JPH077847B2 - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JPH077847B2
JPH077847B2 JP26577184A JP26577184A JPH077847B2 JP H077847 B2 JPH077847 B2 JP H077847B2 JP 26577184 A JP26577184 A JP 26577184A JP 26577184 A JP26577184 A JP 26577184A JP H077847 B2 JPH077847 B2 JP H077847B2
Authority
JP
Japan
Prior art keywords
layer
zns
type
gap
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26577184A
Other languages
Japanese (ja)
Other versions
JPS61144078A (en
Inventor
信弘 源間
康夫 芦沢
篤 黒部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26577184A priority Critical patent/JPH077847B2/en
Publication of JPS61144078A publication Critical patent/JPS61144078A/en
Publication of JPH077847B2 publication Critical patent/JPH077847B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of Group II and Group VI of the Periodic Table

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、緑色から紫色にかけての発光を示す,発光ダ
イオードやレーザダイオードなどの半導体発光素子に関
する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a semiconductor light emitting device such as a light emitting diode or a laser diode, which emits light of green to purple.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

光の三原色である赤,緑,青の中で、赤色と緑色に関し
てはIII-V族化合物半導体を用いた発光素子が開発さ
れ、既に量産が行われている。残る青色発光素子につい
ては、開発への要望が強いにも拘らず依然商品化されて
いない。
Among the three primary colors of light, red, green, and blue, a light emitting element using a III-V group compound semiconductor has been developed for red and green, and mass production has already been performed. The remaining blue light-emitting element has not been commercialized despite strong demand for development.

青色発光素子の半導体材料としては、広い禁制帯幅を有
するII-VI族化合物のZnS,ZnSe、III-V族化合物のGaN、I
V族化合物のSiCなどが従来より検討されている。これら
の材料のうちZnS,ZnSeは、III-V族化合物のGaP,GaAsと
格子定数が近く、これらGaPまたはGaAs結晶を基板とし
て大面積かつ良質の結晶層が得られること、更に容易に
青色発光が得られること等から、特に有望視されてい
る。ところが、ZnS,ZnSeは共にn型導電性は得られる
が、p型導電性が得られない、という問題を抱えてい
る。このため、pn接合が得られないことが、青色発光素
子の実用化を遅らせている主因となっている。
Semiconductor materials for blue light emitting devices include ZnS, ZnSe which are II-VI group compounds and GaN and I which are III-V group compounds having a wide band gap.
SiC, which is a group V compound, has been studied. Among these materials, ZnS and ZnSe have a lattice constant close to that of GaP and GaAs of III-V group compounds, and a large-area and good-quality crystal layer can be obtained by using these GaP or GaAs crystals as a substrate. It is especially promising because it can be obtained. However, ZnS and ZnSe both have n-type conductivity, but have a problem that p-type conductivity cannot be obtained. Therefore, the inability to obtain a pn junction is the main reason for delaying the practical application of the blue light emitting element.

ZnS,ZnSeにおいて何故p型導電性が得られないか、その
原因については未だ確かな説はないが、おおむね次のよ
うな理由が考えられる。第1は、ZnS,ZnSeにおいては、
アクセプタ不純物の中で価電子帯に空孔を生じるに充分
浅い不純物準位を作るものが少ないこと、第2は、たと
え浅い不純物準位を作るアクセプタ不純物が存在して
も、それが結晶中に添加されると、いわゆる自己補償効
果によってドナー型の欠陥生成を誘発してしまうことで
ある。
Although there is no definite theory as to why p-type conductivity cannot be obtained in ZnS and ZnSe, the following reasons can be considered. First, in ZnS and ZnSe,
Few of the acceptor impurities make impurity levels that are shallow enough to create vacancies in the valence band. Second, even if there are acceptor impurities that make shallow impurity levels, they exist in the crystal. If added, the so-called self-compensation effect will induce donor-type defect generation.

〔発明の目的〕[Object of the Invention]

本発明は上記した問題を解決して、禁制帯幅の広いII-V
I族化合物半導体を用いて良好なpn接合を構成し、以て
高輝度の青色発光を可能とした半導体発光素子を提供す
ることを目的とする。
The present invention solves the above-mentioned problems and provides a II-V with a wide forbidden band.
An object of the present invention is to provide a semiconductor light-emitting device that is capable of emitting blue light with high brightness by forming a good pn junction using a group I compound semiconductor.

〔発明の概要〕[Outline of Invention]

本発明は、発光素子のpn接合を構成するp型導電層を、
GaxA11-xP化合物半導体(0≦x≦1)とアクセプタ不
純物としてI族またはV族元素を添加したZnSySe1-y
合物半導体またはZnyCd1-yS化合物半導体(0≦y≦
1)とを交互に積層した超格子により構成したことを特
徴とする。
The present invention provides a p-type conductive layer forming a pn junction of a light emitting device,
Ga x A1 1-x P compound semiconductor (0 ≦ x ≦ 1) and ZnS y Se 1-y compound semiconductor or Zn y Cd 1-y S compound semiconductor (0 ≦ y ≦
It is characterized in that it is constituted by a superlattice in which 1) and are alternately laminated.

〔発明の効果〕〔The invention's effect〕

本発明によれば、超格子構造の導入により、広いバンド
ギャップを有する化合物半導体からなるp型導電層が得
られ、これにより緑色から紫色にわたって高輝度の発光
を示す発光素子が得られる。
According to the present invention, by introducing the superlattice structure, a p-type conductive layer made of a compound semiconductor having a wide bandgap can be obtained, whereby a light emitting device that emits light with high brightness from green to purple can be obtained.

〔発明の実施例〕Example of Invention

以下本発明の実施例を説明する。 Examples of the present invention will be described below.

第1図は一実施例の素子構造を示す。図において、1は
n型GaP結晶基板であり、2はこの基板1上にエピタキ
シャル成長された,ドナー不純物としてAlが添加された
n型ZnSzSe1-z層(0≦z≦1)であって、このn型ZnS
zSe1-z層2上に超格子構造を持つp型導電層3が形成さ
れている。4はp側電極、5はn側電極である。
FIG. 1 shows the device structure of one embodiment. In the figure, 1 is an n-type GaP crystal substrate, and 2 is an n-type ZnS z Se 1-z layer (0 ≦ z ≦ 1) epitaxially grown on the substrate 1 to which Al is added as a donor impurity. This n-type ZnS
A p-type conductive layer 3 having a superlattice structure is formed on the z Se 1-z layer 2. Reference numeral 4 is a p-side electrode, and 5 is an n-side electrode.

第2図はp型導電層3の部分を拡大して示す。即ちp型
導電層3は、III-V族化合物半導体であるノンドープのG
aP層31i(i=1,2,…,N)と、アクセプタ不純物としてA
gを1016〜1019/cm3程度添加したII-VI族化合物半導体と
してのZnS層32i(i=1,2,…,N)が交互に積層されて超
格子を構成している。ZnS層32iの厚みLBおよびGaP層31i
の厚みLZはそれぞれ5〜40Å程度とする。このような超
格子構造は例えば、有機金属化合物を用いた気相成長法
(MOCVD)により得られる。
FIG. 2 shows a part of the p-type conductive layer 3 in an enlarged manner. That is, the p-type conductive layer 3 is a non-doped G that is a III-V group compound semiconductor.
aP layer 31i (i = 1, 2, ..., N) and A as an acceptor impurity
ZnS layers 32i (i = 1, 2, ..., N) as II-VI group compound semiconductors in which g is added at about 10 16 to 10 19 / cm 3 are alternately laminated to form a superlattice. Thickness L B of ZnS layer 32i and GaP layer 31i
The thickness L Z of each is about 5 to 40 Å. Such a superlattice structure is obtained, for example, by a vapor phase growth method (MOCVD) using an organometallic compound.

第3図はこの様な超格子構造をもつp型導電層3のバン
ド構造を示す。ZnS層32iの価電子帯の頂上は、GaP層31i
の価電子帯の頂上から0.9〜1.2eV程度低いところに位置
する。一方、Agアクセプタの不純物準位は、ZnS層32iの
価電子帯の頂上から0.55〜0.70eV高いところに位置す
る。従ってZnS層32iに添加するAg不純物の濃度を1016/c
m3以上と高くしておけば、この超格子構造部の平均的な
フェルミ・レベルEFは、第3図に示すようにGaP層31iの
価電子帯の頂上より低い位置になる。これによりGaP層3
1iには、Ag不純物濃度と同程度の空孔が形成される。こ
の空孔は超格子の積層方向に移動する時ZnS層32iが障壁
となるが、ZnS層32iの厚さLBを5〜30Åの範囲に選べ
ば、障壁をトンネルで抜けていく確率が充分高くなり、
超格子積層方向に高い伝導度をもつp型導電性が得られ
ることになる。第4図は、GaP層31iの厚みLZを20Åと
し、ZnS層32iのAg添加濃度を1017/cm3として、ZnS層32i
の厚みLBを変えた時の超格子構造の導電率特性を示して
いる。
FIG. 3 shows the band structure of the p-type conductive layer 3 having such a superlattice structure. The top of the valence band of the ZnS layer 32i is at the GaP layer 31i.
It is located 0.9 to 1.2 eV lower than the top of the valence band of. On the other hand, the impurity level of the Ag acceptor is located 0.55 to 0.70 eV higher than the top of the valence band of the ZnS layer 32i. Therefore, the concentration of Ag impurities added to the ZnS layer 32i should be 10 16 / c.
Once you have high as m 3 or more, the average Fermi level E F of the superlattice structure will position lower than the top of the valence band of the GaP layer 31i as shown in Figure 3. This makes the GaP layer 3
Vacancies having the same concentration as the Ag impurity concentration are formed in 1i. The ZnS layer 32i acts as a barrier when these vacancies move in the stacking direction of the superlattice, but if the thickness L B of the ZnS layer 32i is selected within the range of 5 to 30 Å, the probability of tunneling through the barrier is sufficient. Getting higher,
It is possible to obtain p-type conductivity having high conductivity in the superlattice stacking direction. FIG. 4 shows that the thickness L Z of the GaP layer 31i is 20Å, the Ag addition concentration of the ZnS layer 32i is 10 17 / cm 3 , and the ZnS layer 32i is
7 shows the conductivity characteristics of the superlattice structure when the thickness L B of is changed.

この様に、ZnSあるいはZnSeバルク結晶では深い不純物
準位を形成してキャリアを生成しない不純物が、本実施
例の超格子構造においては有効的に浅いアクセプタ不純
物準位として働き、正のキャリアを生成して、バルク結
晶では得られないp型導電層が得られる。なお本実施例
において、発光再結合を有効に行なわせるためには、超
格子構造からなるp型導電層3の厚みを0.2〜3μm程
度とすることが望ましい。
Thus, in the ZnS or ZnSe bulk crystal, the impurities that form a deep impurity level and do not generate carriers effectively act as a shallow acceptor impurity level in the superlattice structure of the present example, generating positive carriers. As a result, a p-type conductive layer that cannot be obtained with a bulk crystal is obtained. In this embodiment, in order to effectively perform the radiative recombination, it is desirable that the thickness of the p-type conductive layer 3 having a superlattice structure is about 0.2 to 3 μm.

この様に構成された第1図の発光素子は、そのpn接合に
順方向バイアスをかけると、主としてn型ZnSzSe1-z
2からp型導電層3へと電子が注入される。この注入電
子はp型導電層3内のGaP層31iにおいて空孔と発光再結
合を起す。GaP層での発光は、重いホールのバンド(hea
vy hole band)と軽いホールのバンド(light hole ban
d)が超格子において分離するために2ピーク構造とな
る。各々のピーク波長とGaP層の厚さLZとの関係を第5
図に示す。51がheavy hole bandによるもの、52がlight
hole bandによるものである。LZが小さくなるにつれ
て、量子効果のために発光は短波長側にシフトし、発光
色は二つのピークの平均的な波長となり、LZが15Å程度
で青色、10Å程度で紫色となる。一方、GaP結晶はバル
クの状態では間接遷移型であるが、超格子構造とするこ
とによりブリルアン・ゾーンの折れ曲り効果(zone fol
ding effect)によって直接遷移型になる。このため発
光の遷移確率が大きくなり、外部量子効率が1%と高い
値を示す。
When a forward bias is applied to the pn junction of the light emitting device of FIG. 1 thus configured, electrons are mainly injected from the n-type ZnS z Se 1 -z layer 2 to the p - type conductive layer 3. The injected electrons cause radiative recombination with holes in the GaP layer 31i in the p-type conductive layer 3. Light emission in the GaP layer is due to the heavy hole band (hea
vy hole band and light hole ban
Since d) separates in the superlattice, it has a two-peak structure. The relationship between each peak wavelength and the GaP layer thickness L Z
Shown in the figure. 51 is heavy hole band, 52 is light
This is due to the hole band. As L Z becomes smaller, the light emission shifts to the shorter wavelength side due to the quantum effect, and the emission color becomes an average wavelength of two peaks, and when L Z is about 15Å, it becomes blue, and at about 10Å, it becomes purple. On the other hand, the GaP crystal is an indirect transition type in the bulk state, but by adopting a superlattice structure, the Brillouin zone bending effect (zone follo
ding effect) will be a direct transition type. Therefore, the transition probability of light emission increases, and the external quantum efficiency shows a high value of 1%.

ここで、参考例について説明する。基本的な素子構造は
第1図と同じであるが、本参考例ではp型導電層3の部
分を第6図のようにする。即ち、アクセプタ不純物とし
てZnを1016〜1019/cm3程度添加したGaP層31i′と、ノン
ドープのZnS層32i′を交互に積層した超格子構造により
p型導電層3を構成している。
Here, a reference example will be described. Although the basic device structure is the same as that in FIG. 1, in this reference example, the p-type conductive layer 3 is formed as shown in FIG. That is, the p-type conductive layer 3 is constituted by a superlattice structure in which a GaP layer 31i 'to which Zn is added as an acceptor impurity in an amount of about 10 16 to 10 19 / cm 3 and a non-doped ZnS layer 32i' are alternately laminated.

この参考例の素子におけるp型導電層3のバンド構造を
第7図に示す。Zn不純物はバルクのGaP結晶においては
浅いアクセプタ不純物としてp型導電層を形成する。こ
のようなバルク結晶において浅い位置に不純物レベルを
形成するものは、超格子においても、多少レベル位置が
変化するとしてもやはりバンド端近傍に浅い準位を形成
すると考えられる。従って第7図において、フェルミ・
レベルはGaP層の価電子帯の頂上近傍に位置し、GaP層内
にZn不純物と同程度の空孔が生成される。この空孔は先
の実施例と同様に、各層の厚みを選ぶことによりトンネ
ルで抜けることができ、p型導電性に寄与することにな
る。そしてこの超格子構造のバンドギャップは量子効果
のためにGaP結晶のそれよりも広いものとなり、 GaP層の厚みを変化させることによって、先の実施例と
同様の原理により緑色から紫色にかけて効率の高い発光
特性を示す。
The band structure of the p-type conductive layer 3 in the device of this reference example is shown in FIG. Zn impurities form a p-type conductive layer as a shallow acceptor impurity in a bulk GaP crystal. It is considered that such a bulk crystal that forms an impurity level at a shallow position still forms a shallow level near the band edge even in the superlattice even if the level position changes to some extent. Therefore, in FIG. 7, Fermi
The level is located near the top of the valence band of the GaP layer, and vacancies are formed in the GaP layer to the same extent as Zn impurities. Similar to the previous embodiment, these holes can be tunneled out by selecting the thickness of each layer, which contributes to p-type conductivity. The band gap of this superlattice structure is wider than that of GaP crystal due to the quantum effect, and by changing the thickness of the GaP layer, high efficiency is achieved from green to purple by the same principle as in the previous example. The light emission characteristics are shown.

第8図は、p型基板を出発基板とした実施例の素子構造
である。即ちp型GaP結晶基板81を用いてこの上に先の
実施例と同様の超格子構造を持つp型導電層82を形成
し、この上にn型ZnSzSe1-z層83を形成したものであ
る。GaP基板81側から光を取出すために、GaP基板81を裏
面からエッチングして光取出し窓を設けている。84はp
側電極,85はn側電極である。
FIG. 8 shows an element structure of an embodiment using a p-type substrate as a starting substrate. That is, using a p-type GaP crystal substrate 81, a p-type conductive layer 82 having a superlattice structure similar to that of the previous embodiment was formed thereon, and an n-type ZnS z Se 1-z layer 83 was formed thereon. It is a thing. In order to extract light from the GaP substrate 81 side, the GaP substrate 81 is etched from the back surface to provide a light extraction window. 84 is p
The side electrode, 85 is an n-side electrode.

この実施例によっても先の実施例と同様の優れた発光特
性を示す。
This example also exhibits excellent light emission characteristics similar to those of the previous example.

第9図は更に別の実施例の素子構造である。この実施例
では、n型ZnSzSe1-z基板91を用いてこの上に先の実施
例と同様に超格子構造を持つp型導電層92を形成してい
る。93はp側電極,94はn側電極である。
FIG. 9 shows a device structure of still another embodiment. In this embodiment, an n-type ZnS z Se 1-z substrate 91 is used and a p-type conductive layer 92 having a superlattice structure is formed on the n-type ZnS z Se 1 -z substrate 91. 93 is a p-side electrode and 94 is an n-side electrode.

この実施例によっても同様に良好な青色発光特性を示す
ことができる。
Also in this example, similarly good blue emission characteristics can be exhibited.

第10図はダブルヘテロ接合構造を用いた実施例の素子構
造を示す。これは第1図におけるZnSzSe1-z層2の部分
を、ZnS層21とZnSe層22の二層として、p型層3とp型Z
nS層21との間にダブルヘテロ接合を構成している。
FIG. 10 shows an element structure of an embodiment using a double heterojunction structure. This a ZnS z Se 1-z layer 2 of the portion in FIG. 1, as two layers of ZnS layer 2 1 and the ZnSe layer 2 2, p-type layer 3 and the p-type Z
constitute a double heterojunction between nS layer 2 1.

この実施例によっても先の各実施例と同様に良好な青色
発光特性を示す。
This example also exhibits good blue emission characteristics as in the previous examples.

本発明は上記各実施例に限られるものではなく、更に以
下に列記するように種々変形実施することができる。
The present invention is not limited to the above embodiments, but can be modified in various ways as listed below.

超格子構造のII-VI族化合物半導体物半導体として、
一般的にZnSySe1-y(0≦y≦1)を用い得る。またZny
Cd1-yS(0≦y≦1)を用いることもできる。また超
格子構造を構成するIII-V族化合物半導体として、一般
的にGaxAl1-xP(0≦x≦1)を用いることができる。
As a II-VI group compound semiconductor semiconductor with a superlattice structure,
Generally, ZnS y Se 1-y (0 ≦ y ≦ 1) can be used. Also Zn y
Cd 1-y S (0 ≦ y ≦ 1) can also be used. Further, Ga x Al 1-x P (0 ≦ x ≦ 1) can be generally used as the III-V compound semiconductor forming the superlattice structure.

超格子構造のII-VI族化合物半導体層のアクセプタ不
純物として、Agの他、Li,Na,CuなどのI族元素あるいは
P,AsなどのV族元素を添加することができる。またIII-
V族化合物半導体のアクセプタ不純物としてZnの他、Be,
MgなどのII族元素またはIV族元素を添加してもよい。
As acceptor impurities in the II-VI group compound semiconductor layer having a superlattice structure, other than Ag, a group I element such as Li, Na, or Cu, or
Group V elements such as P and As can be added. Also III-
In addition to Zn, Be,
Group II elements or group IV elements such as Mg may be added.

また実施例では、超格子のII-VI族にアクセプタ不純物
を添加したが、超格子のIII-V族化合物半導体またはII-
VI族化合物半導体の両方にそれぞれアクセプタ不純物が
添加されてもよい。
Further, in the examples, acceptor impurities were added to the II-VI group of the superlattice, but the III-V group compound semiconductor or II- of the superlattice was added.
Acceptor impurities may be added to both of the group VI compound semiconductors.

超格子構造中のアクセプタ不純物準位は、外部からの
不純物元素添加によらず、Zn空孔が高濃度に存在するよ
うに結晶成長させることにより形成することもできる。
これはZn空孔が、超格子構造においてGaP結晶とZnS結晶
の価電子帯の頂上の中間に位置するためである。Zn空孔
が高濃度に形成される結晶成長条件としては、例えばMO
CVD法を例にとれば、VI族元素を供給するガスの,II族元
素を供給するガスに対するモル比を充分大きく(例えば
10倍以上)設定すればよい。
The acceptor impurity level in the superlattice structure can also be formed by crystal growth such that Zn vacancies are present at a high concentration regardless of the addition of an impurity element from the outside.
This is because the Zn vacancy is located in the middle of the top of the valence band of the GaP crystal and the ZnS crystal in the superlattice structure. As a crystal growth condition for forming Zn vacancies at a high concentration, for example, MO
Taking the CVD method as an example, the molar ratio of the gas for supplying the group VI element to the gas for supplying the group II element is sufficiently large (for example,
10 times or more) should be set.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の発光素子構造を示す図、第
2図はそのp型導電層部の拡大図、第3図は同じくp型
導電層部のバンド構造を示す図、第4図は同じくp型導
電層部の導電率特性を示す図、第5図はこの発光素子の
発光のピーク位置と超格子構造中のGaP層の厚みの関係
を示す図、第6図は参考例のp型導電層部の構造を示す
図、第7図は同じくそのp型導電層部のバンド構造を示
す図、第8図は〜第10図は更に他の実施例の発光素子構
造を示す図である。 1……n型GaP結晶基板、2……n型ZnSzSe1-z層、21
…n型ZnS層、22……ZnSe層、3……p型導電層(超格
子構造部)、4……p側電極(Au)、5……n側電極
(Au-Ge)、31i……GaP層、32i……Ag添加ZnS層、31i…
…Zn添加GaP層、32i′……ZnS層、81……p型GaP基板、
82……p型導電層(超格子構造部)、83……n型ZnSzSe
1-z層、84……p側電極(Au-Zn)、85……n側電極(In
-Ga)、91……n型ZnSzSe1-z基板、92……p型導電層
(超格子構造部)、93……p側電極(Au)、94……n側
電極(In-Ga)。
FIG. 1 is a diagram showing the structure of a light emitting device according to one embodiment of the present invention, FIG. 2 is an enlarged view of the p-type conductive layer portion thereof, and FIG. 3 is a view showing the band structure of the p-type conductive layer portion, FIG. 4 is a diagram showing the conductivity characteristics of the p-type conductive layer portion, FIG. 5 is a diagram showing the relationship between the emission peak position of this light emitting device and the thickness of the GaP layer in the superlattice structure, and FIG. 6 is a reference. FIG. 7 is a diagram showing a structure of an example p-type conductive layer portion, FIG. 7 is a diagram showing a band structure of the p-type conductive layer portion, FIG. 8 to FIG. 10 are light emitting element structures of still another embodiment. FIG. 1 ...... n-type GaP crystal substrate, 2 ...... n-type ZnS z Se 1-z layer, 2 1 ...
... n-type ZnS layer, 2 2 ... ZnSe layer, 3 ... p-type conductive layer (superlattice structure part), 4 ... p-side electrode (Au), 5 ... n-side electrode (Au-Ge), 31i …… GaP layer, 32i …… Ag-doped ZnS layer, 31i…
… Zn-doped GaP layer, 32i ′ …… ZnS layer, 81 …… p-type GaP substrate,
82: p-type conductive layer (superlattice structure part), 83: n-type ZnS z Se
1-z layer, 84 …… p side electrode (Au-Zn), 85 …… n side electrode (In
-Ga), 91 ... n-type ZnS z Se 1-z substrate, 92 ... p-type conductive layer (superlattice structure part), 93 ... p-side electrode (Au), 94 ... n-side electrode (In- Ga).

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】化合物半導体を用いてpn接合を構成した半
導体発光素子において、p型導電層を、GaxA11-xP化合
物半導体(0≦x≦1)とアクセプタ不純物としてI族
またはV族元素を添加したZnSySe1-y化合物半導体また
はZnyCd1-yS化合物半導体(0≦y≦1)とを交互に積
層した超格子により構成したことを特徴とする半導体発
光素子。
1. A semiconductor light emitting device having a pn junction formed of a compound semiconductor, wherein a p-type conductive layer is formed of Ga x A1 1-x P compound semiconductor (0 ≦ x ≦ 1) and an I or V group as an acceptor impurity. A semiconductor light emitting device comprising a superlattice in which ZnS y Se 1-y compound semiconductors or Zn y Cd 1-y S compound semiconductors (0 ≦ y ≦ 1) to which a group element is added are alternately laminated.
JP26577184A 1984-12-17 1984-12-17 Semiconductor light emitting element Expired - Lifetime JPH077847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26577184A JPH077847B2 (en) 1984-12-17 1984-12-17 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26577184A JPH077847B2 (en) 1984-12-17 1984-12-17 Semiconductor light emitting element

Publications (2)

Publication Number Publication Date
JPS61144078A JPS61144078A (en) 1986-07-01
JPH077847B2 true JPH077847B2 (en) 1995-01-30

Family

ID=17421801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26577184A Expired - Lifetime JPH077847B2 (en) 1984-12-17 1984-12-17 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPH077847B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766984B2 (en) * 1992-02-13 1995-07-19 インターナショナル・ビジネス・マシーンズ・コーポレイション Hetero superlattice pn junction
DE19935858A1 (en) * 1999-07-30 2001-02-01 Bosch Gmbh Robert Wiper blade for cleaning windows on motor vehicles
KR20120016261A (en) 2009-05-05 2012-02-23 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Semiconductor devices grown on indium-containing substrates utilizing indium depletion mechanisms
JP2012526394A (en) 2009-05-05 2012-10-25 スリーエム イノベイティブ プロパティズ カンパニー Re-emitting semiconductor carrier element for use with LED and method of manufacture
EP2449856A1 (en) 2009-06-30 2012-05-09 3M Innovative Properties Company White light electroluminescent devices with adjustable color temperature
CN102473816B (en) 2009-06-30 2015-03-11 3M创新有限公司 Electroluminescent devices with color adjustment based on current crowding
JP2012532454A (en) * 2009-06-30 2012-12-13 スリーエム イノベイティブ プロパティズ カンパニー Cadmium-free re-emitting semiconductor structure
TWI609505B (en) * 2010-02-09 2017-12-21 晶元光電股份有限公司 Optoelectronic device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137542A (en) * 1977-04-20 1979-01-30 International Business Machines Corporation Semiconductor structure
JPS6052067A (en) * 1983-08-31 1985-03-23 Nec Corp Structure of super lattice

Also Published As

Publication number Publication date
JPS61144078A (en) 1986-07-01

Similar Documents

Publication Publication Date Title
JP5112511B2 (en) Radiation emitting semiconductor body
US6784461B2 (en) Group III nitride light emitting devices with progressively graded layers
JP3643665B2 (en) Semiconductor light emitting device
JP3658112B2 (en) Nitride semiconductor laser diode
JP3719613B2 (en) Semiconductor light emitting device
JPH06112528A (en) Semiconductor light emitting device
US20040051108A1 (en) Group lll nitride emitting devices with gallium-free layers
JP3478090B2 (en) Nitride semiconductor device
EP0610893B1 (en) Laser diode
JPH077847B2 (en) Semiconductor light emitting element
JPH11191639A (en) Nitride semiconductor device
US4675709A (en) Quantized layered structures with adjusted indirect bandgap transitions
JP4292925B2 (en) Method for manufacturing group III nitride compound semiconductor light emitting device
JPH07231142A (en) Semiconductor light emitting element
JP2586349B2 (en) Semiconductor light emitting device
JP2000133884A (en) Quantum well structure light-emitting device
JPH077849B2 (en) Semiconductor light emitting element
JPH09326508A (en) Semiconductor optical device
JPH10242585A (en) Semiconductor light-emitting element
JP4277363B2 (en) Group III nitride semiconductor light emitting device
US12087877B2 (en) Light-emitting element
JPH05291617A (en) Semiconductor light emitting device
JP2670523B2 (en) Light emitting device manufacturing method
JP3057547B2 (en) Green light emitting diode
JP2597624B2 (en) Semiconductor light emitting device