JPH0782808B2 - Impregnated cathode - Google Patents

Impregnated cathode

Info

Publication number
JPH0782808B2
JPH0782808B2 JP20154386A JP20154386A JPH0782808B2 JP H0782808 B2 JPH0782808 B2 JP H0782808B2 JP 20154386 A JP20154386 A JP 20154386A JP 20154386 A JP20154386 A JP 20154386A JP H0782808 B2 JPH0782808 B2 JP H0782808B2
Authority
JP
Japan
Prior art keywords
cathode
cathode substrate
porous
substrate
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20154386A
Other languages
Japanese (ja)
Other versions
JPS6358726A (en
Inventor
克久 本間
義昭 大内
栄 木村
勝 二階堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20154386A priority Critical patent/JPH0782808B2/en
Publication of JPS6358726A publication Critical patent/JPS6358726A/en
Publication of JPH0782808B2 publication Critical patent/JPH0782808B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、電子管に用いる含浸形陰極に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an impregnated cathode used in an electron tube.

(従来の技術) 周知のように近来は電子放出用の多孔質陰極基体表面部
に、Ir(イリジウム)やOs(オスミウム)など、あるい
はそれを含む合金を被覆した含浸形陰極が実用になって
いる。その一例として特開昭60−138822号公報に開示さ
れる陰極がある。それは、電子放射物質が含浸される多
孔質陰極基体として、W(タングステン)のような耐熱
性金属とOs、Ir、Ruの中から選択された1または多元素
を5〜30原子%添加したものである。
(Prior Art) As is well known, recently, impregnated cathodes in which the surface of a porous cathode substrate for electron emission is coated with Ir (iridium), Os (osmium), or an alloy containing it have become practical. There is. One example is the cathode disclosed in JP-A-60-138822. It is a porous cathode substrate that is impregnated with an electron emitting material, in which a heat-resistant metal such as W (tungsten) and one or multiple elements selected from Os, Ir, and Ru are added in an amount of 5 to 30 atom%. Is.

(発明が解決しようとする問題点) ところでこのような陰極は、多孔質陰極基体中に添加さ
れるIr等の量が多過ぎ、次のような不都合を有すること
が明らかになった。すなわち、多孔質陰極基体を構成す
るW量に対し、Ir量の比率が大きくなり過ぎると、融点
がIrの方が低いので焼結時や後工程のろう付け時、ある
いは電子放射物質含浸時に焼結が進み過ぎる。その結
果、陰極基体が収縮し過ぎて寸法が変化してしまう。ま
た陰極基体の空孔率が小さくなる結果、電子放射物質の
含浸率が十分得られない。さらにまた、陰極動作時、電
子放射物質を還元してフリーBaを生成する際にも、Wに
比較してIrは還元能力が低い(ほとんど期待できない)
ので、この多孔質陰極基体中への余分な量のIr含有は望
ましくない。
(Problems to be Solved by the Invention) By the way, it has been revealed that such a cathode has the following disadvantages because the amount of Ir or the like added to the porous cathode substrate is too large. That is, when the ratio of the amount of Ir to the amount of W constituting the porous cathode substrate becomes too large, the melting point of Ir is lower, so that the sintering is performed during sintering, brazing in a later process, or impregnation with an electron emitting substance. The result is too advanced. As a result, the cathode substrate shrinks too much and the dimensions change. Further, as a result of the reduced porosity of the cathode substrate, a sufficient impregnation rate of the electron emitting substance cannot be obtained. Furthermore, when the electron emitting material is reduced to produce free Ba during the operation of the cathode, Ir has a lower reducing ability than W (almost cannot be expected).
Therefore, the inclusion of an excessive amount of Ir in this porous cathode substrate is not desirable.

この発明は、以上のような不都合を解消し多孔質陰極基
体の収縮等の変化を余分に生ぜず、且つ陰極表面の合金
層が長時間にわたって安定に維持され、動作初期から長
時間にわたり安定な電子放射特性をもつ含浸形陰極を提
供することを目的とする。
The present invention eliminates the above inconveniences, does not cause extra changes such as shrinkage of the porous cathode substrate, keeps the alloy layer on the cathode surface stable for a long time, and stabilizes for a long time from the initial operation. It is an object to provide an impregnated cathode having electron emission characteristics.

[発明の構成] (問題点を解決するための手段) この発明は、多孔質陰極基体が、0.5乃至2.0原子%の範
囲でイリジウムが固溶されたタングステンからなり、か
つこの多孔質陰極基体表面にイリジウムとタングステン
との合金被覆層が形成されてなる含浸形陰極である。
[Structure of the Invention] (Means for Solving the Problems) The present invention is directed to a porous cathode substrate made of tungsten in which iridium is dissolved in the range of 0.5 to 2.0 atomic%, and the surface of the porous cathode substrate is It is an impregnated cathode in which an alloy coating layer of iridium and tungsten is formed on.

(作用) この種含浸形陰極の表面合金被覆層が、その動作中も安
定してあるためには、下地のW中への被覆層中のIrの拡
散を防ぐ必要がある。そこでこの発明では、多孔質陰極
基体を構成する多孔質W中に、固溶限界程度の所定量す
なわち0.5原子%乃至2.0原子%の範囲でIrを予め固溶さ
せておくことにより、表面合金被覆層から基体中へのIr
の拡散流出が抑制されることを応用している。それによ
り、合金被覆層が動作初期から長時間にわたって安定な
状態が維持される。また余分な量のIrが含まれないため
に、多孔質陰極基体の製造工程における収縮や変形、あ
るいは空孔率の低下もなく、さらに陰極動作時に遊離Ba
の生成が防げられることもほどんどない。こうして初期
から長時間にわたり安定な電子放射特性が得られる。な
お、陰極基体中に固溶させるIr量は、陰極動作温度に応
じて上記の範囲内でほぼ比較的に調整設定すればよい。
(Function) In order for the surface alloy coating layer of the seed-impregnated cathode to be stable during its operation, it is necessary to prevent the diffusion of Ir in the coating layer into the underlying W. Therefore, in the present invention, the surface alloy coating is obtained by pre-dissolving Ir in the porous W constituting the porous cathode substrate in a predetermined amount around the solid solution limit, that is, in the range of 0.5 atom% to 2.0 atom%. Ir from layer to substrate
It is applied that the diffusion outflow of is suppressed. As a result, the alloy coating layer maintains a stable state for a long time from the initial operation. Further, since an excess amount of Ir is not contained, there is no shrinkage or deformation in the manufacturing process of the porous cathode substrate, or reduction in porosity, and further, free Ba is generated during cathode operation.
It is unlikely that the generation of will be prevented. Thus, stable electron emission characteristics can be obtained for a long time from the initial stage. The amount of Ir solid-dissolved in the cathode substrate may be adjusted and set relatively within the above range according to the cathode operating temperature.

(実施例) 以下その実施例を図面を参照して説明する。(Example) Hereinafter, the example will be described with reference to the drawings.

第1図に示すようにタンタル(Ta)あるいはモリブデン
(Mo)のような高融点金属のスリーブ11の内側に、加熱
用ヒータ12がアルミナセラミック絶縁物13によって埋込
まれ、このスリーブ11の一端に多孔質陰極基体14がろう
材層15を介して接合されている。そしてこの多孔質陰極
基体14の表面に、表面被覆層16が形成されている。
As shown in FIG. 1, a heater 12 for heating is embedded inside a sleeve 11 made of a refractory metal such as tantalum (Ta) or molybdenum (Mo) by an alumina ceramic insulator 13. The porous cathode substrate 14 is bonded via the brazing material layer 15. A surface coating layer 16 is formed on the surface of the porous cathode substrate 14.

この発明の実施例の特徴点は、多孔質陰極基体が、約2.
0原子%以下、0.5原子%以上の範囲でIrを固溶したαW
(アルファ・タングステン)からなる点にある。すなわ
ち、後述するようにIr−W状態図から、W中へのIrの限
界固溶率は、陰極動作温度が900℃〜1100℃程度の動作
温度で約0.5原子%〜2.0原子%と推定されるので、この
範囲で予めIrをW基体中に固溶させておく。
The feature of the embodiment of the present invention is that the porous cathode substrate has about 2.
ΑW containing Ir as a solid solution in the range of 0 atom% or less and 0.5 atom% or more
It is composed of (alpha tungsten). That is, as will be described later, from the Ir-W phase diagram, the critical solid solution rate of Ir in W is estimated to be about 0.5 atom% to 2.0 atom% at an operating temperature of the cathode operating temperature of 900 ° C to 1100 ° C. Therefore, Ir is solid-dissolved in the W base in advance within this range.

次にこの陰極の好ましい製法方法について述べる。多孔
質陰極基体14として、粒径が3〜10μmのW粉末に1原
子%(約1.04重量%に相当)だけ粒径が0.1〜1μmのI
r粉末を混合し、静水圧で1.5ton/cm2の圧力をかけ圧縮
成形した。次にこれを水素雰囲気中で、1750℃、8時間
の仮焼結を行ない、さらに真空中で2200℃、2時間の焼
結を行なった。以上の焼結によりIrがW中へ拡散固溶し
た多孔質陰極基体が得られた。その空孔率は約20%であ
った。
Next, a preferable method for producing this cathode will be described. As the porous cathode substrate 14, 1 atom% (corresponding to about 1.04% by weight) of W powder having a particle size of 3 to 10 μm and I having a particle size of 0.1 to 1 μm
The r powders were mixed and subjected to compression molding under a hydrostatic pressure of 1.5 ton / cm 2 . Next, this was pre-sintered in a hydrogen atmosphere at 1750 ° C. for 8 hours, and further, sintered in vacuum at 2200 ° C. for 2 hours. By the above-mentioned sintering, a porous cathode substrate in which Ir was solid-dissolved in W was obtained. The porosity was about 20%.

この様にして得られた多孔質焼結体の空孔部に、切削加
工を容易にするため銅を含浸し、旋盤を用いて直径が4.
5mm、厚さが1.3mmの円盤状に切削加工した。次に銅を硝
酸及び水素中の高温加熱により除去して多孔質陰極基
体14を完成させた。
The pores of the porous sintered body thus obtained were impregnated with copper for facilitating cutting, and the diameter was 4.
It was cut into a disc with a thickness of 5 mm and a thickness of 1.3 mm. Next, copper was removed by heating at high temperature in nitric acid and hydrogen to complete the porous cathode substrate 14.

次にMo製のスリーブ11をRu−Moろう材を用いてろう付け
し、さらに、ヒータ12を埋込剤13を用いてMoスリーブ11
内に埋込んだ。
Next, the Mo sleeve 11 is brazed using a Ru-Mo brazing material, and the heater 12 is further embedded with an embedding agent 13 to form the Mo sleeve 11.
Embedded inside.

さらにBaO、CaO、Al2O3(モル比で4:1:1)からなる電子
放射物質を、高温水素雰囲気中で多孔質基体14中に溶融
含浸させた。
Further, an electron emitting material composed of BaO, CaO and Al 2 O 3 (molar ratio 4: 1: 1) was melt-impregnated into the porous substrate 14 in a high temperature hydrogen atmosphere.

更に、この多孔質陰極基体の表面に、IrとWの合金εII
相よりなる膜厚約5000Åの被覆層16を形成して陰極を完
成させた。
Further, on the surface of this porous cathode substrate, an alloy of Ir and W ε II
The coating layer 16 having a thickness of about 5000 Å consisting of phases was formed to complete the cathode.

ここで、εII相は飽和W濃度を示すε相を意味する。こ
の表面Ir−W合金被覆層16の形成は、IrとWの二元スパ
ッタリング法を用いて行なうことができる。通常のスパ
ッタコーティング後、真空排気中の高温加熱することに
よりεII相が形成される。なお、Irのみをコーティング
したうえ、真空中で1200℃程度の温度で数時間加熱する
方法でも、下地のWがIr被覆層中に拡散、合金化して同
様なεII相からなる表面被膜層が形成される。ただし、
この方法の場合は、εII相形成後の膜厚が、Ir被覆膜厚
の約2倍となるため、Irは完成品の所望膜厚の約1/2程
度の厚さにコーティングすればよい。なお、この表面合
金被覆層16の組成比は、Irが45原子%乃至80原子%の範
囲、Wが55原子乃至20原子%の範囲で効果があるが、よ
り好ましくはIrが45〜50原子%、Wが50〜55原子%の範
囲にする。
Here, the ε II phase means an ε phase exhibiting a saturated W concentration. The surface Ir—W alloy coating layer 16 can be formed by a dual sputtering method of Ir and W. After ordinary sputter coating, ε II phase is formed by heating at high temperature in vacuum exhaust. Even when only Ir is coated and heated in vacuum at a temperature of about 1200 ° C. for several hours, the underlying W is diffused and alloyed in the Ir coating layer to form a surface coating layer composed of the same ε II phase. It is formed. However,
In the case of this method, the film thickness after the εII phase formation is about twice the Ir coating film thickness, so Ir should be coated to a thickness of about 1/2 of the desired film thickness of the finished product. . The composition ratio of the surface alloy coating layer 16 is effective when Ir is in the range of 45 atom% to 80 atom% and W is in the range of 55 atom to 20 atom%, but more preferably Ir is 45 to 50 atom. %, W in the range of 50 to 55 atomic%.

合金化の進行はε相の飽和W濃度を示す領域すなわちε
II相まで速かに進行して、そこで安定する。これは真空
中で高温加熱しながら測定したX線回折装置による測定
結果から判明した。電子放射特性の活性化は、このεII
相の形成に伴って進行することがわかっている。従って
良好な電子放射特性を得るためには、εII相からなる陰
極基体表面が必要であると推察される。そして、IrとW
との表面合金被膜層は、εII相形成後の状態変化はきわ
めて小さい。これは陰極動作温度で、Ir中、あるいは飽
和W濃度に至る以前のε相中へのWの拡散速度よりも、
W中へのIrの拡散速度がきわめて小さいためであると考
えられる。ところで、前述のように陰極動作温度(約10
00℃)付近でWにIrが約2.0原子%程度、あるいはそれ
以下固溶すると考えられる。したがって、前述したよう
にεII相形成後の表面層は、比較的安定ではあるが多孔
質陰極基体がWのみであると、長時間動作に伴い表面合
金被覆層中のIrが基体のW中へ拡散していくことが予想
される。すなわちこの場合、合金化後の陰極動作初期に
おいてはεII相がほぼ100%であった表面合金被覆層中
に、陰極動作の進行とともにαW相が析出し、その割合
が除々に大きくなっていくと考えられる。
The progress of alloying depends on the region showing the saturated W concentration of the ε phase, that is, ε
It quickly progresses to Phase II and stabilizes there. This was found from the measurement result by the X-ray diffractometer, which was measured while heating at high temperature in vacuum. The activation of the electron emission characteristic depends on this ε II
It is known to proceed with the formation of phases. Therefore, in order to obtain good electron emission characteristics, it is presumed that the cathode substrate surface composed of the ε II phase is necessary. And Ir and W
In the surface alloy coating layer of and, the state change after the ε II phase formation is extremely small. This is the cathode operating temperature, and the diffusion rate of W in Ir or in the ε phase before reaching the saturated W concentration is
It is considered that this is because the diffusion rate of Ir into W is extremely low. By the way, as mentioned above, the cathode operating temperature (about 10
It is considered that Ir is dissolved in W at about 2.0 at. Therefore, as described above, the surface layer after the formation of the ε II phase is relatively stable, but if the porous cathode substrate is only W, the Ir in the surface alloy coating layer will remain in the W of the substrate during long-term operation. Is expected to spread. That is, in this case, in the surface alloy coating layer in which the ε II phase was almost 100% in the initial stage of the cathode operation after alloying, the αW phase was precipitated with the progress of the cathode operation, and the ratio was gradually increased. it is conceivable that.

陰極最表面についてみれば動作初期にεII相で覆われて
いたものが時間の経過とともにWの露出部分が多くな
り、金属被覆層を設けた効果が薄らいでいくことにな
る。これは電子放射特性の劣化につながり、極めて好ま
しくない現象である。
As for the outermost surface of the cathode, what was covered with the ε II phase at the initial stage of operation had a large exposed portion of W with the passage of time, and the effect of providing the metal coating layer was weakened. This is a phenomenon that leads to deterioration of electron emission characteristics and is extremely undesirable.

そこで、本発明者らは、Ir被覆含浸形陰極の表面合金被
覆層の長時間動作に伴う変化を実験により解析した。す
なわち、比較品として多孔質陰極基体がWのみからなる
もの、Irを約1.0原子%を含むこの発明の実施例のもの
とついて、それぞれ陰極動作の比較的初期のもの(500
時間動作品)と、約1万時間動作品とで陰極表面を走査
形電子顕微鏡、X線回折装置、オージェ電子分光装置で
解析し比較検討した。なお、合金被覆層の変化をなるべ
く短時間で観測できるように、試験サンプルとしてIr被
覆層の厚さが約1500Åと比較的薄い陰極を用いた。そし
て、通常の動作温度である1000℃b−Ta(タンタルの輝
度温度)乃至920℃b−Ta)よりも高い1090℃b−Taの
高温強制条件で動作をさせた。また、陰極電流は、1A/c
m2相当で動作させた。
Therefore, the inventors of the present invention experimentally analyzed changes in the surface alloy coating layer of the Ir-coated impregnated cathode with long-term operation. That is, as comparative products, the porous cathode substrate consisting only of W and the embodiment of the present invention containing about 1.0 atom% of Ir, respectively, were comparatively early in the cathode operation (500
The surface of the cathode was analyzed by a scanning electron microscope, an X-ray diffractometer, and an Auger electron spectroscope for a time operation product) and a product operated for about 10,000 hours, and a comparative study was performed. As a test sample, a cathode having a relatively thin Ir coating layer of about 1500 Å was used so that changes in the alloy coating layer could be observed in the shortest possible time. Then, the device was operated under a high temperature forced condition of 1090 ° C.-Ta, which is higher than the normal operating temperature of 1000 ° C. b-Ta (brightness temperature of tantalum) to 920 ° C. b-Ta). The cathode current is 1A / c.
It was operated at m 2 .

その結果は次の通りである。The results are as follows.

X線回折装置による解析結果は、比較品もこの発明
実施例のものとも、500時間、1万時間動作のいずれで
も、εIIとWのピークを検出した。そして格子定数の変
化はなかった。
As a result of analysis by the X-ray diffractometer, the peaks of ε II and W were detected in both the comparative product and the example of the present invention during the operation for 500 hours and 10,000 hours. And the lattice constant did not change.

走査形電子顕微鏡による解析では、比較品は下地の
露出した部分が見られ、500時間動作後のの合金引福層
は概ねレース状の組織に観察され、1万時間動作品はレ
ース状組織も見られるが下地との境界がやや不明瞭とな
っている。それに対してこの発明実施例のものは、500
時間動作品、1万時間動作品のいずれにおいても、下地
のW露出部はほとんど認められない。
In the analysis using a scanning electron microscope, the exposed part of the base material was observed in the comparative product, and the alloyed Fukui layer after 500 hours of operation was observed in a roughly lace-like structure. It can be seen, but the boundary with the base is somewhat unclear. In contrast, the embodiment of the present invention is 500
In both the time-actuated product and the 10,000-hour actuated product, the W exposed portion of the base is hardly recognized.

アルゴン・イオン銃を用いたオージェ電子分光装置
で解析したディプスプロファイルでは、比較品ではその
最表面近傍の平均化されたW濃度が、500時間動作品に
比較して1万時間動作品では約10%増加して約65%とな
っていた。これは上述のの走査形電子顕微鏡による解
析結果に対応するものと考えられる。
In the depth profile analyzed by Auger electron spectroscopy using an argon ion gun, the average W concentration near the outermost surface of the comparative product is about 10 in the 10,000-hour operation product compared to the 500-hour operation product. % To about 65%. This is considered to correspond to the analysis result by the above-mentioned scanning electron microscope.

これに対してこの発明実施例のものは、約52%で動作初
期とほとんど変化していないことが明らかになった。
On the other hand, it was revealed that in the example of the present invention, about 52%, there was almost no change from the initial stage of operation.

第2図はこの発明実施例の陰極と比較品との長時間動作
による電子放射特性の変化を比較した結果である。それ
らの評価は、1100℃b−Moの高温強制動作で、初期値と
して陰極電流が2A/cm2相当の電子放射が得られるように
一定の陽極電圧を印加して、陰極電流の変化を追跡した
ものである。同図の曲線Aはこの発明実施例の電子放射
特性を示し、曲線Bは比較品の特性を示す。寿命試験1
万時間時の陰極電流衰退率は、比較品で約10%であるの
に対し、この発明の陰極では約4%にとどまり、明らか
にこの発明実施例のものの方が良好な特性を示した。し
たがって、例えば陰極電流が10%減衰する時点を寿命と
みなせば、比較品の約1万時間に対しこの発明実施例の
陰極は約4倍の7.4万時間以上が期待される。
FIG. 2 shows the results of comparison of changes in electron emission characteristics between the cathode of the embodiment of the present invention and the comparative product due to long-term operation. These evaluations were carried out at 1100 ° C b-Mo high temperature forced operation, and a constant anode voltage was applied so as to obtain electron emission with a cathode current equivalent to 2 A / cm 2 as an initial value, and the change in cathode current was traced. It was done. A curve A in the figure shows the electron emission characteristic of the embodiment of the present invention, and a curve B shows the characteristic of the comparative product. Life test 1
The decay rate of the cathode current at ten thousand hours was about 10% for the comparative product, while it was only about 4% for the cathode of the present invention, clearly indicating that the inventive example showed better characteristics. Therefore, for example, if the time when the cathode current decays by 10% is regarded as the life, the cathode of this invention example is expected to be four times as long as 74,000 hours or more, compared to about 10,000 hours of the comparative product.

このように、比較品では陰極動作にともなって陰極表面
劣化が進行していることが確認された。すなわち、表面
が飽和W濃度を示すIr−WのεII相からなる表面合金層
形成後、この表面合金層から基体金属のW中へIrが除々
に拡散する。それに伴って表面層中にα−W相が析出し
その割合が動作時間の経過とともに大きくなる。そのた
め最表面にもα−W相が露出し、陰極表面被覆層は長時
間動作によって変質しその表面効果が減少する。このた
め電子放射特性の劣化が大きい。
In this way, it was confirmed that the cathode surface deterioration of the comparative product progressed with the operation of the cathode. That is, after the surface alloy layer composed of the Ir-W εII phase showing the saturated W concentration on the surface is formed, Ir gradually diffuses from this surface alloy layer into W of the base metal. Along with this, the α-W phase is precipitated in the surface layer, and the proportion thereof increases with the lapse of operating time. Therefore, the α-W phase is exposed on the outermost surface, and the cathode surface coating layer is deteriorated by long-term operation and its surface effect is reduced. Therefore, the electron emission characteristics are greatly deteriorated.

なお、特開昭60−138822号公報に開示される陰極のよう
にW陰極基体なかにIrを5〜30原子%というように多く
固溶させた陰極は、前述のように陰極基体の焼結時や後
工程のろう付け時、あるいは電子放射物質含浸時に焼結
が進み過ぎ、陰極基体が収縮し過ぎて寸法が変化してし
まう。また陰極基体の空孔率が小さくなるので、電子放
射物質の含浸率が十分得られない。さらにまた、陰極動
作時、電子放射物質を還元してフリーBaを生成する際に
も、Irによる還元能力はほとんど期待できないので、総
じて動作初期から長時間動作において電子放射特性も不
安定で且つ比較的低い傾向を示すものと考えられる。
The cathode disclosed in JP-A-60-138822 is a cathode in which a large amount of Ir is dissolved in the W cathode substrate such as 5 to 30 atom%, and the cathode substrate is sintered as described above. At the time of brazing in a later step, or when impregnated with an electron emitting substance, sintering proceeds excessively, and the cathode substrate shrinks too much to change the dimensions. Further, since the porosity of the cathode substrate becomes small, the impregnation rate of the electron emitting substance cannot be sufficiently obtained. In addition, since the reducing ability by Ir can hardly be expected even when reducing the electron emitting substance to generate free Ba during the cathode operation, the electron emission characteristics are generally unstable from the initial operation to the long-term operation and the comparison is made. It is considered that the tendency tends to be low.

[発明の効果] 以上説明したようにこの発明によれば、基体金属のW中
に、予め飽和濃度のIrを固溶させておくことにより、表
面合金層からのIrの拡散流出が抑えられる。したがって
動作初期から長時間にわたって安定な電子放射特性が得
られる。また多孔質陰極基体中に余分な量のIrが固溶し
ていないので、この基体の焼結、収縮が過度に進行しな
い。したがって陰極基体の寸法変化がなく、且つ空孔率
の減少も少ないなど、製造上の利点も多い。
[Effects of the Invention] As described above, according to the present invention, by preliminarily forming a solid solution of Ir having a saturation concentration in W of the base metal, diffusion outflow of Ir from the surface alloy layer can be suppressed. Therefore, stable electron emission characteristics can be obtained for a long time from the initial operation. Further, since an excessive amount of Ir does not form a solid solution in the porous cathode substrate, sintering and shrinkage of this substrate do not proceed excessively. Therefore, there are many manufacturing advantages such as dimensional change of the cathode substrate and little decrease in porosity.

なお、この発明は表面被膜層が薄い場合にとくに効果が
ある。すなわち、膜厚をかなり薄くしても表面合金被膜
層の機能は長時間にわたって安定に発揮される。その膜
厚は50Å〜10,000Åが適当である。
The present invention is particularly effective when the surface coating layer is thin. That is, the function of the surface alloy coating layer is stably exerted for a long time even if the film thickness is considerably reduced. A suitable film thickness is 50Å to 10,000Å.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の実施例に関わる含浸形陰極の断面
図、第2図は電子放射特性図である。 14……多孔質陰極基体 16……表面合金被覆層
FIG. 1 is a sectional view of an impregnated cathode according to an embodiment of the present invention, and FIG. 2 is an electron emission characteristic diagram. 14 …… Porous cathode substrate 16 …… Surface alloy coating layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 二階堂 勝 神奈川県川崎市幸区堀川町72 株式会社東 芝堀川町工場内 (56)参考文献 特開 昭60−138822(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Katsu Nikaido 72 Horikawa-cho, Sachi-ku, Kawasaki-shi, Kanagawa Higashi-shiba Horikawa-cho, Higashi Co., Ltd. (56) References JP-A-60-138822 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】高融点金属粉末を焼結して得られた多孔質
陰極基体と、この多孔質陰極基体内に含浸された電子放
射物質とを具備してなる含浸形陰極において、 上記多孔質陰極基体が、0.5原子%乃至2.0原子%の範囲
でイリジウムが固溶されたタングステンからなり、かつ
上記多孔質陰極基体表面にイリジウムとタングステンと
の合金属が形成されてなる含浸形陰極。
1. An impregnated cathode comprising a porous cathode substrate obtained by sintering a refractory metal powder and an electron-emitting substance impregnated in the porous cathode substrate, wherein An impregnated cathode in which the cathode substrate is made of tungsten in which iridium is solid-soluted in the range of 0.5 at% to 2.0 at%, and an alloy of iridium and tungsten is formed on the surface of the porous cathode substrate.
【請求項2】合金層は、その膜厚が50Å乃至10,000Åの
範囲である特許請求の範囲第1項記載の含浸形陰極。
2. The impregnated cathode according to claim 1, wherein the film thickness of the alloy layer is in the range of 50Å to 10,000Å.
JP20154386A 1986-08-29 1986-08-29 Impregnated cathode Expired - Lifetime JPH0782808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20154386A JPH0782808B2 (en) 1986-08-29 1986-08-29 Impregnated cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20154386A JPH0782808B2 (en) 1986-08-29 1986-08-29 Impregnated cathode

Publications (2)

Publication Number Publication Date
JPS6358726A JPS6358726A (en) 1988-03-14
JPH0782808B2 true JPH0782808B2 (en) 1995-09-06

Family

ID=16442790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20154386A Expired - Lifetime JPH0782808B2 (en) 1986-08-29 1986-08-29 Impregnated cathode

Country Status (1)

Country Link
JP (1) JPH0782808B2 (en)

Also Published As

Publication number Publication date
JPS6358726A (en) 1988-03-14

Similar Documents

Publication Publication Date Title
US4518890A (en) Impregnated cathode
EP0091161B1 (en) Methods of manufacturing a dispenser cathode and dispenser cathode manufactured according to the method
EP0317002B1 (en) Scandate cathode
US4675570A (en) Tungsten-iridium impregnated cathode
EP0053867B1 (en) Thermionic electron emitters and methods of making them
US5264757A (en) Scandate cathode and methods of making it
US4274030A (en) Thermionic cathode
JPH09500232A (en) Dispenser cathode and method of manufacturing dispenser cathode
EP0390269B1 (en) Scandate cathode
JPH0782808B2 (en) Impregnated cathode
JP2710700B2 (en) Method for producing impregnated cathode and cathode obtained by this method
US5418070A (en) Tri-layer impregnated cathode
EP0157634B1 (en) Tungsten-iridium impregnated cathode
JPH01267927A (en) Solid-liquid matrix cathode
JPS6134218B2 (en)
JPS6261236A (en) Impregnated cathode body structure
JPS5812694B2 (en) Grid electrode for discharge vessel
JPS612226A (en) Impregnated cathode
JPS6032232A (en) Impregnated cathode
KR920004551B1 (en) Dispensor cathode
JP3225523B2 (en) Impregnated cathode
JPH0552617B2 (en)
JPS5979934A (en) Impregnated cathode
JPS6334832A (en) Manufacture of impregnated cathode
JPS5918539A (en) Impregnated cathode

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term