JPH0782868B2 - Molten carbonate fuel cell and operating method thereof - Google Patents

Molten carbonate fuel cell and operating method thereof

Info

Publication number
JPH0782868B2
JPH0782868B2 JP62001624A JP162487A JPH0782868B2 JP H0782868 B2 JPH0782868 B2 JP H0782868B2 JP 62001624 A JP62001624 A JP 62001624A JP 162487 A JP162487 A JP 162487A JP H0782868 B2 JPH0782868 B2 JP H0782868B2
Authority
JP
Japan
Prior art keywords
fuel cell
gas
load
molten carbonate
reaction gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62001624A
Other languages
Japanese (ja)
Other versions
JPS63170865A (en
Inventor
俊樹 加原
将人 竹内
秀夫 岡田
一男 岩本
嘉男 岩瀬
浩一 三次
友一 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62001624A priority Critical patent/JPH0782868B2/en
Priority to US07/141,646 priority patent/US4810595A/en
Priority to NL8801797A priority patent/NL193678C/en
Publication of JPS63170865A publication Critical patent/JPS63170865A/en
Publication of JPH0782868B2 publication Critical patent/JPH0782868B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04544Voltage
    • H01M8/04559Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04791Concentration; Density
    • H01M8/04798Concentration; Density of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶融炭酸素を電解質とする型の燃料電池に係
り、時にその燃料電池の性能を向上させるのに好適な溶
融炭酸塩型燃料電池及びその運転方法に関する。
The present invention relates to a fuel cell of a type using molten carbonate as an electrolyte, and a molten carbonate type fuel cell suitable for improving the performance of the fuel cell at times. And its operating method.

〔従来の技術〕[Conventional technology]

溶融炭酸塩を電解質とする型の燃料電池は反応ガスとし
てアノード側に水素富化ガスを、カソード側に空気と炭
酸ガスの混合ガスを用いる。水素富化ガスは天然ガスの
水蒸気改質で得られたガスや石炭のガス化で得られたガ
スなどである。溶融炭酸塩型燃料電池は一般に650℃付
近の温度で運転され、運転時のセル電圧は0.8V付近であ
る。したがつて、実際の電池ではセルを複数個直列に積
層して、所定の電圧が得られるようになつている。燃料
電池内では主としてジユール熱の発生によつて、温度が
上昇する。したがつて、燃料電池の温度を一定に保つた
めには、電池を冷却する必要があり、数セルごとに冷却
板が入れられている。
A fuel cell of a type using molten carbonate as an electrolyte uses a hydrogen-enriched gas on the anode side and a mixed gas of air and carbon dioxide gas on the cathode side as reaction gases. The hydrogen-rich gas is, for example, a gas obtained by steam reforming of natural gas or a gas obtained by gasification of coal. The molten carbonate fuel cell is generally operated at a temperature around 650 ° C., and the cell voltage during operation is around 0.8V. Therefore, in an actual battery, a plurality of cells are stacked in series to obtain a predetermined voltage. In the fuel cell, the temperature rises mainly due to the generation of Juule heat. Therefore, in order to keep the temperature of the fuel cell constant, it is necessary to cool the cell, and a cooling plate is provided for every few cells.

この溶融炭酸塩型燃料電池には、発電を開始してから定
格出力に達するまでに長時間を要すること、及び長時間
運転していると、燃料電池の性能が低下していくるとい
う大きな問題がある。
This molten carbonate fuel cell has a major problem that it takes a long time from the start of power generation until the rated output is reached, and the performance of the fuel cell deteriorates when operating for a long time. is there.

燃料電池の長寿命化という観点では、負荷の増大時に燃
料ガス,酸化剤ガスの圧力を増大させ、負荷減少時には
供給する各ガスの圧力を減させて電気化学的劣化が生じ
ない電圧以下に抑えることにより長寿命化を図る方法
(特開昭60−10566号),燃料電池の正・負極に供給す
る活物質を互いに入れ換え、電池の正・負極を変換する
発電方法を一回以上行う方法(特開昭60−189177号),
カソード又はアノードに供給されるガスに電解質を含有
させることにより電解質の蒸発・拡散を抑制する方法
(特開昭61−24166号)等がある。
From the viewpoint of extending the life of the fuel cell, the pressure of the fuel gas and the oxidant gas is increased when the load increases, and the pressure of each gas to be supplied is reduced when the load decreases to keep the voltage below the voltage at which electrochemical deterioration does not occur. By doing so, a method of extending the service life (Japanese Patent Laid-Open No. 60-10566), a method of performing the power generation method in which the positive and negative electrodes of the fuel cell are replaced with each other, and the positive and negative electrodes of the cell are converted once or more JP-A-60-189177),
There is a method of suppressing evaporation / diffusion of the electrolyte by making the gas supplied to the cathode or the anode contain the electrolyte (JP-A-61-24166).

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

更に、従来、溶融炭酸塩型燃料電池の性能を向上させる
ためには、電池温度を上昇させるか、または反応ガス圧
力を高くする方法が一般的に用いられていた。しかし、
電池温度を上昇させると、材料の腐食が促進される、ま
た電解質の蒸発が促進され、電池の寿命が短かくなる、
などの問題があつた。一方、反応ガスの圧力を高くする
と電池性能は向上するが、電池の運転方法、すなわちア
ノード及びカソードに差圧がかからないようにガス圧力
を制御しなければならず、またガスのシールに注意しな
ければならないという課題があつた。なお、これらの方
法は、電池性能を根本的に改良するのではなく、外部因
子によつて性能を高くするものであり、これらを取り除
くと元の悪い性能に戻つてしまう。
Further, conventionally, in order to improve the performance of the molten carbonate fuel cell, a method of raising the cell temperature or raising the reaction gas pressure has been generally used. But,
Increasing battery temperature accelerates material corrosion and electrolyte evaporation, which shortens battery life.
There was a problem such as. On the other hand, increasing the pressure of the reaction gas improves the cell performance, but the gas pressure must be controlled so that a differential pressure is not applied to the operating method of the cell, that is, the anode and the cathode, and care must be taken in sealing the gas. There was a problem that I had to do it. It should be noted that these methods do not fundamentally improve the battery performance, but enhance the performance by an external factor, and if these methods are removed, the original performance is restored.

本発明の目的は従来技術の欠点をなくし、燃料電池の性
能を向上させ、性能が低下してきたものを元の高い性能
に回復させることができ、さらに、寿命を延ばすことが
できる燃料電池及びその運転方法を提供することにあ
る。
The object of the present invention is to eliminate the drawbacks of the prior art, to improve the performance of the fuel cell, to recover the deteriorated performance to the original high performance, and further to extend the life, To provide a driving method.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するためには、電極内の反応の場が充分
に確保されることが重要である。反応の場を形成するた
めには、電極内にガスと電解質がお互いに触れあう場所
をより広く作ること、すなわち、適度に電極が電解質で
ぬれることが重要である。一般に電気浸透では電極の電
位を変化させることによつて電解液を移動することがで
きる。燃料電池のようなセルの積層体では個々の電極を
一定電位に保つのは困難である。電位を変える方法につ
いて検討したところ、反応ガスの一部を遮断するか、濃
度を小さくし電池に負荷を接続すると電極の電位が急激
に変化することがわかつた。また、そのときの電流値も
比較的大きいほど良いことがわかつた。すなわち、アノ
ードに供給する水素富化ガスを遮断するか供給流量を減
少させて濃度を小さくし、実質的に供給ガス量を抑制し
てかわりにチツ素ガスを供給する、また、それとは別に
カソードに供給する炭酸ガスや空気のどちらか一方を遮
断するか供給流量を減少させて濃度を小さくし、電池に
負荷回路を接続して電流を流すことである。すなわち、
本発明の内容は性能の低い電池あるいは性能の低下した
電池に外部から何らかの力を作用させて電解質を移動さ
せ、電池の性能を向上させることにある。
In order to achieve the above object, it is important to ensure a sufficient reaction field in the electrode. In order to form a reaction field, it is important to make the place where the gas and the electrolyte contact each other in the electrode wider, that is, to appropriately wet the electrode with the electrolyte. Generally, in electroosmosis, the electrolytic solution can be moved by changing the potential of the electrode. In a cell stack such as a fuel cell, it is difficult to keep individual electrodes at a constant potential. When the method of changing the potential was examined, it was found that the potential of the electrode suddenly changed when a part of the reaction gas was cut off or the concentration was reduced and a load was connected to the battery. It was also found that the larger the current value at that time, the better. That is, the hydrogen-rich gas supplied to the anode is shut off or the supply flow rate is reduced to reduce the concentration, and the supply gas amount is substantially suppressed to supply the nitrogen gas instead. Either the carbon dioxide gas or the air supplied to the battery is cut off or the supply flow rate is reduced to reduce the concentration, and a current is supplied by connecting a load circuit to the battery. That is,
The content of the present invention is to improve the performance of a battery by applying an external force to a battery having low performance or a battery having poor performance to move an electrolyte.

具体的には、アノード電極とカソード電極を有し、溶融
炭酸塩を電解質にし、反応ガスとしてアノード電極側に
水素富化ガスを、カソード電極側に空気と炭酸ガスの混
合ガスを供給して発電し、プラントの主負荷あるいは他
の負荷に発電した電力を供給する溶融炭酸塩型燃料電池
において、発電した電力を主負荷に供給するか他の負荷
に供給するかを切り換える手段と、燃料電池特性低下時
に、燃料電池に供給する反応ガスのうちの少なくとも一
種類のガスの供給量を所定時間抑制して燃料電池内の反
応ガスの圧力を変化させる手段と、反応ガスの圧力が変
化しているときに前記切り換える手段によって前記主負
荷から前記他の負荷に電力の供給を切り換え、当該他の
負荷に強制的に電流を流す手段とを備え、特性が低下し
たときに前記切り換える手段によって電力の供給を主負
荷から他の負荷に切り換えて燃料電池の電極の電位を変
化させて電解質を移動させ、低下した特性が回復すると
電力の供給を他の負荷から前記主負荷に切り換えること
を特徴としている。
Specifically, it has an anode electrode and a cathode electrode, uses molten carbonate as an electrolyte, and supplies hydrogen-enriched gas to the anode electrode side as a reaction gas and a mixed gas of air and carbon dioxide gas to the cathode electrode side to generate electricity. In a molten carbonate fuel cell that supplies electric power generated to the main load of the plant or to another load, a means for switching the supplied electric power to the main load or another load, and fuel cell characteristics At the time of the decrease, a means for changing the pressure of the reaction gas in the fuel cell by suppressing the supply amount of at least one kind of the reaction gas supplied to the fuel cell for a predetermined time, and the pressure of the reaction gas are changed. And a means for switching the supply of electric power from the main load to the other load and forcibly flowing an electric current to the other load by means of the switching means, and when the characteristic is deteriorated, the switching is performed. Means for switching the power supply from the main load to another load to change the potential of the electrode of the fuel cell to move the electrolyte, and when the degraded characteristics are restored, switch the power supply from the other load to the main load. It is characterized by that.

[作用] 例えば水素富化ガスを遮断するか供給流量を減少させて
濃度を小さくし、変わりにチツ素ガスをアノードに供給
して負荷回路を接続すると、アノード側の抵抗が小さく
なり、分極も小さくなる。一方、アノードには水素富化
ガスを供給し、カソード側に供給する炭酸ガスを遮断す
るか供給流量を減少させて濃度を小さくして負荷回路を
接続すると、カソード側の抵抗が小さくなり、分極も小
さくなる。この傾向は空気を遮断したときも同様である
が、炭酸ガスを遮断したときに比較すると効果は小さ
い。このように反応ガスの一部を遮断するか、供給流量
を減少させて濃度を小さくし、負荷を接続することによ
つてアノード及びカソードの分極が小さくなる理由につ
いては明確ではないが、電位変化によつて電解質が移動
し、反応の場を形成することが考えられる。また、これ
とは別に、電極の一部溶解や還元が起こり、活性点が増
加することも考えられる。
[Operation] For example, if the hydrogen-rich gas is shut off or the supply flow rate is reduced to reduce the concentration, and instead, nitrogen gas is supplied to the anode and the load circuit is connected, the resistance on the anode side decreases and polarization also occurs. Get smaller. On the other hand, if hydrogen-rich gas is supplied to the anode and the carbon dioxide gas supplied to the cathode is shut off or the supply flow rate is reduced to reduce the concentration and a load circuit is connected, the resistance on the cathode side decreases and the polarization Also becomes smaller. This tendency is the same when air is cut off, but the effect is smaller than when carbon dioxide is cut off. It is not clear why the polarization of the anode and cathode is reduced by blocking a part of the reaction gas or decreasing the supply flow rate to reduce the concentration and connecting a load, but the potential change is not clear. Therefore, it is considered that the electrolyte migrates to form a reaction field. In addition to this, it is also considered that a part of the electrode is dissolved or reduced to increase the number of active sites.

本発明の概略系統の1例を第1図に示す。第1図では燃
料電池1は3ブロツクに分かれている。これは1例とし
て3ブロツクに分けたものを記したにすぎず、本発明で
はスタツクのままでも、あるいは任意のブロツクに分け
てもさしつかえない。2は各ブロツクの電圧を検知し、
あらかじめ定められている値と比較する役目をする電圧
検知部である。3はアノードガスやカソードガスの切換
及び負荷回路の開閉を制御するコントローラである。各
ブロツクの電圧を電圧検知部2で検出し、そこからの指
示に基づいてコントローラ3から、アノードガスの切換
えやカソードガスの切換えを各々アノードガス切換器4
及びカソードガス切換器5に指示する。それと同時に負
荷8に回路を切換えるために負荷回路スイツチ6を接続
し、主負荷スイツチ7を開放する。9は燃料電池で発電
した直流を一般で使用する交流に変換するインバータで
ある。例えばいずれかのブロツク電圧が設定値より低く
なつたとき、コントローラ3の指示によつて、アノード
ガス切換器が作動し、水素富化ガスがチツ素に切りかわ
るとともに、主負荷スイツチ7を切断し、負荷回路のス
イツチ6が入れられる。なお、前記設定値としては、例
えば定格出力の90%が選択される。この操作によつて、
燃料電池は水素ガスが欠乏した状態で発電をする。この
状態を1分から15分ほどの任意の時間を保ち、次にアノ
ードガス切換器4を作動させて、燃料電池1に水素富化
ガスを送る。燃料電池1の性能が回復すると、負荷回路
スイツチ6を切断し、主負荷スイツチ7を投入する。ま
た、他の側では、燃料電池1のいずれかのブロツク電圧
が設定値より小さくなつたとき、コントローラ3の指示
によつて、カソードガス切換器5を作動させ、炭酸ガス
のみを燃料電池に供給させないようにして、以下上記と
同じ操作をする、また、炭酸ガスにかわつて、空気のみ
を燃料電池に供給させないようにして、その他は前記と
同じ操作をする。これらの3種のうち、いずれかの方法
を用いると、燃料電池の性能が著しく向上し、再び発電
装置としての性能を維持するようになる。なお、この3
種のうちのいずれの操作をするかは、コントローラ3内
に組入れたコンピユータによつて、ブロツク電圧と設定
値の差などを比較して決めることができる。以上の説明
ではブロツクに電池を分割し、反応ガスの一部を遮断す
る例であつたが、この他にも反応ガスの一部の供給濃度
を小さくしても同じ効果が得られる。また、電圧のかわ
りに積層電池やセルの内部抵抗、あるいは電池の出力を
検出し、あらかじめ定めていた指標値の範囲をはずれる
ときに、コントローラから指示を出すようにすることが
可能である。
An example of the schematic system of the present invention is shown in FIG. In FIG. 1, the fuel cell 1 is divided into three blocks. This is only an example of dividing into 3 blocks, and in the present invention, it may be divided into a stack or an arbitrary block. 2 detects the voltage of each block,
It is a voltage detection unit that serves to compare with a predetermined value. Reference numeral 3 is a controller that controls switching of anode gas and cathode gas and opening / closing of a load circuit. The voltage of each block is detected by the voltage detector 2, and the controller 3 switches the anode gas or the cathode gas based on the instruction from the voltage detector 2.
And the cathode gas switching device 5. At the same time, the load circuit switch 6 is connected to switch the circuit to the load 8, and the main load switch 7 is opened. Reference numeral 9 is an inverter that converts direct current generated by the fuel cell into alternating current generally used. For example, when one of the block voltages becomes lower than the set value, the anode gas switching device operates according to the instruction of the controller 3, the hydrogen-enriched gas is switched to nitrogen, and the main load switch 7 is disconnected. , The switch 6 of the load circuit is inserted. As the set value, for example, 90% of the rated output is selected. By this operation,
Fuel cells generate electricity when hydrogen gas is deficient. This state is maintained for an arbitrary time of about 1 to 15 minutes, and then the anode gas selector 4 is operated to send the hydrogen-rich gas to the fuel cell 1. When the performance of the fuel cell 1 is restored, the load circuit switch 6 is disconnected and the main load switch 7 is turned on. On the other side, when one of the block voltages of the fuel cell 1 becomes smaller than the set value, the controller 3 instructs the cathode gas switching device 5 to supply only carbon dioxide gas to the fuel cell. Then, the same operation as described above is performed, and the same operation as above is performed except that only air is supplied to the fuel cell instead of carbon dioxide gas. If any one of these three methods is used, the performance of the fuel cell is significantly improved, and the performance of the power generation device is maintained again. In addition, this 3
Which of the seeds is to be operated can be determined by a computer incorporated in the controller 3 by comparing the difference between the block voltage and the set value. In the above description, the battery is divided into blocks and a part of the reaction gas is shut off. However, the same effect can be obtained by reducing the supply concentration of a part of the reaction gas. Further, it is possible to detect the internal resistance of the laminated battery or the cell or the output of the battery instead of the voltage, and to issue an instruction from the controller when the value deviates from the predetermined index value range.

なお、上記反応ガスの圧力を変化させる手段は、例え
ば、コントローラ3とこのコントローラ3によって制御
されるアノードガス切換器4及びカソードガス切換器5
とによって構成され、強制的に電流に流す手段は、例え
ばコントローラ3とこのコントローラ3によって切り換
えられる負荷回路スイッチ6とによって構成される。
The means for changing the pressure of the reaction gas is, for example, the controller 3, the anode gas switching device 4 and the cathode gas switching device 5 controlled by the controller 3.
The means for forcibly passing current is constituted by, for example, the controller 3 and the load circuit switch 6 switched by the controller 3.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。 Examples of the present invention will be described below.

実施例(1): アノードにNiをカソードにNiOを多孔板にした電極を用
い、電解質板としてLiAlO2微粉末にAl2O8繊維を20wt%
添加したマトリツクスに混合炭酸塩を含浸させたものを
用いた。混合炭酸塩の組成はLi2CO3とK2CO3を62mol対38
molの比に混合したものである。電極の有効面積100c
m2、15セル積層した内部マニホールド型の燃料電池を作
つた。この燃料電池を5セルずつに5ブロツクに分け
て、各ブロツクごとの電圧を検出するようにした。電池
はマニホールドに入れ、ヒータで650℃に熱してから発
電を開始した。アノードには天然ガスの改質ガスを、カ
ソードには空気と炭酸ガスを7対3の体積比にしたガス
を供給した。電池の締付圧力を3kg/cm2にして、電流密
度150mA/cm2で発電したところ、各ブロツクの値は第2
図に示すように約2Vであつた。この条件で約250時間発
電を続けたが、電圧の上昇は小さかつた。そこで、次に
アノードに供給している水素富化ガスをチツ素に切換
え、負荷回路を入れたままで約10分間燃料電池を運転し
た。このとき、各ブロツクの電圧は著しく低下した。次
にアノードガスをチツ素から水素富化ガスに切換えた。
負荷は投入したままである。各ブロツクの電圧は急激に
高くなり、約4Vになつた。この様子を第2図に示す。第
2図において、H1の矢印を記入しているところが、上記
の処置を試みた点を示している。この操作によつて電圧
が著しく高くなつたが、発電を続けていること、再び電
圧が徐々に低下して来た。そこで、再び同様に水素富化
ガスをチツ素に切換えて同じ操作をしたところ、電圧は
上昇し、性能を回復することができた。この様子を矢印
H2で第2図に示す。同様に再度くりかえした点を矢印H3
で第2図に示す。このような、各ブロツクの電圧、すな
わち、燃料電池の性能が低下してきたとき、アノードガ
スを不活性なガスに切換えて、強制的に発電することに
よつて、燃料電池の性能を大幅に向上させることができ
ることがわかつた。
Example (1): An electrode having Ni as a cathode and a porous plate of NiO as a cathode was used, and as an electrolyte plate, 20% by weight of Al 2 O 8 fibers was added to LiAlO 2 fine powder.
The added matrix was impregnated with the mixed carbonate. The composition of the mixed carbonate is 62 mol of Li 2 CO 3 and K 2 CO 3 38
It is a mixture of mol ratios. Effective area of electrode 100c
An internal manifold type fuel cell in which m 2 and 15 cells were stacked was made. The fuel cell was divided into 5 cells in 5 blocks, and the voltage of each block was detected. The batteries were placed in a manifold and heated by a heater to 650 ° C before power generation. A reformed gas of natural gas was supplied to the anode, and a gas having a volume ratio of air and carbon dioxide of 7: 3 was supplied to the cathode. When the tightening pressure of the battery was set to 3 kg / cm 2 and power was generated at a current density of 150 mA / cm 2 , the value of each block was the second
As shown in the figure, it was about 2V. Power generation was continued for about 250 hours under these conditions, but the voltage rise was small. Therefore, the hydrogen-enriched gas being supplied to the anode was then switched to titanium, and the fuel cell was operated for about 10 minutes with the load circuit still on. At this time, the voltage of each block dropped significantly. The anode gas was then switched from titanium to hydrogen enriched gas.
The load remains on. The voltage of each block rapidly increased to about 4V. This is shown in FIG. In FIG. 2, the area marked with an arrow H 1 indicates the point at which the above treatment was attempted. This operation caused the voltage to rise significantly, but continued to generate electricity, and the voltage gradually dropped again. Therefore, when the hydrogen-enriched gas was changed to titanium again and the same operation was performed again, the voltage increased and the performance could be recovered. This state is an arrow
It is shown in FIG. 2 by H 2 . Similarly, repeat the point again with arrow H 3
It is shown in FIG. When the voltage of each block, that is, the performance of the fuel cell decreases, the anode gas is switched to an inactive gas and the power is forcibly generated to significantly improve the performance of the fuel cell. I knew that I could do it.

実施例(2): 実施例(1)で示したと同じ燃料電池を製作し、電流密
度150mA/cm2で発電した。その結果、初期の各ブロツク
の値はほぼ同じで、約2.2Vであつた。この状態で約150
時間発電を続けたところ、約2.5Vまで電圧が上昇した。
そこで、次に、カソード側に供給しているガス、すなわ
ち空気と炭酸ガスのうち、炭酸ガスのみを切断して、空
気だけを燃料電池に供給して約3分間発電した。炭酸ガ
スを切断すると、各ブロツクの電圧は急激に低下した
が、そのまま発電を続けた。次に、再びカソードに炭酸
ガスを供給したところ、電圧が急激に上昇した。第3図
はその結果を示す。第3図において、矢印C1で記したの
が、上記操作をしたことを表わしている。その後、電流
密度150mA/cm2で再び発電を続けていたところ、電圧が
徐々に低下してきたので、再びカソードに供給する炭酸
ガスを約3分間切断し、同じ操作をしたところ、電圧が
再び高くなつた。この様子を第3図に矢印C2で示す。な
お、さらに電流密度150mA/cm2で発電を続け、同じ操作
をくりかえした結果を矢印C3で示す。
Example (2): The same fuel cell as that shown in Example (1) was manufactured, and electricity was generated at a current density of 150 mA / cm 2 . As a result, the initial value of each block was about the same, about 2.2V. About 150 in this state
When the power generation was continued for an hour, the voltage rose to about 2.5V.
Therefore, next, of the gas supplied to the cathode side, that is, of the air and carbon dioxide gas, only carbon dioxide gas was cut off, and only air was supplied to the fuel cell to generate power for about 3 minutes. When the carbon dioxide gas was cut off, the voltage of each block dropped sharply, but power generation was continued. Next, when carbon dioxide was again supplied to the cathode, the voltage rose sharply. FIG. 3 shows the result. In FIG. 3, the arrow C 1 indicates that the above operation has been performed. After that, when the power generation was continued again at a current density of 150 mA / cm 2 , the voltage gradually decreased, so the carbon dioxide gas supplied to the cathode was cut off again for about 3 minutes, and the same operation was performed, the voltage increased again. Natsuta. This state is shown by an arrow C 2 in FIG. The power generation was continued at a current density of 150 mA / cm 2 , and the same operation was repeated, and the result is shown by an arrow C 3 .

実施例(3): 実施例(1)で示したと同じ燃料電池を製作し、電流密
度150mA/cm2で発電した。その結果、初期の各ブロツク
の電圧は約2.2Vで、ほぼ同じであつた。この条件で約15
0時間発電を続けたのち、カソードに供給する空気を切
断し、炭酸ガスのみをカソードに供給して約3分間発電
を続けた。空気を切断すると、各ブロツクの電圧は急激
に低下した。再び発電をしたまま、カソードに空気を供
給したところ、各ブロツクとも電圧が約3.2Vに上昇し
た。この様子を第4図に記号O1の矢印で示す。矢印の位
置が、上記処置をしたことを表わしている。次に、電流
密度150mA/cm2で発電を続け、ブロツクの電圧が低下し
たときに同じ操作を2回くり返した。この点を第4図に
矢印O2,O3で示す。いずれの場合も電圧は回復して高く
なつたが、約3.7Vまでの上昇であつた。
Example (3): The same fuel cell as shown in Example (1) was manufactured and power was generated at a current density of 150 mA / cm 2 . As a result, the voltage of each block at the beginning was about 2.2V, which was almost the same. About 15 in this condition
After continuing power generation for 0 hours, the air supplied to the cathode was cut off, and only carbon dioxide gas was supplied to the cathode to continue power generation for about 3 minutes. When the air was cut off, the voltage of each block dropped sharply. When air was supplied to the cathode while power was being generated again, the voltage of each block rose to about 3.2V. This is shown in FIG. 4 by the arrow with the symbol O 1 . The position of the arrow indicates that the above treatment has been performed. Next, power generation was continued at a current density of 150 mA / cm 2 , and the same operation was repeated twice when the voltage of the block dropped. This point is indicated by arrows O 2 and O 3 in FIG. In each case, the voltage recovered and increased, but it increased to about 3.7V.

そこで、次に実施例(2)で示したと同様にカソードに
供給する炭酸ガスのみを切断して、約3分間発電を続
け、再び炭酸ガスを供給したところ、第4図に矢印C4
示したように、ブロツクの電圧が4V以上になつた。
Then, as in the case of Example (2), the carbon dioxide gas supplied to the cathode was cut off, the power generation was continued for about 3 minutes, and the carbon dioxide gas was supplied again, as shown by an arrow C 4 in FIG. As you can see, the voltage of the block has exceeded 4V.

〔発明の効果〕〔The invention's effect〕

本発明によれば、第2〜第4図に示したように、燃料電
池の性能を高くすることができるとともに、性能が低下
してきたものを元の高い性能に回復することができる。
このように、アノード及びカソードに供給する反応ガス
の一部を切断して発電を短時間続け、再び反応ガスを供
給すると燃料電池の性能が向上する理由については明ら
かでないが、電位変化によつて電極の電解質によるぬれ
性が変化すること、あるいは電極の反応面の活性化が図
れること、などが考えられる。いずれにしても、本発明
を用いることによつて、燃料電池の性能を大幅に向上さ
せることができるとともに、性能が低下してきたものを
元の高い性能に回復させることができ、さらに、燃料電
池の長寿命化を図ることができる。
According to the present invention, as shown in FIGS. 2 to 4, the performance of the fuel cell can be improved and at the same time, the deteriorated performance can be restored to the original high performance.
As described above, it is not clear why the performance of the fuel cell is improved by cutting off a part of the reaction gas supplied to the anode and the cathode, continuing the power generation for a short time, and then supplying the reaction gas again. It is conceivable that the wettability of the electrode by the electrolyte changes or that the reaction surface of the electrode can be activated. In any case, by using the present invention, the performance of the fuel cell can be significantly improved and at the same time, the performance of which has deteriorated can be restored to the original high performance. It is possible to extend the life of the.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の概要を示す系統図の1例、第2図,第
3図,及び第4図は本発明を用いた燃料電池の性能を示
した図である。 1……燃料電池本体、2……電圧検知部、3……コント
ローラ、4……アノードガス切換器、5……カソードガ
ス切換器、6……負荷回路スイツチ、7……主負荷スイ
ツチ、8……負荷、9……インバータ。
FIG. 1 is an example of a system diagram showing an outline of the present invention, and FIGS. 2, 3, and 4 are diagrams showing the performance of a fuel cell using the present invention. 1 ... Fuel cell main body, 2 ... Voltage detector, 3 ... Controller, 4 ... Anode gas selector, 5 ... Cathode gas selector, 6 ... Load circuit switch, 7 ... Main load switch, 8 …… Load, 9 …… Inverter.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岩本 一男 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 岩瀬 嘉男 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 三次 浩一 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 加茂 友一 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (56)参考文献 特開 昭55−148370(JP,A) 特開 昭61−225773(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuo Iwamoto 4026 Kuji Town, Hitachi City, Ibaraki Prefecture Hitate Manufacturing Co., Ltd.Hitachi Research Laboratories (72) Inventor Yoshio Iwase 4026 Kuji Town, Hitachi City Hitachi, Ltd. Hitachi Research Laboratory (72) Inventor Koichi Miyoshi 4026 Kuji Town, Hitachi City, Hitachi, Ibaraki Prefecture Hitachi Research Institute, Ltd. (72) Inventor Yuichi Kamo 4026 Kuji Town, Hitachi City, Ibaraki Hitachi Research Institute, Ltd. (56) References JP-A-55-148370 (JP, A) JP-A-61-225773 (JP, A)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】アノード電極とカソード電極を有し、溶融
炭酸塩を電解質にし、反応ガスとしてアノード電極側に
水素富化ガスを、カソード電極側に空気と炭酸ガスの混
合ガスを供給して発電し、プラントの主負荷あるいは他
の負荷に発電した電力を供給する溶融炭酸塩型燃料電池
において、 発電した電力の供給先を主負荷あるいは他の負荷のいず
れかに切り換える手段と、 燃料電池特性低下時に、燃料電池に供給する反応ガスの
うちの少なくとも一種類のガスの供給量を所定時間抑制
して燃料電池内の反応ガスの圧力を変化させる手段と、 反応ガスの圧力が変化しているときに前記切り換える手
段によって前記主負荷から前記他の負荷に電力の供給を
切り換え、当該他の負荷に強制的に電流を流す手段と、 を備え、特性が低下したときに前記切り換える手段によ
って電力の供給を主負荷から他の負荷に切り換えて燃料
電池の電極の電位を変化させて電解質を移動させ、低下
した特性が回復すると電力の供給を他の負荷から前記主
負荷に切り換えることを特徴とする溶融炭酸塩型燃料電
池。
1. An electric power generator having an anode electrode and a cathode electrode, using molten carbonate as an electrolyte, and supplying hydrogen enriched gas to the anode electrode side and mixed gas of air and carbon dioxide gas to the cathode electrode side as reaction gases. However, in a molten carbonate fuel cell that supplies electric power generated to the main load of the plant or other loads, means for switching the supply destination of the generated electric power to either the main load or another load, and deterioration of fuel cell characteristics Occasionally, means for changing the pressure of the reaction gas in the fuel cell by suppressing the supply amount of at least one kind of the reaction gas supplied to the fuel cell for a predetermined time, and when the pressure of the reaction gas is changing. And a means for switching the supply of electric power from the main load to the other load by the switching means and forcibly flowing a current to the other load. By switching the power supply from the main load to another load by changing means, the potential of the electrode of the fuel cell is changed to move the electrolyte, and when the deteriorated characteristics are restored, the power supply from the other load to the main load is restored. A molten carbonate fuel cell characterized by switching.
【請求項2】アノード電極とカソード電極を有し、溶融
炭酸塩を電解質にし、反応ガスとしてアノード電極側に
水素富化ガスを、カソード電極側に空気と炭酸ガスの混
合ガスを供給する型の単位セルを複数枚積層してなり、
プラントの主負荷あるいは他の負荷に電力を供給する溶
融炭酸塩型燃料電池の運転方法において、 燃料電池の出力が定格からあらかじめ設定した出力以下
に低下したときには、燃料電池に供給する反応ガスのう
ちの少なくとも一種類のガスの供給量を所定時間抑制し
て反応ガスの圧力を変化させ、さらに、前記主負荷から
他の負荷に電力の供給先を切り換えて強制的に他の負荷
に電流を流し、燃料電池の電極の電位を変化させて電解
質を移動させ、前記燃料電池の出力が回復すると、再び
前記変化させた反応ガスの供給量をあらかじめ設定され
た流量に戻すとともに他の負荷から主負荷に接続を切り
換えて発電を継続させることを特徴とする溶融炭酸塩型
燃料電池の運転方法。
2. A type having an anode electrode and a cathode electrode, using molten carbonate as an electrolyte, and supplying a hydrogen-enriched gas to the anode electrode side as a reaction gas and a mixed gas of air and carbon dioxide gas to the cathode electrode side. Made by stacking multiple unit cells,
In the method of operating a molten carbonate fuel cell that supplies electric power to the main load of the plant or other loads, when the output of the fuel cell falls below the preset output from the rating, the reaction gas to be supplied to the fuel cell is The supply amount of at least one kind of gas is suppressed for a predetermined time to change the pressure of the reaction gas, and further, the power supply destination is switched from the main load to another load to force the current to flow to the other load. When the electric potential of the electrode of the fuel cell is changed to move the electrolyte and the output of the fuel cell is restored, the changed supply amount of the reaction gas is returned to the preset flow rate and the main load is applied from other loads. A method for operating a molten carbonate fuel cell, characterized in that the connection is changed over to continue power generation.
【請求項3】アノード電極とカソード電極を有し、溶融
炭酸塩を電解質にし、反応ガスとしてアノード電極側に
水素富化ガスを、カソード電極側に空気と炭酸ガスの混
合ガスを供給する型の単位セルを複数枚積層してなり、
プラントの主負荷あるいは他の負荷に電力を供給する溶
融炭酸塩型燃料電池の運転方法において、 1単位セル以上からなるブロックの出力が定格からあら
かじめ設定した出力以下に低下したときには、前記ブロ
ックに供給する反応ガスのうちの少なくとも一種類のガ
スの供給量を所定時間抑制して燃料電池中の反応ガスの
圧力を変化させ、さらに、前記主負荷から他の負荷に電
力の供給先を切り換えて強制的に他の負荷に電流を流
し、前記電極の電位を変化させて電解質を移動させ、前
記ブロックの出力が回復すると、再び前記変化させた反
応ガスの供給量をあらかじめ設定された流量に戻すとと
もに他の負荷から主負荷に接続を切り換えて発電を継続
させることを特徴とする溶融炭酸塩型燃料電池の運転方
法。
3. A type which has an anode electrode and a cathode electrode, uses molten carbonate as an electrolyte, and supplies a hydrogen-enriched gas to the anode electrode side as a reaction gas and a mixed gas of air and carbon dioxide gas to the cathode electrode side. Made by stacking multiple unit cells,
In a method of operating a molten carbonate fuel cell that supplies electric power to a main load or other loads of a plant, when the output of a block consisting of one unit cell or more drops from a rated value to a preset output or less, the power is supplied to the block. The supply amount of at least one kind of the reaction gas to be controlled is changed for a predetermined time to change the pressure of the reaction gas in the fuel cell, and the power supply destination is switched from the main load to another load and forced. A current to another load, the potential of the electrode is changed to move the electrolyte, and when the output of the block is restored, the changed supply amount of the reaction gas is returned to a preset flow rate. A method for operating a molten carbonate fuel cell, characterized in that connection is switched from another load to a main load to continue power generation.
JP62001624A 1987-01-09 1987-01-09 Molten carbonate fuel cell and operating method thereof Expired - Fee Related JPH0782868B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62001624A JPH0782868B2 (en) 1987-01-09 1987-01-09 Molten carbonate fuel cell and operating method thereof
US07/141,646 US4810595A (en) 1987-01-09 1988-01-06 Molten carbonate fuel cell, and its operation control method
NL8801797A NL193678C (en) 1987-01-09 1988-07-14 Fuel cell with molten carbonate.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62001624A JPH0782868B2 (en) 1987-01-09 1987-01-09 Molten carbonate fuel cell and operating method thereof

Publications (2)

Publication Number Publication Date
JPS63170865A JPS63170865A (en) 1988-07-14
JPH0782868B2 true JPH0782868B2 (en) 1995-09-06

Family

ID=11506686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62001624A Expired - Fee Related JPH0782868B2 (en) 1987-01-09 1987-01-09 Molten carbonate fuel cell and operating method thereof

Country Status (1)

Country Link
JP (1) JPH0782868B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4810595A (en) * 1987-01-09 1989-03-07 New Energy Development Organization Molten carbonate fuel cell, and its operation control method
JPH03179671A (en) * 1989-12-06 1991-08-05 Matsushita Electric Ind Co Ltd Performance recovery method for molten carbonate fuel cell
US6096449A (en) * 1997-11-20 2000-08-01 Avista Labs Fuel cell and method for controlling same
US6329089B1 (en) 1997-12-23 2001-12-11 Ballard Power Systems Inc. Method and apparatus for increasing the temperature of a fuel cell
US6096448A (en) * 1997-12-23 2000-08-01 Ballard Power Systems Inc. Method and apparatus for operating an electrochemical fuel cell with periodic fuel starvation at the anode
US6472090B1 (en) 1999-06-25 2002-10-29 Ballard Power Systems Inc. Method and apparatus for operating an electrochemical fuel cell with periodic reactant starvation
KR20040001639A (en) * 2002-06-28 2004-01-07 현대자동차주식회사 Fuel cell stack monitoring system
KR20050006916A (en) * 2003-07-10 2005-01-17 현대자동차주식회사 Method of controlling speed of air blower in fuel cell electric vehicle

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7903426A (en) * 1979-05-02 1980-11-04 Electrochem Energieconversie METHOD FOR OPERATING A FUEL CELL

Also Published As

Publication number Publication date
JPS63170865A (en) 1988-07-14

Similar Documents

Publication Publication Date Title
US4810595A (en) Molten carbonate fuel cell, and its operation control method
US4904548A (en) Method for controlling a fuel cell
US7514166B2 (en) Reduction of SOFC anodes to extend stack lifetime
US6329089B1 (en) Method and apparatus for increasing the temperature of a fuel cell
US7691507B2 (en) Combination fuel cell and ion pump, and methods and infrastructure systems employing same
TW200403883A (en) Fuel cell apparatus
CA2397682A1 (en) Multipurpose reversible electrochemical system
JP4021880B2 (en) Fuel cell conditioning and temperature control
JPH0782868B2 (en) Molten carbonate fuel cell and operating method thereof
JPH05251102A (en) Phospholic acid type fuel cell power generating plant
KR101418422B1 (en) System for independent start-up of fuel cell for ship
JP2002367615A (en) Solid oxide fuel cell
KR20150107154A (en) Method for operating a pressurized sofc hybrid power generation system with a micro-gas turbine
JP5025389B2 (en) Control method for fuel cell power generation system and fuel cell power generation system
JPH01304668A (en) Phosphoric acid type fuel cell power generating plant
JP2006179389A (en) Fuel cell power generating device, stopping method and stopped-state keeping method of the same
JPH0622153B2 (en) How to operate a fuel cell
JPS6010566A (en) Operation of fuel cell
US7700217B2 (en) Electrolyte migration control for large area MCFC stacks
JPH08190929A (en) Fuel cell power generating plant
JP2019522325A (en) Regeneration of fuel cell electrodes
JPH05335030A (en) Method for enhancing performance of fuel cell
Lee et al. Effect of reverse voltage on proton exchange membrane fuel cell performance
Guan et al. Development and Performance of Planar SOFC Stacks
JPH06196185A (en) Fuel cell power generation plant

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees