JPH0738460B2 - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JPH0738460B2
JPH0738460B2 JP29325085A JP29325085A JPH0738460B2 JP H0738460 B2 JPH0738460 B2 JP H0738460B2 JP 29325085 A JP29325085 A JP 29325085A JP 29325085 A JP29325085 A JP 29325085A JP H0738460 B2 JPH0738460 B2 JP H0738460B2
Authority
JP
Japan
Prior art keywords
light emitting
gap
layer
semiconductor light
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29325085A
Other languages
Japanese (ja)
Other versions
JPS62154789A (en
Inventor
晶 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP29325085A priority Critical patent/JPH0738460B2/en
Publication of JPS62154789A publication Critical patent/JPS62154789A/en
Publication of JPH0738460B2 publication Critical patent/JPH0738460B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/305Materials of the light emitting region containing only elements of group III and group V of the periodic system characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier

Description

【発明の詳細な説明】 [技術分野] この発明は,化合物半導体発光素子,たとえばNを不純
物としたGaP化合物半導体よりなる半導体発光素子に関
する。
Description: TECHNICAL FIELD The present invention relates to a compound semiconductor light emitting device, for example, a semiconductor light emitting device made of a GaP compound semiconductor containing N as an impurity.

[従来技術] 従来の緑色発光ダイオード材料にはチッ素(N)をドー
プしたGaPが主として用いられてきた。このGaP:N発光ダ
イオードは波長560〜568nmにピークをもち,その外部量
子効率として0.6〜0.7%が得られている。
[Prior Art] GaP doped with nitrogen (N) has been mainly used as a conventional green light emitting diode material. This GaP: N light-emitting diode has a peak at a wavelength of 560 to 568 nm and has an external quantum efficiency of 0.6 to 0.7%.

第1図に従来のGaP緑色発光素子の構造の一例が示され
ている。まずSまたはTeをドープしたn形GaP基板11上
にNとTeをドープしたn形GaP層12を60μm程度,液相
エピタキシャル法で成長させる。ついでNとZnをドープ
したp形GaP層13を50μm程度成長させp−n接合を形
成する。Nのドーピングには雰囲気中にNH3ガスを混入
させる方法が一般に用いられている。ドーピング濃度は
Teが9×1018cm-3,Znが4×1018cm-3,N約1×1019cm-3
である。この結晶から作製された発光素子は,波長約55
50Åの緑色で発光し,その効果は約0.6%である。
FIG. 1 shows an example of the structure of a conventional GaP green light emitting device. First, an n-type GaP layer 12 doped with N and Te is grown on the n-type GaP substrate 11 doped with S or Te to a thickness of about 60 μm by a liquid phase epitaxial method. Then, a p-type GaP layer 13 doped with N and Zn is grown to a thickness of about 50 μm to form a pn junction. For N doping, a method of mixing NH 3 gas into the atmosphere is generally used. The doping concentration is
Te is 9 × 10 18 cm -3 , Zn is 4 × 10 18 cm -3 , N About 1 × 10 19 cm -3
Is. A light emitting device made from this crystal has a wavelength of about 55
It emits 50 Å green light and its effect is about 0.6%.

しかしこの発光ダイオードは,N原子が結晶内に不均一に
分布しているので同一ウェハ内での輝度のばらつきが大
きい,N原子の結晶中への取り込みが制御しにくく,ウェ
ハ間での特性のばらつきが大きい,またNを添加するこ
とに起因する結晶性の低下により輝度が低下する等の問
題点があった。
However, in this light-emitting diode, the N atoms are non-uniformly distributed in the crystal, so there is a large variation in brightness within the same wafer, the incorporation of N atoms into the crystal is difficult to control, and the characteristics between the wafers are There are problems such as a large variation and a decrease in brightness due to a decrease in crystallinity due to the addition of N.

[発明の目的] この発明は,不純物を結晶中に無秩序に添加することに
より作製される半導体発光素子の上述した問題点を解決
し,素子の結晶性および均一性を向上させることを目的
とする。
[Object of the Invention] It is an object of the present invention to solve the above-mentioned problems of a semiconductor light emitting device produced by randomly adding impurities into a crystal and improve the crystallinity and uniformity of the device. .

[発明の構成と効果] この発明による半導体発光素子は,GaP結晶中の発光層に
おいて,GaN層が存在することを特徴とする。
[Structure and Effect of the Invention] The semiconductor light emitting device according to the present invention is characterized in that the GaN layer exists in the light emitting layer in the GaP crystal.

好ましくはGaN化合物をGaP結晶上にエピタキシャル成長
させることによって,GaN層をGaP結晶中に積層する。
Preferably, the GaN layer is deposited in the GaP crystal by epitaxially growing the GaN compound on the GaP crystal.

この発明によると,GaP母結晶中にGaN不純物層を複数原
子層単位で(少なくとも2原子層)挿入するいわゆる変
調ドーピング構造となっているので,GaP結晶中に存在す
るN不純物の作用によって電子とホールの密度を高めら
れ,GaP結晶の結晶性およびその均一性が向上し,発光輝
度も増大する。
According to the present invention, a so-called modulation doping structure in which a GaN impurity layer is inserted in a GaP mother crystal in units of a plurality of atomic layers (at least two atomic layers) is formed, so that electrons are generated by the action of N impurities existing in the GaP crystal. The hole density can be increased, the crystallinity of the GaP crystal and its uniformity are improved, and the emission brightness is also increased.

上述のGaP発光素子についていうと,この発光素子を形
成する結晶の構成をGaP層とGaN層との積層構造とし,成
長方向に垂直な面内でN不純物を均一に分布させている
ので輝度のウェハ内でのばらつきを防ぐことができる。
また,GaPとGaNは類似の結晶構造を有し,その格子定数
も近いためにこれらを積層することによって結晶性が低
下することはほとんどなく,むしろN原子が結晶中に規
則的に配列しているため,N原子が無秩序に分布している
従来例に比べ結晶性が向上し,輝度も高まる。さらに,
結晶内をキャリヤが移動するさいに生じる合金散乱,不
純物散乱が極めて少なく応答性の向上も期待できる。N
等電子トラップに強く捕獲された電子がGaN層近傍に局
在するためその波動関数が運動量空間でGaP直接遷移帯
付近に大きく拡がり,元来間接遷移で発光効率の低いGa
Pの擬直接遷移材料としてのふるまいを一層確実なもの
とし,発光効率が向上する。この発明によると,さら
に,分子線エピタキシャル法や有機金属気相蒸着法等を
用いることが可能であり,従来のNH3ガスを用いたNド
ープに比べ,その濃度を正確に制御でき,ウェハ間の特
性のばらつきを低減することができる。
As for the GaP light emitting device described above, the structure of the crystal forming this light emitting device is a laminated structure of a GaP layer and a GaN layer, and the N impurity is uniformly distributed in the plane perpendicular to the growth direction. It is possible to prevent variations within the wafer.
In addition, since GaP and GaN have similar crystal structures and their lattice constants are close to each other, their crystallinity is hardly deteriorated by stacking them, rather, N atoms are regularly arranged in the crystal. As a result, the crystallinity and brightness are improved compared to the conventional example in which N atoms are randomly distributed. further,
The alloy scattering and impurity scattering that occur when carriers move in the crystal are extremely small, and improvement in responsiveness can be expected. N
Since the electrons strongly trapped in the isoelectron trap are localized near the GaN layer, the wave function spreads largely in the momentum space near the GaP direct transition band, and Ga due to indirect transition has low emission efficiency.
The behavior of P as a quasi-direct transition material is further ensured, and the luminous efficiency is improved. According to the present invention, it is possible to use a molecular beam epitaxial method, a metal organic chemical vapor deposition method, or the like, and the concentration thereof can be controlled more accurately than in the conventional N-doping using NH 3 gas. It is possible to reduce the variation in the characteristics of.

[実施例の説明] 第2図は,この発明の一実施例であるGaP緑色発光素子
の構造を概略的に示している。
[Explanation of Examples] FIG. 2 schematically shows the structure of a GaP green light emitting device which is one example of the present invention.

SまたはTeをドープしたn形GaP基板21上にTeをドープ
したGaP層22を30μmエピタキシャル成長させる。つい
でTeをドープしたGaP層23を1000原子層(〜2800Å),Ga
N層24を2原子層(〜5.6Å)交互に30回繰り返して成長
させ,全体で約17μmとする。さらにZnをドープしたGa
P層25を1000原子層,GaN層26を2原子層,同様に30回繰
り返して成長させる。これによりp−n接合27が形成さ
れる。最後にZnドープGaP層28を約20μm成長させて成
長を終了する。Nのドーピング濃度は変調ドープ域で約
5×1019cm-3である。
On the n-type GaP substrate 21 doped with S or Te, a GaP layer 22 doped with Te is epitaxially grown to a thickness of 30 μm. Then, the Te-doped GaP layer 23 was changed to 1000 atomic layer (~ 2800Å), Ga
The N layer 24 is repeatedly grown 30 times by alternating two atomic layers (up to 5.6 Å) to a total thickness of about 17 μm. Ga doped with Zn
The P layer 25 is 1000 atomic layers, and the GaN layer 26 is 2 atomic layers. As a result, the pn junction 27 is formed. Finally, the Zn-doped GaP layer 28 is grown to about 20 μm and the growth is completed. The doping concentration of N is about 5 × 10 19 cm -3 in the modulation doping region.

この結果より作製された発光素子は波長5550Åで発光
し,発光効率は0.7%以上である。この発明によると,
ドーピングに起因する結晶性の低下が問題とならないた
め従来例に比べはるかに高濃度のドーピングが可能であ
る。またドーピング濃度はGaP成長層とGaN成長層の厚さ
の比を変えることにより容易かつ正確に制御できる。
The light-emitting device produced from this result emits light at a wavelength of 5550Å, and the luminous efficiency is 0.7% or more. According to this invention,
Since the decrease in crystallinity due to doping does not pose a problem, it is possible to perform doping at a much higher concentration than in the conventional example. The doping concentration can be easily and accurately controlled by changing the thickness ratio of the GaP growth layer and the GaN growth layer.

この発明による半導体発光素子を作製するための成長法
には分子線エピタキシャル(MBE)法および有機金属気
相蒸着(MOCVD)法があり,これらのうちのいづれを用
いてもよい。
There are a molecular beam epitaxial (MBE) method and a metal organic chemical vapor deposition (MOCVD) method as growth methods for manufacturing the semiconductor light emitting device according to the present invention, and any one of them may be used.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来の半導体発光素子を示す斜視図である。 第2図はこの発明の一実施例を示し,半導体発光素子の
構造の概略を表わす斜視図である。 21……n形GaP基板, 22,23……n形GaP成長層, 25,28……p形GaP成長層, 24,26……GaN層。
FIG. 1 is a perspective view showing a conventional semiconductor light emitting device. FIG. 2 shows an embodiment of the present invention and is a perspective view showing the outline of the structure of a semiconductor light emitting device. 21 …… n-type GaP substrate, 22,23 …… n-type GaP growth layer, 25,28 …… p-type GaP growth layer, 24,26 …… GaN layer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】GaP結晶中の発光層において,GaN層が存在
する半導体発光素子。
1. A semiconductor light emitting device in which a GaN layer is present in a light emitting layer in a GaP crystal.
【請求項2】GaN化合物をGaP結晶上にエピタキシャル成
長させることによってGaN層をGaP結晶中に積層した,特
許請求の範囲第(1)項に記載の半導体発光素子。
2. The semiconductor light emitting device according to claim 1, wherein the GaN layer is laminated in the GaP crystal by epitaxially growing the GaN compound on the GaP crystal.
JP29325085A 1985-12-27 1985-12-27 Semiconductor light emitting element Expired - Lifetime JPH0738460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29325085A JPH0738460B2 (en) 1985-12-27 1985-12-27 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29325085A JPH0738460B2 (en) 1985-12-27 1985-12-27 Semiconductor light emitting element

Publications (2)

Publication Number Publication Date
JPS62154789A JPS62154789A (en) 1987-07-09
JPH0738460B2 true JPH0738460B2 (en) 1995-04-26

Family

ID=17792386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29325085A Expired - Lifetime JPH0738460B2 (en) 1985-12-27 1985-12-27 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPH0738460B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3425185B2 (en) * 1993-03-26 2003-07-07 日本オプネクスト株式会社 Semiconductor element
JP3445653B2 (en) * 1994-03-23 2003-09-08 士郎 酒井 Light emitting element
US6136626A (en) * 1994-06-09 2000-10-24 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
EP0772247B1 (en) * 1994-07-21 2004-09-15 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device and production method thereof
US5937274A (en) 1995-01-31 1999-08-10 Hitachi, Ltd. Fabrication method for AlGaIn NPAsSb based devices

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4882609A (en) * 1984-11-19 1989-11-21 Max-Planck Gesellschaft Zur Forderung Der Wissenschafter E.V. Semiconductor devices with at least one monoatomic layer of doping atoms

Also Published As

Publication number Publication date
JPS62154789A (en) 1987-07-09

Similar Documents

Publication Publication Date Title
US6608328B2 (en) Semiconductor light emitting diode on a misoriented substrate
KR100448662B1 (en) Nitride semiconductor device and method for manufacturing the same
US7521282B2 (en) Method for producing ZnTe system compound semiconductor single crystal, ZnTe system compound semiconductor single crystal, and semiconductor device
US20140225059A1 (en) LED with Improved Injection Efficiency
JP3554235B2 (en) Light emitting diode and method of manufacturing the same
US20020104997A1 (en) Semiconductor light emitting diode on a misoriented substrate
WO2019102557A1 (en) Nitride semiconductor light-emitting element
JPH0246779A (en) Pn junction type light emitting diode using silicon carbide semiconductor
US20040021142A1 (en) Light emitting diode device
US4675709A (en) Quantized layered structures with adjusted indirect bandgap transitions
JPH0738460B2 (en) Semiconductor light emitting element
JP2790235B2 (en) Method for forming p-type gallium nitride-based compound semiconductor
US20130069035A1 (en) Semiconductor light emitting device
US6875995B2 (en) Heterogeneous bandgap structures for semiconductor devices and manufacturing methods therefor
JP2680762B2 (en) Semiconductor light emitting device
JPH0732269B2 (en) Semiconductor light emitting element
JPH077849B2 (en) Semiconductor light emitting element
Yokogawa et al. Electroluminescence in p‐n junction using p‐ZnTe/ZnS doping superlattices
US4284467A (en) Method for making semiconductor material
JP2001189491A (en) AlGaInP LIGHT-EMITTING DIODE
JP3140037B2 (en) Semiconductor light emitting device
JPS5972717A (en) Manufacture of semiconductor single crystal
JPH07335940A (en) Compound semiconductor light emitting device
JP3525704B2 (en) Gallium arsenide arsenide epitaxial wafers and light emitting diodes
JP2000183396A (en) Epitaxial wafer and led manufactured using the wafer