JPS5812694B2 - Grid electrode for discharge vessel - Google Patents

Grid electrode for discharge vessel

Info

Publication number
JPS5812694B2
JPS5812694B2 JP47130110A JP13011072A JPS5812694B2 JP S5812694 B2 JPS5812694 B2 JP S5812694B2 JP 47130110 A JP47130110 A JP 47130110A JP 13011072 A JP13011072 A JP 13011072A JP S5812694 B2 JPS5812694 B2 JP S5812694B2
Authority
JP
Japan
Prior art keywords
grid electrode
grid
intermediate layer
electron emission
platinum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP47130110A
Other languages
Japanese (ja)
Other versions
JPS4874968A (en
Inventor
ローベルト・バツハマン
カルライ・ブツクスバウム
ベノ・ツイゲルリツヒ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri France SA
Original Assignee
BBC Brown Boveri France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri France SA filed Critical BBC Brown Boveri France SA
Publication of JPS4874968A publication Critical patent/JPS4874968A/ja
Publication of JPS5812694B2 publication Critical patent/JPS5812694B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J19/00Details of vacuum tubes of the types covered by group H01J21/00
    • H01J19/28Non-electron-emitting electrodes; Screens
    • H01J19/30Non-electron-emitting electrodes; Screens characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2893/00Discharge tubes and lamps
    • H01J2893/0001Electrodes and electrode systems suitable for discharge tubes or lamps
    • H01J2893/0012Constructional arrangements
    • H01J2893/0019Chemical composition and manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/923Physical dimension
    • Y10S428/924Composite
    • Y10S428/926Thickness of individual layer specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/934Electrical process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]
    • Y10T428/12063Nonparticulate metal component
    • Y10T428/12069Plural nonparticulate metal components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12875Platinum group metal-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12986Adjacent functionally defined components

Landscapes

  • Powder Metallurgy (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
  • Solid Thermionic Cathode (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 この発明は、モリブデン又はタングステンを形成するワ
イヤと白金属で被覆された金属間結合から成る中間層と
を備えた格子電極に関する。
DETAILED DESCRIPTION OF THE INVENTION The invention relates to a grid electrode comprising wires forming molybdenum or tungsten and an intermediate layer consisting of intermetallic bonds coated with white metal.

熱による電子放出を小さくするために、格子電極に周期
律表の■族の貴金属、例えば特に白金を被覆することは
知られている。
In order to reduce electron emission due to heat, it is known to coat the grid electrode with a noble metal from group 1 of the periodic table, such as platinum in particular.

格子ワイヤ(線材基材金属)内への白金の拡散を小さく
し、放射能力を高めるために、基材金属と前記被覆との
間に中間層を設けることは既に提案されている。
In order to reduce the diffusion of platinum into the grid wire (wire base metal) and increase the radiation capacity, it has already been proposed to provide an intermediate layer between the base metal and the coating.

中間層の製造に適した材料もしくは物質としては、高融
点金属の炭素化合物、ホウ素化合物又はシリコン化合物
が提唱されている。
Carbon, boron or silicon compounds of refractory metals have been proposed as materials or substances suitable for the production of the intermediate layer.

このような公知の方法は、次のような欠点を有している
Such known methods have the following drawbacks.

即ち、被層材料と基材金属間欠は多数の被層成分相互間
で多かれ少なかれ迅速な反応が生じ、その反応生成物が
Th−W陰極の蒸発生成物により活性化されると云う欠
点である。
That is, the discontinuity between the coating material and the base metal is a disadvantage in that a more or less rapid reaction occurs between a number of coating components, and the reaction products are activated by the evaporation products of the Th-W cathode. .

カーバイドを中間層として使用するすべての方法には、
時間が経過すると共に、基材金属とカーバイドとが、格
子をもろくすると云う附加的な欠点がある。
All methods of using carbide as an intermediate layer include
An additional drawback is that over time, the base metal and carbide make the lattice brittle.

こう云ったことから本発明の目的は、格子の熱負荷がか
なり大きい場合でも熱による電子放出が高くならずしか
も同時に2次電子放出を有する高耐電圧性で僅かな再現
性のある格子電極を提供することにある。
In view of the above, an object of the present invention is to provide a grid electrode with high withstand voltage and slight reproducibility that does not cause high electron emission due to heat even when the thermal load on the grid is quite large, and at the same time has secondary electron emission. It is about providing.

本発明により、上記格子電極の特徴とするところは、モ
リブデン又はタングステンを形成するワイヤと白金層で
被覆された金属間結合から成る中間層とを備えた格子電
極において、金属間結合がZrとPtとから成ることで
ある。
According to the present invention, the above-mentioned grid electrode is characterized in that the grid electrode includes wires forming molybdenum or tungsten and an intermediate layer consisting of intermetallic bonds coated with a platinum layer, in which the intermetallic bonds are Zr and Pt. It consists of the following.

上記の格子電極は、例えば金属間化合物を粉末として電
極に付着し、その後に焼結することによって得られる。
The above-mentioned grid electrode can be obtained, for example, by applying an intermetallic compound as a powder to the electrode and then sintering it.

この場合、粉末の粒度を選択することにより表面粗度を
正確に確定することが可能であり、したがって電極の2
次電子放出を希望通りに制御することができる。
In this case, by selecting the particle size of the powder it is possible to precisely determine the surface roughness and therefore the two
Secondary electron emission can be controlled as desired.

実施例 ジルコニウムおよび白金の化学量論的量を真空中で一緒
に溶融し、金属間化合物ZrPt3を形成する。
EXAMPLE Stoichiometric amounts of zirconium and platinum are melted together in vacuum to form the intermetallic compound ZrPt3.

この化合物の硬化した試料をメルサー(Morser)
で粉砕し、次いで、例えばタングステン・カーバイドの
ような硬い材料を被層されている粉砕機で粉砕して例え
ば3μのような所望の粒度にする。
A cured sample of this compound was
The hard material, e.g. tungsten carbide, is then ground to the desired particle size, e.g. 3μ, in a coated grinder.

モリブデン又はタングステン・ワイヤからなる従来の送
信管の形成された格子は、酸化物等を除去するために、
水素中で1000ないし1100℃の温度で焼成されて
いる。
Traditional transmitter tube grids made of molybdenum or tungsten wire are
It is fired in hydrogen at a temperature of 1000 to 1100°C.

しかる後に格子は、既述のように粉末形態に製造された
ZrPt3を好ましくは5〜10μの層厚で被層される
The grid is then coated with ZrPt3, produced in powder form as described above, preferably in a layer thickness of 5 to 10 .mu.m.

次いで格子は被着されたこの中間層と共に、真空下もし
くは保護ガス下で20分間1500〜1600℃で焼成
され、その結果、被着された中間層は粗度を維持しつつ
焼結される。
The grid with this deposited intermediate layer is then fired at 1500-1600 DEG C. under vacuum or under protective gas for 20 minutes, so that the deposited intermediate layer is sintered while maintaining its roughness.

それに続いて、焼結中間層を備えた格子は、電解的方法
で、白金層を被着され、次いで脱ガスを行うためにさら
に真空下で1500〜1600℃の温度で焼成される。
Subsequently, the grid with the sintered intermediate layer is electrolytically deposited with a platinum layer and then further calcined under vacuum at a temperature of 1500-1600 DEG C. in order to effect degassing.

脱ガス処理の後に、格子は可使用状態になる。After degassing, the grid is ready for use.

このようにして造られた格子においては、中間層と基材
金属間ならびに中間層と白金被覆との間の接着性が非常
に高まり、その結果として高電圧耐性も高まる。
In grids made in this way, the adhesion between the intermediate layer and the base metal as well as between the intermediate layer and the platinum coating is greatly increased and, as a result, the high voltage resistance is also increased.

さらに又、上記のように高い接着性により格子の機械的
堅牢性も高まり、したがって非常に細い格子、例えばメ
ッシュ格子電極を造ることが可能である。
Furthermore, as mentioned above, the high adhesion properties also increase the mechanical robustness of the grid, so that it is possible to make very thin grids, for example mesh grid electrodes.

格子に被着されるzrPt3の粒度を選択することによ
り格子表面の粒度、したがってまた2次電子放出を再現
性を具備するように変えることができる。
By selecting the grain size of the zrPt3 deposited on the grating, the grain size of the grating surface, and therefore also the secondary electron emission, can be varied reproducibly.

さらに、このような格子においては、高い比輻射値が測
定され、高い熱負荷が可能であるので、高い電気負荷を
許容し得る。
Furthermore, high specific radiation values are measured in such grids, high thermal loads are possible, and therefore high electrical loads can be tolerated.

格子表面の選ばれた粗度に従って、1525°Kにおい
て比輻射値20W/cm2ないし29W/cm2が達成
できる。
Depending on the selected roughness of the grating surface, specific radiation values of 20 W/cm 2 to 29 W/cm 2 at 1525°K can be achieved.

これは黒体の輻射の65%ないし95%に相当する。This corresponds to 65% to 95% of the blackbody radiation.

同じ温度で、比一次電子放出は約1μA/cm2になる
At the same temperature, the specific primary electron emission will be about 1 μA/cm 2 .

これはほぼ電気放電容器における駆動条件に相当する。This approximately corresponds to the driving conditions in an electric discharge vessel.

この一次電子放出は、長時間にわたる1800°Kまで
の熱過負荷の後にも増大することはない。
This primary electron emission does not increase even after prolonged thermal overload up to 1800°K.

更に本発明の格子電極においては、中間層のZrPt3
と被覆層の白金間において反応が行われない(第1図参
照)。
Furthermore, in the grid electrode of the present invention, the intermediate layer ZrPt3
No reaction takes place between the platinum and the platinum of the coating layer (see Figure 1).

なぜなら、Zr−Pt系のZrPt3は最高の形成エン
タルピーでの結合であるからである。
This is because ZrPt3 in the Zr-Pt system is a bond with the highest enthalpy of formation.

中間層(ZrPt3)内での白金の拡散或いは心材料(
タングステン)或いはモリブデン内への拡散も同様に生
じることはない。
Platinum diffusion within the intermediate layer (ZrPt3) or core material (
Similarly, diffusion into tungsten (tungsten) or molybdenum does not occur.

なぜなら、一方において被覆層(100Pt)と中間層
(87%Pt)間の濃度着が僅かであり、他方PtとZ
r間の結合エンタルピーが白金とタングステン或いはモ
リブデン間の結合エンタルピーの数倍ほど大きいからで
ある。
This is because, on the one hand, the concentration difference between the covering layer (100Pt) and the intermediate layer (87% Pt) is slight, and on the other hand, the concentration difference between Pt and Z
This is because the bond enthalpy between r is several times larger than the bond enthalpy between platinum and tungsten or molybdenum.

タンタルカーバイドは他のカーバイドと同様に1200
℃の温度において焼結不可能であるが或いは殆んど焼結
しない。
Tantalum carbide is 1200 like other carbides.
It is impossible to sinter or hardly sinters at temperatures of .degree.

即ち、個々のカーバイド粒子間の十分に均質な、固い結
合はこの温度では達せられない。
That is, sufficiently homogeneous and firm bonds between individual carbide particles cannot be achieved at this temperature.

反対にZrPr3は焼結可能である。個々の粒子間の固
い結合は格子心における中間層の適当な附着を生じる。
ZrPr3, on the other hand, is sinterable. The tight bonding between the individual particles results in proper adhesion of the intermediate layer at the lattice core.

第2図から明らかなように、公知の格子電極のどれも全
寿命期中良好な比輻射値を生じない。
As can be seen from FIG. 2, none of the known grid electrodes yields good specific radiation values during their entire lifetime.

このことから格子電子放出の点で本発明による格子電極
は公知のものに対して利点を有している。
For this reason, the lattice electrode according to the invention has advantages over known ones in terms of lattice electron emission.

第3図から見られるように本発明による格子電極の一次
電子放出は約7500作業時間後1μA/cm2である
As can be seen from FIG. 3, the primary electron emission of the grid electrode according to the invention is 1 μA/cm 2 after about 7500 working hours.

これに対してタンタルーカーバイドー中間層を有する格
子電極は少くとも100倍の大きさの一次電子放出を示
す。
In contrast, grid electrodes with a tantalum carbide interlayer exhibit a primary electron emission that is at least 100 times greater.

こう云ったことから本発明の電極を有する電気的な放電
容器は4000作業時間までの作業を保証する。
For this reason, the electrical discharge vessel with the electrodes of the invention guarantees a working life of up to 4000 working hours.

なぜなら、この時間を経過する以前には確実に1μA/
cm2の一次電子放出が超過しないからである。
This is because before this time elapses, it is certain that 1μA/
This is because the primary electron emission of cm2 is not exceeded.

これは公知の格子電極にあって同じ条件下においては達
し得ないことである。
This is something that cannot be achieved with known grid electrodes under the same conditions.

公知のこの種の格子電極にあっては実験の結果半分の熱
負荷にあってTaC+Pt=TaPt+C反応の経過の
後本発明による格子電極におけるよりも125倍も大き
い格子一次電子放出が結果された。
Experiments have shown that with a known grid electrode of this type, a lattice primary electron emission of 125 times greater than in the grid electrode according to the invention was obtained after the course of the TaC+Pt=TaPt+C reaction at half the heat load.

図面の簡単な説明、 第1図は本発明による格子電極の組成の結合を示す図、
第2図は本発明による格子電極と公知の格子電極との比
輻射値を時間による比較で示した図、第3図は時間によ
る格子一次電子放出の経過を示す図。
BRIEF DESCRIPTION OF THE DRAWINGS: FIG. 1 shows the combination of compositions of a grid electrode according to the invention;
FIG. 2 is a diagram showing a comparison over time of the specific radiation values of a grid electrode according to the present invention and a known grid electrode, and FIG. 3 is a diagram showing the progress of lattice primary electron emission over time.

Claims (1)

【特許請求の範囲】[Claims] 1モリブデン又はタングステンを形成するワイヤと白金
層で被覆された金属間結合から成る中間層とを備えた格
子電極において、金属間結合がZrとptとから成るこ
とを特徴とする格子電極。
1. A grid electrode comprising wires forming molybdenum or tungsten and an intermediate layer of intermetallic bonds coated with a layer of platinum, characterized in that the intermetallic bonds consist of Zr and pt.
JP47130110A 1971-12-29 1972-12-27 Grid electrode for discharge vessel Expired JPS5812694B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH1903771A CH539945A (en) 1971-12-29 1971-12-29 Process for the production of grid electrodes for electrical discharge vessels

Publications (2)

Publication Number Publication Date
JPS4874968A JPS4874968A (en) 1973-10-09
JPS5812694B2 true JPS5812694B2 (en) 1983-03-09

Family

ID=4436922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP47130110A Expired JPS5812694B2 (en) 1971-12-29 1972-12-27 Grid electrode for discharge vessel

Country Status (8)

Country Link
US (1) US3816079A (en)
JP (1) JPS5812694B2 (en)
CH (1) CH539945A (en)
DE (1) DE2202827C3 (en)
FR (1) FR2166052B1 (en)
GB (1) GB1362351A (en)
IT (1) IT972899B (en)
NL (1) NL176320C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4137370A (en) * 1977-08-16 1979-01-30 The United States Of America As Represented By The Secretary Of The Air Force Titanium and titanium alloys ion plated with noble metals and their alloys
DE2919028A1 (en) * 1979-04-20 1980-10-30 Bbc Brown Boveri & Cie ELECTRIC DISCHARGE VESSEL
WO1982001510A1 (en) * 1980-10-27 1982-05-13 Owens Corning Fiberglass Corp Articles for contacting molten glass
GB2117795A (en) * 1982-04-06 1983-10-19 Standard Telephones Cables Ltd Fabricating capacitors; forming ceramic films
RU2604836C1 (en) * 2015-06-30 2016-12-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Рязанский государственный радиотехнический университет" Method and device for determining anti-emission materials thermal characteristics

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2516841A (en) * 1946-01-16 1950-08-01 Standard Telephones Cables Ltd Grid for electron discharge devices
NL69250C (en) * 1946-03-05
US2788460A (en) * 1951-05-23 1957-04-09 Itt Electrodes for electron discharge devices and methods of making same
US2826541A (en) * 1954-06-15 1958-03-11 Vitro Corp Of America Method of making ceramic-clad metal structures
DE1111301B (en) * 1958-11-28 1961-07-20 Tesla Np Grid for electron tubes with a grid wire, the surface of which has a coating made of a noble metal alloy
US3164740A (en) * 1960-04-29 1965-01-05 Rca Corp Electron tube grids and method of making the same
DE1614398B2 (en) * 1967-01-04 1971-10-21 Siemens AG, 1000 Berlin u 8000 München LATTICE WIRE FOR ELECTRON TUBES
NL6809010A (en) * 1967-07-21 1969-01-23

Also Published As

Publication number Publication date
US3816079A (en) 1974-06-11
FR2166052A1 (en) 1973-08-10
NL176320C (en) 1985-03-18
DE2202827A1 (en) 1973-07-05
GB1362351A (en) 1974-08-07
NL176320B (en) 1984-10-16
DE2202827C3 (en) 1984-05-30
IT972899B (en) 1974-05-31
FR2166052B1 (en) 1976-08-27
NL7217592A (en) 1973-07-03
JPS4874968A (en) 1973-10-09
CH539945A (en) 1973-07-31
DE2202827B2 (en) 1979-11-08

Similar Documents

Publication Publication Date Title
US4518890A (en) Impregnated cathode
JP2020536174A5 (en)
JPS594825B2 (en) X-ray tube anode and its manufacturing method
JPS58152353A (en) X-ray tube rotary anode
TW201622998A (en) Ceramic structure, member for substrate holding device, and method for manufacturing ceramic structure
JPH03215378A (en) Composite consisting of graphite and metal of high melting point
CN106083058A (en) A kind of silicon carbide-based complex phase pressure-sensitive ceramic material and preparation method thereof
JP6062192B2 (en) Mayenite composite and cathode for electron emission
JPS5812694B2 (en) Grid electrode for discharge vessel
US2438732A (en) Electron tube cathode
US2557372A (en) Manufacture of thoria cathodes
US3794517A (en) Electric circuit elements and methods of manufacturing such elements
US2788460A (en) Electrodes for electron discharge devices and methods of making same
US1883898A (en) Thermionic cathode
US3243292A (en) Method of making a thermionic device
CN106083057A (en) A kind of silicon carbide-matrix multiphase ceramics material and preparation method thereof
JPH0273944A (en) Corrosion-resisting material
JP2754647B2 (en) Manufacturing method of electrode material
US2447973A (en) Coated anode for electron discharge devices
JP5517816B2 (en) Ceramic body with conductive layer, and joined body of ceramic and metal
JPH0785782A (en) Impregnation-type-cathode manufacturing method, and cathode obtained thereby
CN109913726B (en) Ta-W-based alloy and preparation method thereof
RU2135619C1 (en) Composite (versions) and method of manufacturing thereof
JP2011173778A (en) Ceramic member with metal layer, metal-ceramic joined member and method for manufacturing ceramic member with metal layer
JPH09289339A (en) Thermoelectric transducer material and manufacture thereof