of about 1 eV due to the difference in position, the resistance is large, and the rising voltage is 20 V or more.

【0008】InGaAlP混晶半導体の価電子帯端の
エネルギー位置は金属のフェルミレベルとイオウまたは
セレンを含む2−6族化合物半導体の価電子帯端の中間
にある。InGaAlP半導体の組成を制御して、価電
子帯端の位置を金属との界面では金属のフェルミレベル
にほぼ等しくし、2−6半導体層に近着くにつれ低くし
ていくことができる。2−6半導体との界面での障壁は
大幅に低減され、ホールの注入は容易となる。また、I
nGaAlP混晶では、GaとAlの組成を変えること
により、格子長を変えず価電子帯端の位置を変化させる
ことができ、作製上も容易である。
The energy position of the valence band edge of the InGaAlP mixed crystal semiconductor is between the Fermi level of the metal and the valence band edge of the Group 2-6 compound semiconductor containing sulfur or selenium. By controlling the composition of the InGaAlP semiconductor, the position of the valence band edge can be made substantially equal to the Fermi level of the metal at the interface with the metal, and can be lowered as it approaches the 2-6 semiconductor layer. The barrier at the interface with the 2-6 semiconductor is greatly reduced, and holes are easily injected. Also, I
In the nGaAlP mixed crystal, the position of the valence band edge can be changed without changing the lattice length by changing the composition of Ga and Al, which is easy to manufacture.

【0009】[0009]

【実施例】【Example】

(実施例1)本発明について図面を参照して説明する。
図1は、第1の発明の一実施例を示す断面図である。
(Embodiment 1) The present invention will be described with reference to the drawings.
FIG. 1 is a sectional view showing an embodiment of the first invention.

【0010】n形GaAsからなる基板10上にCl添
加したZnS0 . 0 7 Se0 . 9 3からなるn形2−6
半導体層11(厚さ1μm、n=1×101 8
- 3 )とN添加したZnS0 . 0 7 Se0 . 9 3 から
なるp形2−6半導体層12(厚さ1μm、p=5x1
1 7 cm- 3 )を分子線エピタキシー(MBE)法に
より成長し、Znを添加したIn0 . 5 Al0 . 5
(厚さ100nm、p=1x101 8 cm- 3 )とIn
0 . 5 Ga0 . 5 P(厚さ100nm、p=1×10
19 cm- 3 )からなるp形3−5半導体層13をガス
ソースMBE法により成長し、AuZnからなるp電極
14(厚さ300nm)、AuGeNiからなるn電極
15(厚さ300nm)を真空蒸着法により形成したの
ち、300゜Cで10分加熱して発光ダイオードを作製
した。p形2−6半導体層12とp形3−5半導体層1
3の格子長は等しく、格子欠陥の無い良好な半導体層が
形成された。
[0010] ZnS 0 that Cl was added on the substrate 10 made of n-type GaAs. 0 7 Se 0. 9 3 n -type 2-6 consisting
Semiconductor layer 11 (thickness 1 μm, n = 1 × 10 18 c
m -.. 3) and N ZnS 0 was added 0 7 Se 0 9 3 p-type 2-6 semiconductor layer 12 made of (thickness 1 [mu] m, p = 5x1
0 1 7 cm -.. 3 ) was grown by molecular beam epitaxy (MBE) method, an In 0 addition of Zn 5 Al 0 5 P
(Thickness 100 nm, p = 1 × 10 18 cm −3 ) and In
0. 5 Ga 0. 5 P ( thickness 100nm, p = 1 × 10
The p-type 3-5 semiconductor layer 13 made of 19 cm −3 ) is grown by the gas source MBE method, and the p-electrode 14 made of AuZn (thickness 300 nm) and the n-electrode 15 made of AuGeNi (thickness 300 nm) are vacuum-deposited. After being formed by the method, a light emitting diode was manufactured by heating at 300 ° C. for 10 minutes. p-type 2-6 semiconductor layer 12 and p-type 3-5 semiconductor layer 1
The lattice lengths of 3 were equal, and a good semiconductor layer having no lattice defect was formed.

【0011】p形3−5半導体層13の導入によりp−
n接合順方向に電流を流すために必要な印加電圧は5V
と低くなり、良好な発光特性が得られた。これは、p形
2−6半導体層12とp形3−5半導体層13との界
面、p形3−5半導体層13とp電極14との界面での
障壁が小さくなったためである。
By introducing the p-type 3-5 semiconductor layer 13, p-
The applied voltage required to pass a current in the forward direction of the n-junction is 5V
It was low, and good emission characteristics were obtained. This is because the barriers at the interface between the p-type 2-6 semiconductor layer 12 and the p-type 3-5 semiconductor layer 13 and the interface between the p-type 3-5 semiconductor layer 13 and the p-electrode 14 became smaller.

【0012】上述の実施例ではp形3−5半導体層とし
てp形2−6半導体層と格子長の等しい材料を用いた
が、これに限らず、Be添加In0 . 3 Ga0 . 7
(厚さ5nm、p=1×101 9 cm- 3 )など格子長
がp形2−6半導体層と異なる臨界膜厚以下のInGa
AlP混晶を用いてもよい。
[0012] While using the same material for the p-type 2-6 semiconductor layer and the grating length as p-type 3-5 semiconductor layer in the above-described embodiment is not limited thereto, Be added In 0. 3 Ga 0. 7 P
(Thickness 5 nm, p = 1 × 10 19 cm −3 ) such as InGa having a lattice length equal to or less than the critical film thickness different from that of the p-type 2-6 semiconductor layer.
An AlP mixed crystal may be used.

【0013】(実施例2)図2は、第2の発明の一実施
例を示す断面図である。
(Embodiment 2) FIG. 2 is a sectional view showing an embodiment of the second invention.

【0014】n形In0 . 0 4 Ga0 . 9 6 Asからな
る基板20上に、Cl添加したZnSeからなるn形2
−6半導体層21(厚さ1μm、n=1×101 8 cm
- 3)とZn0 . 8 Cd0 . 2 Seからなる活性層22
(厚さ10nm)、N添加したZnSeからなるp形2
−6半導体層23(厚さ1μm、p=5×101 7 cm
- 3 )を分子線エピタキシー(MBE)法により成長
し、Beを添加したIn0 . 5 4 Al0 . 4 6 P/In
0 . 5 4 Ga0 . 4 6 P超格子からなるp形3−5半導
体層24をガスソースMBE法により成長し、AuZn
からなるp電極25(厚さ300nm)、AuGeNi
からなるn電極26(厚さ300nm)を真空蒸着法に
より形成して発光ダイオードを作製した。p形3−5半
導体層24の超格子構造は、In0 . 5 4 Al0 . 4 6
P層の厚さが3nmと一定で、In0 . 5 4 Ga
0 . 4 6 P層の厚さがp形2−6半導体層23との界面
で0.5nmであり、p電極25に近着くにつれ一周期
毎に0.5nmづつ広くなっており、p電極25との界
面で20nmである。
[0014] n-type In 0. 0 4 Ga 0. 9 6 on the substrate 20 made of As, n-type 2 consisting of Cl added the ZnSe
-6 semiconductor layer 21 (thickness 1 μm, n = 1 × 10 18 cm
-.. 3) and Zn 0 8 Cd 0 consisting 2 Se active layer 22
(Thickness 10 nm), p-type 2 consisting of N-doped ZnSe
-6 semiconductor layer 23 (thickness 1 μm, p = 5 × 10 17 cm
-3 ) was grown by the molecular beam epitaxy (MBE) method and Be-added In 0.54 Al 0.46 P / In
0. 5 4 Ga 0 a. 4 6 P p-type 3-5 semiconductor layer 24 made of super lattice grown by gas source MBE, AuZn
P-electrode 25 (thickness 300 nm) made of AuGeNi
An n-electrode 26 (thickness: 300 nm) composed of was formed by a vacuum vapor deposition method to produce a light emitting diode. The superlattice structure of the p-type 3-5 semiconductor layer 24 is In 0.54 Al 0.46
A thickness of P layer is 3nm constant, In 0. 5 4 Ga
0.4 thickness of 6 P layer is 0.5nm at the interface between the p-type 2-6 semiconductor layer 23, and wider 0.5nm increments in each cycle as the proximal get to the p-electrode 25, the p-electrode It is 20 nm at the interface with 25.

【0015】p−n接合順方向に電流を流すために必要
な印加電圧は4Vと低くなり、強い青色発光が得られ
た。これは、p形3−5半導体層24の価電子帯端が連
続的に変化して、p形2−6半導体層23に近着くにつ
れ低くなっていて、ホールが容易に注入されるためであ
る。
The applied voltage required to pass a current in the forward direction of the pn junction was as low as 4 V, and strong blue light emission was obtained. This is because the valence band edge of the p-type 3-5 semiconductor layer 24 continuously changes and becomes lower as it approaches the p-type 2-6 semiconductor layer 23, and holes are easily injected. is there.

【0016】上述の実施例ではp形3−5半導体層とし
てp形2−6半導体層と格子長の等しい材料を用いた
が、これに限らず、Beを添加したIn0 . 5 Al
0 . 5 P/In0 . 5 8 Ga0 . 4 2 P歪超格子等の格
子長がp形2−6半導体層と異なる臨界膜厚以下のIn
GaAlP超格子を用いてもよい。
In the above-mentioned embodiment, the p-type 3-5 semiconductor layer is made of a material having the same lattice length as that of the p-type 2-6 semiconductor layer. However, the material is not limited to this, and In 0.5 Al doped with Be can be used .
0. 5 P / In 0. 5 8 Ga 0. 4 2 P strained superlattice such as a grating length is below the critical thickness which is different from the p-type 2-6 semiconductor layer In
A GaAlP superlattice may be used.

【0017】(実施例3)図3は、第3の発明の一実施
例を示す断面図である。
(Embodiment 3) FIG. 3 is a sectional view showing an embodiment of the third invention.

【0018】p形GaAs基板からなる第二p形3−5
半導体層30(厚さ350μm)上に、Beを添加した
In0 . 5 Ga0 . 5 P(厚さ100nm、p=1×1
19 cm- 3 )、In0 . 5 Ga0 . 2 5 Al
0 . 2 5 P(厚さ100nm、p=1×101 8 cm
- 3 )、In0 . 5 Al0 . 5 P(厚さ100nm、p
=1×101 8 cm- 3 )からなるp形3−5半導体層
31をガスソースMBE法により成長したのち、N添加
したZnSeからなるp形2−6半導体層32(厚さ2
μm、p=5×101 7 cm- 3 )、Zn0 . 8 Cd
0 . 2 Seからなる活性層33(厚さ10nm)、Cl
添加したZnSeからなるn形2−6半導体層34(厚
さ2μm、n=1×101 8 cm- 3 )とを分子線エピ
タキシー(MBE)法により成長し、Inからなるn電
極35(厚さ300nm)、AuZnからなるp電極3
6(厚さ300nm)を真空蒸着法により形成し、へき
開により反射面を形成して青色発光半導体レーザを作製
した。
Second p-type 3-5 made of p-type GaAs substrate
On the semiconductor layer 30 (thickness 350 .mu.m), In0 was added Be. 5 Ga 0. 5 P ( thickness 100nm, p = 1 × 1
0 19 cm -.. 3) , In 0 5 Ga 0 2 5 Al
0. 2 5 P (thickness 100nm, p = 1 × 10 1 8 cm
-.. 3), In 0 5 Al 0 5 P ( thickness 100 nm, p
= 1 × 10 18 cm −3 ), the p-type 3-5 semiconductor layer 31 is grown by the gas source MBE method, and then the p-type 2-6 semiconductor layer 32 (thickness: 2) made of N-doped ZnSe.
μm, p = 5 × 10 17 cm −3 ), Zn 0.8 Cd
0. The active layer 33 (thickness 10 nm) consisting of 2 Se, Cl
The n-type 2-6 semiconductor layer 34 (thickness 2 μm, n = 1 × 10 18 cm −3 ) made of ZnSe added was grown by the molecular beam epitaxy (MBE) method, and the n-electrode 35 made of In (thickness) was formed. P-electrode 3 made of AuZn)
6 (thickness 300 nm) was formed by a vacuum vapor deposition method, and a reflection surface was formed by cleavage to manufacture a blue light emitting semiconductor laser.

【0019】p電極36より注入されたホールは、第二
p形3−5半導体層30からp形3−5半導体層31を
介しp形2−6半導体層32に注入される。第二p形3
−5半導体層30の価電子帯端はp形2−6半導体層3
2に比べて高く、ホールは容易に注入される。立ち上が
り電圧は4Vと低く、室温でのレーザ発振が得られた。
The holes injected from the p-electrode 36 are injected from the second p-type 3-5 semiconductor layer 30 through the p-type 3-5 semiconductor layer 31 into the p-type 2-6 semiconductor layer 32. Second p-type 3
-5 The valence band edge of the semiconductor layer 30 is the p-type 2-6 semiconductor layer 3
Higher than 2, holes are easily injected. The rising voltage was as low as 4 V, and laser oscillation was obtained at room temperature.

【0020】上述の実施例では、第二p形3−5半導体
層としてp形GaAs層一層を用いたが、これに限ら
ず、価電子帯端がInGaAlP混晶よりも高いp形I
nPやp形InGaAsPなどの他のp形3−5半導体
材料や複数のp形3−5半導体層構造を用いてもよい。
In the above-mentioned embodiment, one p-type GaAs layer is used as the second p-type 3-5 semiconductor layer, but the present invention is not limited to this, and the p-type I whose valence band edge is higher than that of the InGaAlP mixed crystal.
Other p-type 3-5 semiconductor materials such as nP or p-type InGaAsP or multiple p-type 3-5 semiconductor layer structures may be used.

【0021】(実施例4)図4は、第4の発明の一実施
例を示す断面図である。
(Embodiment 4) FIG. 4 is a sectional view showing an embodiment of the fourth invention.

【0022】p形GaAs基板からなる第二p形3−5
半導体層40(厚さ350μm)上に、Beを添加した
In0 . 4 Al0 . 6 P/In0 . 6 Ga
( 0 . 4 - z ) Alz P歪超格子からなるp形3−5半
導体層41をガスソースMBE法により成長したのち、
N添加したZnSeからなるp形2−6半導体層42
(厚さ1μm、p=5×101 7 cm- 3 )、Cl添加
したZnSeからなるn形2−6半導体層43(厚さ1
μm、n=1×101 8 cm- 3 )とを分子線エピタキ
シー(MBE)法により成長し、Inからなるn電極4
4(厚さ300nm)、AuZnからなるp電極45
(厚さ300nm)を真空蒸着法により形成し、青色発
光ダイオードを作製した。p形3−5半導体層41の超
格子構造は、各層の厚さが1nmと一定で、In0 . 6
Ga( 0 . 4 - z ) Alz P層のAl組成zがp形2−
6半導体層42との界面で0.4であり、一周期毎に
0.02づつ減少して、第二p形3−5半導体層40と
の界面で零となっている。この構造では価電子帯端は連
続的に変化し、p形2−6半導体層42界面で低く、第
二p形3−5半導体層40界面で高くなっていて、ホー
ルは容易にp形2−6半導体層42へ注入される。
Second p-type 3-5 made of p-type GaAs substrate
On the semiconductor layer 40 (thickness 350 .mu.m), an In 0 addition of Be. 4 Al 0. 6 P / In 0. 6 Ga
After growing the p-type 3-5 semiconductor layer 41 composed of (0.4-z) Al z P strained superlattice by the gas source MBE method,
P-type 2-6 semiconductor layer 42 made of N-doped ZnSe
(Thickness 1 μm, p = 5 × 10 17 cm −3 ), an n-type 2-6 semiconductor layer 43 (thickness 1 made of ZnSe added with Cl)
μm, n = 1 × 10 1 8 cm - 3) and was grown by molecular beam epitaxy (MBE) method, n electrode 4 made of In
4 (thickness 300 nm), p-electrode 45 made of AuZn
(Thickness 300 nm) was formed by a vacuum vapor deposition method to manufacture a blue light emitting diode. superlattice structure of p-type 3-5 semiconductor layer 41, a constant thickness of each layer is between 1 nm, an In 0. 6
Ga (0.4-z) Al z The Al composition z of the P layer is p-type 2-
It is 0.4 at the interface with the No. 6 semiconductor layer 42, decreases by 0.02 every cycle, and becomes zero at the interface with the second p-type 3-5 semiconductor layer 40. In this structure, the valence band edge is continuously changed, is low at the interface of the p-type 2-6 semiconductor layer 42, and is high at the interface of the second p-type 3-5 semiconductor layer 40, and the holes are easily formed in the p-type 2 -6 is injected into the semiconductor layer 42.

【0023】作製した発光ダイオードの立ち上がり電圧
は5Vと低く、強い青色発光がえられた。
The rising voltage of the manufactured light emitting diode was as low as 5 V, and strong blue light emission was obtained.

【0024】上述の実施例では、p形3−5半導体層と
して臨界膜厚以下の歪超格子を用いたが、これに限ら
ず、格子長がp形2−6半導体層と等しい超格子を用い
てもよい。
Although a strained superlattice having a critical film thickness or less is used as the p-type 3-5 semiconductor layer in the above-mentioned embodiment, the present invention is not limited to this, and a superlattice having a lattice length equal to that of the p-type 2-6 semiconductor layer is used. You may use.

【0025】上述の実施例では、第二p形3−5半導体
層としてp形GaAs層一層を用いたが、これに限ら
ず、価電子帯端がInGaAlP混晶よりも高いp形I
nPやp形InGaAsPなどの他のp形3−5半導体
材料や複数のp形3−5半導体層構造を用いてもよい。
In the above-mentioned embodiment, one p-type GaAs layer is used as the second p-type 3-5 semiconductor layer, but the present invention is not limited to this, and the p-type I whose valence band edge is higher than that of the InGaAlP mixed crystal.
Other p-type 3-5 semiconductor materials such as nP or p-type InGaAsP or multiple p-type 3-5 semiconductor layer structures may be used.

【0026】[0026]

【発明の効果】以上説明したように、本発明によりp形
2−6半導体層へのホールの注入が容易になり、p電極
での抵抗が下がり、良好な青色発光素子が実現できる。
As described above, according to the present invention, holes can be easily injected into the p-type 2-6 semiconductor layer, the resistance at the p-electrode is reduced, and a good blue light emitting device can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1の発明の実施例を示す断面図である。FIG. 1 is a cross-sectional view showing an embodiment of the first invention.

【図2】第2の発明の実施例を示す断面図である。FIG. 2 is a sectional view showing an embodiment of the second invention.

【図3】第3の発明の実施例を示す断面図である。FIG. 3 is a sectional view showing an embodiment of the third invention.

【図4】第4の発明の実施例を示す断面図である。FIG. 4 is a sectional view showing an embodiment of the fourth invention.

【符号の説明】[Explanation of symbols]

10 基板 11 n形2−6半導体層 12 p形2−6半導体層 13 p形3−5半導体層 14 p電極 15 n電極 20 基板 21 n形2−6半導体層 22 活性層 23 p形2−6半導体層 24 p形3−5半導体層 25 p電極 26 n電極 30 第二p形3−5半導体層 31 p形3−5半導体層 32 p形2−6半導体層 33 活性層 34 n形2−6半導体層 35 n電極 36 p電極 40 第二p形3−5半導体層 41 p形3−5半導体層 42 p形2−6半導体層 43 n形2−6半導体層 44 n電極 45 p電極 10 substrate 11 n-type 2-6 semiconductor layer 12 p-type 2-6 semiconductor layer 13 p-type 3-5 semiconductor layer 14 p-electrode 15 n-electrode 20 substrate 21 n-type 2-6 semiconductor layer 22 active layer 23 p-type 2- 6 semiconductor layer 24 p-type 3-5 semiconductor layer 25 p-electrode 26 n-electrode 30 second p-type 3-5 semiconductor layer 31 p-type 3-5 semiconductor layer 32 p-type 2-6 semiconductor layer 33 active layer 34 n-type 2 -6 semiconductor layer 35 n electrode 36 p electrode 40 second p-type 3-5 semiconductor layer 41 p-type 3-5 semiconductor layer 42 p-type 2-6 semiconductor layer 43 n-type 2-6 semiconductor layer 44 n-electrode 45 p-electrode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 イオウ(S)またはセレン(Se)を含
むp形2−6族化合物半導体材料からなるp形2−6半
導体層を有する半導体装置において、前記p形2−6半
導体層に隣接して、これと格子長が等しいかまたは格子
長が異なる臨界膜厚以下のp形Inx Gay Alz
(x+y+z=1、0≦x<1、0≦y≦1、0≦z≦
1)半導体からなるp形3−5半導体層を有し、前記p
形3−5半導体層上にp電極を有し、前記p形3−5半
導体層のAl組成が前記p電極部で零または特定の値で
あり、前記p形2−6半導体層に近着くにつれ連続的に
または階段状に増加している事を特徴とするp形電極構
造。
1. A semiconductor device having a p-type 2-6 semiconductor layer made of a p-type 2-6 group compound semiconductor material containing sulfur (S) or selenium (Se), adjacent to the p-type 2-6 semiconductor layer. Then, the p-type In x Ga y Al z P having a lattice length equal to or different from the critical thickness is not more than the critical film thickness.
(X + y + z = 1, 0 ≦ x <1, 0 ≦ y ≦ 1, 0 ≦ z ≦
1) It has a p-type 3-5 semiconductor layer made of a semiconductor,
The p-type 3-5 semiconductor layer has a p-electrode, the Al composition of the p-type 3-5 semiconductor layer is zero or a specific value in the p-electrode part, and approaches the p-type 2-6 semiconductor layer. A p-type electrode structure characterized by increasing continuously or stepwise as
【請求項2】 イオウ(S)またはセレン(Se)を含
むp形2−6族化合物半導体材料からなるp形2−6半
導体層を有する半導体装置において、前記p形2−6半
導体層に隣接して、これと格子長が等しいかまたは格子
長が異なる臨界膜厚以下のp形Inx 1 Gay 1 Al
z 1 P/Inx 2 Gay 2 Alz 2 P超格子(x1+y
1+z1=1、0≦x1<1、0≦y1≦1、0≦z1
≦1、x2+y2+z2=1、0≦x2<1、0≦y2
≦1、0≦z2≦1)からなるp形3−5半導体層を有
し、前記p形3−5半導体層上にp電極を有し、前記p
形3−5半導体層の価電子帯端のエネルギー位置が前記
p電極部で高く、前記p形2−6半導体層に近着くにつ
れ連続的にまたは階段状に低くなっている事を特徴とす
るp形電極構造。
2. A semiconductor device having a p-type 2-6 semiconductor layer made of a p-type 2-6 group compound semiconductor material containing sulfur (S) or selenium (Se), wherein the p-type 2-6 semiconductor layer is adjacent to the p-type 2-6 semiconductor layer. Then, a p-type In x 1 Ga y 1 Al having a lattice thickness equal to or different from the critical film thickness is used.
z 1 P / In x 2 Gay 2 Al z 2 P superlattice (x1 + y
1 + z1 = 1, 0 ≦ x1 <1, 0 ≦ y1 ≦ 1, 0 ≦ z1
≦ 1, x2 + y2 + z2 = 1, 0 ≦ x2 <1, 0 ≦ y2
≦ 1, 0 ≦ z2 ≦ 1), a p-type 3-5 semiconductor layer, and a p-electrode on the p-type 3-5 semiconductor layer.
The energy position of the valence band edge of the type 3-5 semiconductor layer is high at the p-electrode portion, and becomes lower continuously or stepwise as it approaches the p-type 2-6 semiconductor layer. P-type electrode structure.
【請求項3】 請求項1のp形電極構造において、p形
3−5半導体層とp電極との間に、前記p形3−5半導
体層の価電子帯端のエネルギー位置よりも価電子帯端が
高いp形3−5族化合物半導体層一層以上からなる第二
p形3−5半導体層を有する事を特徴とするp形電極構
造。
3. The p-type electrode structure according to claim 1, wherein a valence electron is located between the p-type 3-5 semiconductor layer and the p-electrode rather than an energy position at a valence band edge of the p-type 3-5 semiconductor layer. A p-type electrode structure having a second p-type 3-5 semiconductor layer comprising one or more p-type 3-5 group compound semiconductor layers having a high band edge.
【請求項4】 請求項2のp形電極構造において、p形
3−5半導体層とp電極との間に、前記p形3−5半導
体層の価電子帯端のエネルギー位置よりも価電子帯端が
高いp形3−5族化合物半導体層一層以上からなる第二
p形3−5半導体層を有する事を特徴とするp形電極構
造。
4. The p-type electrode structure according to claim 2, wherein a valence electron is located between the p-type 3-5 semiconductor layer and the p-electrode rather than an energy position at a valence band edge of the p-type 3-5 semiconductor layer. A p-type electrode structure having a second p-type 3-5 semiconductor layer comprising one or more p-type 3-5 group compound semiconductor layers having a high band edge.
JP24966992A 1992-09-18 1992-09-18 Group 2-6 compound semiconductor p-type electrode structure Expired - Lifetime JPH0783140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24966992A JPH0783140B2 (en) 1992-09-18 1992-09-18 Group 2-6 compound semiconductor p-type electrode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24966992A JPH0783140B2 (en) 1992-09-18 1992-09-18 Group 2-6 compound semiconductor p-type electrode structure

Publications (2)

Publication Number Publication Date
JPH06104485A JPH06104485A (en) 1994-04-15
JPH0783140B2 true JPH0783140B2 (en) 1995-09-06

Family

ID=17196451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24966992A Expired - Lifetime JPH0783140B2 (en) 1992-09-18 1992-09-18 Group 2-6 compound semiconductor p-type electrode structure

Country Status (1)

Country Link
JP (1) JPH0783140B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116111012B (en) * 2022-11-11 2024-05-24 南京邮电大学 Light-emitting diode capable of regulating polarized light emitting mode

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697598A (en) * 1992-09-14 1994-04-08 Hitachi Ltd Semiconductor light-emitting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697598A (en) * 1992-09-14 1994-04-08 Hitachi Ltd Semiconductor light-emitting device

Also Published As

Publication number Publication date
JPH06104485A (en) 1994-04-15

Similar Documents

Publication Publication Date Title
US6372536B1 (en) II-VI semiconductor component having at least one junction between a layer containing Se and a layer containing BeTe, and process for producing the junction
US5373521A (en) Blue light emitting semiconductor device and method of fabricating the same
US8519411B2 (en) Semiconductor light emitting device
KR100209101B1 (en) Semiconductor laser
US5475700A (en) Laser diode with electron and hole confinement and barrier layers
EP0555722A1 (en) Hetero-superlattice PN junctions
JPH07202312A (en) Semiconductor laser embedded structure
US5539239A (en) Semiconductor light emitting element with II-VI and III-V compounds
US5898190A (en) P-type electrode structure and a semiconductor light emitting element using the same structure
JP3358556B2 (en) Semiconductor device and manufacturing method thereof
JP2586349B2 (en) Semiconductor light emitting device
US6178190B1 (en) II-VI compound semiconductor light emitting device
JPH077847B2 (en) Semiconductor light emitting element
JPH0783140B2 (en) Group 2-6 compound semiconductor p-type electrode structure
JP2598855B2 (en) Semiconductor light emitting device
JPH077849B2 (en) Semiconductor light emitting element
JPH06224230A (en) P-type electrode structure of 2-6 compound semiconductor
JPH0738460B2 (en) Semiconductor light emitting element
JPH04100292A (en) Semiconductor laser
JPH07142765A (en) Semiconductor light-emitting element and semiconductor laser and manufacture of semiconductor light emitting diode
JPS61228684A (en) Semiconductor light emitting element
JP2710783B2 (en) Semiconductor device
JP2692561B2 (en) Semiconductor light emitting device
JP3291834B2 (en) Semiconductor device
JPH0864908A (en) Semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19971007