JPH0780493A - Anaerobic treating device for waste water and operating method thereof - Google Patents
Anaerobic treating device for waste water and operating method thereofInfo
- Publication number
- JPH0780493A JPH0780493A JP22731693A JP22731693A JPH0780493A JP H0780493 A JPH0780493 A JP H0780493A JP 22731693 A JP22731693 A JP 22731693A JP 22731693 A JP22731693 A JP 22731693A JP H0780493 A JPH0780493 A JP H0780493A
- Authority
- JP
- Japan
- Prior art keywords
- section
- sludge
- separation
- reaction
- anaerobic treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、中濃度有機性廃水の処
理のための廃水の嫌気性処理装置とその運転方法に関す
るものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wastewater anaerobic treatment apparatus for treating medium-concentration organic wastewater and a method for operating the same.
【0002】[0002]
【従来の技術】BOD が5000mg/L以下の中濃度有機性廃水
の処理は、自己造粒型メタン菌を用いたUASB (上向流嫌
気性スラッジブランケット) リアクターや微生物固定化
担体を充填した固定床型リアクターによる嫌気性処理が
主流となっており、その後段で好気処理を行っている。2. Description of the Related Art Treatment of medium-concentration organic wastewater with a BOD of 5000 mg / L or less is carried out by using a self-granulating methane bacterium, UASB (upflow anaerobic sludge blanket) reactor Anaerobic treatment with a bed reactor is the mainstream, and aerobic treatment is performed in the subsequent stage.
【0003】ところがUASBリアクターではメタン菌の顆
粒菌体を形成するのに時間がかかりスタートアップに約
3ヵ月を要すること、処理できる廃水の選択性が強いこ
と、高負荷がかけられない(BOD 負荷10kg/m3 ・日以
下)こと、菌体の流出があり処理が不安定であること、
pH調整用アルカリ薬品のコストが高いこと、気固液分離
設備のコストが高いこと、装置が大型化すること等の問
題があった。また一方の固定床型リアクターの場合に
は、担体コストが高いこと、担体が閉塞するおそれがあ
ること等の問題があった。However, in the UASB reactor, it takes time to form granular bacterial cells of methane bacteria, it takes about 3 months to start up, the selectivity of waste water that can be treated is strong, and high load cannot be applied (BOD load 10 kg. / m 3 · day or less), the process is unstable due to bacterial outflow,
There are problems such as high cost of alkaline chemicals for pH adjustment, high cost of gas-liquid separation equipment, and large-scaled equipment. Further, in the case of one fixed bed reactor, there are problems that the cost of the carrier is high and the carrier may be clogged.
【0004】[0004]
【発明が解決しようとする課題】本発明は上記した従来
の問題点を解決して、短期間にスタートアップでき、菌
体の流出を防いで反応部の菌濃度を高く維持することが
でき、pH調整に必要なアルカリ薬品コストを低減し、気
固液分離を効率的に行うことができ、従来よりも高負荷
の処理が可能な廃水の嫌気性処理装置とその運転方法を
提供するためになされたものである。DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned conventional problems, can be started up in a short period of time, can prevent the outflow of bacterial cells and can maintain a high bacterial concentration in the reaction part, and The purpose of the present invention is to provide an anaerobic treatment device for wastewater that can reduce the cost of alkaline chemicals required for adjustment, can perform gas-solid separation efficiently, and can perform treatment with a higher load than before, and its operating method. It is a thing.
【0005】[0005]
【課題を解決するための手段】上記の課題を解決するた
めになされた本発明の廃水の嫌気性処理装置は、メタン
発酵槽を、反応部と脱気部と分離部と安定部の順に区画
して配置し、原水を反応部に供給する原水供給手段と処
理水を安定部から排出する処理水排出手段を設け、反応
部と脱気部と分離部とを密封構造としてその上部に発生
ガスを回収するガス回収手段を設け、分離部から回収さ
れた浮上汚泥を反応部と脱気部の液面に散布する浮上汚
泥散布手段を設け、また分離部の底から回収した沈降汚
泥を返送する沈降汚泥返送手段と沈降汚泥を排出する沈
降汚泥排出手段とを設けたことを特徴とするものであ
る。また本発明の廃水の嫌気性処理装置の運転方法は、
上記した廃水の嫌気性処理装置のメタン発酵槽の反応部
に供給した原水を、分離部で回収された浮上汚泥と沈降
汚泥とともに嫌気性処理することにより生成したガスの
気泡を抱えて浮上してくる懸濁粒子に、分離部で回収さ
れた浮上汚泥を散布して脱気したのち分離部に送入し、
分離部において浮上汚泥と沈降汚泥を回収したのち安定
部に送入し、更に固液分離して清澄な処理液とすること
を特徴とするものである。また本発明の廃水の嫌気性処
理装置の他の運転方法は、密封構造とした反応部と脱気
部と分離部とを加圧し、大気開放系とした安定部におけ
る圧力低下を利用し、pHを上昇させてカルシウムやマグ
ネシウム等の金属塩を結晶化させ、回収した結晶化物を
含む沈降汚泥とpH上昇した処理水の一部を反応部に返送
することを特徴とするものである。In the wastewater anaerobic treatment apparatus of the present invention made to solve the above problems, a methane fermentation tank is divided into a reaction section, a deaeration section, a separation section and a stabilization section in this order. The raw water supply means for supplying the raw water to the reaction part and the treated water discharge means for discharging the treated water from the stabilizing part are provided, and the reaction part, the degassing part and the separating part have a hermetically sealed structure and the generated gas A means for collecting gas is provided, and flotation sludge spraying means for spraying the floating sludge collected from the separation part to the liquid surface of the reaction part and the degassing part is provided, and the settled sludge collected from the bottom of the separation part is returned. It is characterized in that a settling sludge returning means and a settling sludge discharging means for discharging the settling sludge are provided. Further, the operating method of the anaerobic treatment apparatus for wastewater of the present invention,
Raw water supplied to the reaction section of the methane fermentation tank of the anaerobic treatment apparatus for wastewater described above is floated with gas bubbles produced by anaerobically treating the floating sludge and the settling sludge collected in the separation section. Floating sludge collected in the separation unit is sprayed on the suspended particles coming in and degassed, and then sent to the separation unit.
It is characterized in that the flotation sludge and the sedimentation sludge are collected in the separation part, and then fed into the stable part, and further solid-liquid separated to obtain a clear treatment liquid. Another method of operating the wastewater anaerobic treatment apparatus of the present invention is to pressurize the reaction part, the degassing part, and the separation part, which have a sealed structure, and utilize the pressure drop in the stable part, which is open to the atmosphere. Is raised to crystallize metal salts such as calcium and magnesium, and the settled sludge containing the recovered crystallization product and part of the treated water having an increased pH are returned to the reaction section.
【0006】[0006]
【作用】本発明の嫌気性処理装置により中濃度有機性廃
水の処理を行うには、まず原水を原水供給手段により反
応部に導入し、分離部で回収された浮上汚泥と沈降汚泥
とともにメタン発酵を行わせる。このとき反応部液中の
懸濁粒子であるところの菌体にメタンガスの気泡が付着
して浮上するが、この懸濁粒子は次に整流板で仕切られ
た脱気部においてガスと分離され、分離部で沈殿する。
そしてこの部分で浮上した浮上汚泥は浮上汚泥散布手段
によって分離部から回収され、反応部と脱気部の液面に
散布されるので、その衝撃によって上記した懸濁粒子か
らのガス分離が一段と促進される。このようにしてガス
と分離された懸濁粒子は分離部で沈降し、上澄水は処理
液として後工程に送られる。また沈殿した沈降汚泥は沈
降汚泥返送手段によって反応部に返送されるので、菌体
の流出が防止され菌体濃度を高く維持できる。In order to treat the medium-concentration organic wastewater with the anaerobic treatment apparatus of the present invention, first, raw water is introduced into the reaction section by the raw water supply means, and methane fermentation is carried out together with the flotation sludge and sedimentation sludge recovered in the separation section. To perform. At this time, bubbles of methane gas adhere to the bacterial cells, which are suspended particles in the reaction part liquid, and float up.The suspended particles are separated from the gas in the degassing part partitioned by the current plate. Settles in the separation section.
Then, the floating sludge floating in this part is recovered from the separation part by the floating sludge spraying means and sprayed on the liquid surfaces of the reaction part and the degassing part, so that the impact further promotes the gas separation from the suspended particles. To be done. The suspended particles separated from the gas in this way settle in the separation section, and the supernatant water is sent to the subsequent step as a treatment liquid. Further, since the settled settled sludge is returned to the reaction section by the settling sludge returning means, the microbial cells are prevented from flowing out, and the microbial cell concentration can be maintained high.
【0007】しかも、密封構造とした反応部〜分離部を
加圧しておけば、大気開放系とした安定部において圧力
が低下し、液中に溶解していた炭酸ガスが放出されるの
でpHが上昇する。その結果、カルシウムやマグネシウム
等の金属塩の結晶化が起こるので、これらの結晶化物を
沈降汚泥返送手段によって反応部に返送すれば、菌体が
自己造粒するときの核として作用し、メタン菌の造粒作
用を促進する。このために本発明の廃水の嫌気性処理装
置は、そのスタートアップ期間を従来よりも大幅に短縮
することが可能となる。更に、pH上昇した処理水の一部
を処理水返送手段により反応部に返送することにより、
メタン発酵過程で生成する揮発性有機酸の蓄積による反
応部のpH低下を抑えてpH調整用アルカリ薬品の消費量を
低減することができる。Moreover, if pressure is applied to the reaction section to the separation section, which have a sealed structure, the pressure is lowered in the stable section, which is open to the atmosphere, and the carbon dioxide gas dissolved in the liquid is released, so that the pH is maintained. To rise. As a result, crystallization of metal salts such as calcium and magnesium occurs, so if these crystallized substances are returned to the reaction section by the settling sludge returning means, they act as nuclei for the self-granulation of the methane bacteria. Promotes the granulation action of. For this reason, the wastewater anaerobic treatment apparatus of the present invention can significantly shorten the start-up period as compared with the conventional case. Furthermore, by returning part of the treated water whose pH has increased to the reaction section by means of the treated water returning means,
It is possible to suppress the decrease in pH of the reaction part due to the accumulation of volatile organic acids generated in the methane fermentation process, and to reduce the consumption amount of alkaline chemicals for pH adjustment.
【0008】[0008]
【実施例】以下に本発明を図示の実施例によって更に詳
細に説明する。図1は第1の実施例を示すもので、1は
メタン発酵槽であり、その内部は第1の仕切り板2によ
って、容積比で60%の反応部3と、容積比で40%の気固
液分離部4とに区画されている。気固液分離部4は、脱
気部6と分離部7と安定部10とからなるものである。こ
の第1の仕切り板2は槽底から水深の90%の高さまで延
びている。またこの気固液分離部4は第2の仕切り板5
によって脱気部6と分離部7とに区画され、その下方を
分離部7の底部と連通した沈降部8とするとともに、第
3の仕切り板9によって安定部10を形成している。第2
の仕切り板5は水深の約10%水面上に延び、水深の約30
%水面下に延びている。なお、第3の仕切り板9の下端
に近接させてバッフル板11が設けられており、上澄水の
みを安定部10に流入させるように構成されている。また
反応部3と脱気部6と分離部7には屋根が設けられて密
封構造とし、その上部に発生ガスを回収するためのガス
回収手段20が設けられているが、安定部10は大気開放系
とされている。The present invention will be described below in more detail with reference to the illustrated embodiments. FIG. 1 shows a first embodiment, in which 1 is a methane fermentation tank, the inside of which is composed of a first partition plate 2 with a reaction part 3 of 60% by volume and a gas volume of 40% by volume. It is partitioned into a solid-liquid separation section 4. The gas-solid separating section 4 is composed of a degassing section 6, a separating section 7 and a stabilizing section 10. The first partition plate 2 extends from the bottom of the tank to a height of 90% of the water depth. In addition, the gas-solid separating section 4 has a second partition plate 5
Is divided into a deaeration part 6 and a separation part 7, and a lower part thereof is a sedimentation part 8 communicating with the bottom of the separation part 7, and a stabilizing part 10 is formed by a third partition plate 9. Second
Partition plate 5 extends about 10% of the water depth above the water surface,
% Extends below the surface of the water. A baffle plate 11 is provided close to the lower end of the third partition plate 9 so that only the supernatant water flows into the stabilizing portion 10. Further, the reaction part 3, the degassing part 6 and the separating part 7 are provided with roofs to form a hermetically sealed structure, and a gas recovery means 20 for recovering the generated gas is provided above the roof, but the stabilizing part 10 is the atmosphere. It is an open system.
【0009】適正なメタン発酵処理を行うには、反応部
3の容積をメタン発酵槽1の50〜70%程度にするのが好
ましい。なお、有機性廃水をメタン発酵処理する際に、
流入廃水の種類、温度、濃度や処理水の目標濃度、性状
等によって、メタン発酵槽1中の反応部3と気固液分離
部4との容積比を変更可能としておくことがより好まし
い。In order to carry out an appropriate methane fermentation treatment, it is preferable that the volume of the reaction section 3 is set to about 50 to 70% of the methane fermentation tank 1. In addition, when methane fermentation treatment of organic wastewater,
It is more preferable to be able to change the volume ratio between the reaction section 3 and the gas-solid separation section 4 in the methane fermentation tank 1 depending on the type, temperature, concentration of the inflowing wastewater, the target concentration of the treated water, the properties, and the like.
【0010】反応部3には、前記した自己造粒型メタン
菌による顆粒状菌体12が存在し、原水流入管13から流入
してきた原水である中濃度有機性廃水中の有機物を嫌気
的に処理する。この結果、メタンガスが気泡14となって
発生し、反応液中の懸濁物質15に付着して図示のように
これを浮上させる。In the reaction section 3, there are granular bacterial cells 12 by the above-mentioned self-granulating methane bacterium, and anaerobically the organic matter in the medium-concentration organic wastewater which is the raw water flowing in from the raw water inflow pipe 13. To process. As a result, the methane gas is generated as bubbles 14 and adheres to the suspended substance 15 in the reaction liquid to levitate it as shown in the figure.
【0011】浮上した懸濁物質15は、第1の仕切り板2
の上端から脱気部6に流入し、浮上汚泥散布手段16に
よる衝撃を受けて気泡14を分離する。気泡分離後の懸濁
物質15は分離部7の下部の沈降部8へ沈降する。また、
浮上汚泥は分離部7において浮上汚泥となって水面に浮
上するが、浮上汚泥散布手段16のフロート状の吸い込み
口17がこれを吸引し、反応部3と脱気部6の水面に向か
ってノズル17a から散布する。この衝撃により気泡14は
懸濁物質15から分離され、また浮上汚泥自体についても
気固液分離が促進されるので、汚泥は分離部7の下部の
沈降部8へ沈降する。そして沈降した汚泥は沈降汚泥返
送手段18により反応部3へ返送され、これにより菌体濃
度の低下を防ぎ、余剰分は沈降汚泥排出手段19により
排出される。このようにしてガスと懸濁粒子が分離され
た処理液は第3の仕切り板9の下端から安定部10に入
り、処理液として取り出される。また、発生ガスは加圧
手段20a を経由してガス回収手段20により回収される。The suspended matter 15 that has floated is collected in the first partition plate 2.
Flows into the degassing section 6 from the upper end of the air bubble, receives the impact from the floating sludge spraying means 16, and separates the bubbles 14. The suspended substance 15 after the air bubble separation settles in the settling section 8 below the separating section 7. Also,
The floating sludge becomes floating sludge in the separation unit 7 and floats on the surface of the water, and the float-like suction port 17 of the floating sludge spraying unit 16 sucks the sludge, and a nozzle is directed toward the water surface of the reaction unit 3 and the degassing unit 6. Spray from 17a. Due to this impact, the bubbles 14 are separated from the suspended matter 15, and the gas-solid separation of the floating sludge itself is promoted, so that the sludge settles in the settling section 8 below the separation section 7. Then, the settled sludge is returned to the reaction section 3 by the settling sludge returning means 18, whereby the decrease of the bacterial cell concentration is prevented, and the surplus is discharged by the settling sludge discharging means 19. The treatment liquid in which the gas and the suspended particles are separated in this way enters the stabilizing portion 10 from the lower end of the third partition plate 9 and is taken out as the treatment liquid. Further, the generated gas is recovered by the gas recovery means 20 via the pressurizing means 20a.
【0012】また前記したように、反応部3と脱気部6
と分離部7には屋根が設けられて密封構造とされている
ので、この部分を加圧手段20a により100 〜300mmAq程
度の圧力をかけて運転することが好ましい。この結果、
メタン発酵により生じた炭酸ガスが多く液中に溶け込
み、大気開放系とされた安定部10において圧力が低下す
るとともに、炭酸ガスが放出する。液中の炭酸ガスが抜
けることにより処理液のpHが上昇し、その結果、カルシ
ウムやマグネシウム等の金属塩の結晶化が起こり、結晶
物は汚泥とともに沈降部8に沈降する。この結晶物を含
んだ沈降汚泥を沈降汚泥返送手段18によって反応部3に
返送すれば、菌体が自己造粒するときの核として結晶物
が作用し、メタン菌の造粒作用を促進する。またpH上昇
した処理液は安定部10から処理水として取り出され、こ
の処理水の一部を処理水返送手段18a によって反応部3
に返送すれば、反応部3でメタン発酵過程で生成する揮
発性有機酸の蓄積による反応部液のpH低下を抑えてpH調
整用アルカリ薬品の消費量を低減することができる。Further, as described above, the reaction section 3 and the degassing section 6
Since the separating part 7 is provided with a roof and has a sealed structure, it is preferable to operate this part by applying a pressure of about 100 to 300 mmAq by the pressurizing means 20a. As a result,
A large amount of carbon dioxide gas generated by methane fermentation is dissolved in the liquid, and the pressure is reduced in the stable portion 10 which is an open system to the atmosphere, and carbon dioxide gas is released. The removal of carbon dioxide gas in the liquid raises the pH of the treatment liquid, and as a result, crystallization of metal salts such as calcium and magnesium occurs, and the crystallized substance settles in the sedimentation section 8 together with the sludge. When the settled sludge containing this crystal substance is returned to the reaction section 3 by the settling sludge return means 18, the crystal substance acts as a nucleus when the bacterial cells are self-granulated, and promotes the granulation action of methane bacteria. Further, the treated liquid having an increased pH is taken out from the stabilizing part 10 as treated water, and a part of the treated water is treated by the treated water returning means 18a.
If it is returned to the reactor, it is possible to suppress the decrease in pH of the reaction solution due to the accumulation of volatile organic acids generated in the methane fermentation process in the reaction section 3 and reduce the consumption amount of the alkaline chemical for pH adjustment.
【0013】図2に示す第2の実施例では、第1の実施
例における自己造粒型メタン菌による顆粒状菌体12が充
填された反応部3に替えて、メタン菌の固定化担体21を
充填した反応部3が使用されている。しかしこの場合に
もその構造や作用効果は第1図に示す第1の実施例と変
わるところはない。In the second embodiment shown in FIG. 2, a carrier for immobilization of methane bacteria 21 is used instead of the reaction section 3 filled with the granular bacterial cells 12 by the self-granulating methane bacteria in the first embodiment. The reaction part 3 filled with is used. However, in this case as well, the structure and operational effects are the same as those of the first embodiment shown in FIG.
【0014】図3に示す第3の実施例では、反応部3と
気固液分離部4とが分離されているとともに、これとは
別に静置部24が設けられている。この実施例では、反応
部3から流出した液は流路22を通じて気固液分離部4の
脱気部6に流入する。また安定部10から流出した処理水
は流路23を通じて静置部24に流入する。この実施例では
反応部3と気固液分離部4とが密封構造とされており、
前記したカルシウムやマグネシウム等の金属塩の結晶化
は大気開放された静置部24において生ずるから、処理水
返送手段18a は別体となった静置部24と反応部3との間
に設けられ、かつ静置部24の底部より引抜き反応部3に
返送される。しかし、基本的な構造や作用効果は前記の
第1の実施例と変わるところはない。In the third embodiment shown in FIG. 3, the reaction section 3 and the gas-solid separation section 4 are separated, and in addition to this, a stationary section 24 is provided. In this embodiment, the liquid flowing out from the reaction section 3 flows into the degassing section 6 of the gas-solid separation section 4 through the flow path 22. Further, the treated water flowing out from the stabilizing part 10 flows into the stationary part 24 through the flow path 23. In this embodiment, the reaction part 3 and the gas-liquid separation part 4 have a sealed structure,
Since the crystallization of the metal salt such as calcium and magnesium described above occurs in the stationary section 24 which is open to the atmosphere, the treated water returning means 18a is provided between the stationary section 24 and the reaction section 3 which are separate bodies. And, it is returned from the bottom of the stationary section 24 to the pull-out reaction section 3. However, the basic structure and operational effects are the same as those of the first embodiment.
【0015】[0015]
【発明の効果】以上に詳細に説明したように、本発明の
廃水の嫌気処理装置によれば、菌体の流出を防いで反応
部の菌濃度を高く維持することができること、浮上汚泥
散布手段によって気固液分離を効率的に行うことができ
ること、従来よりも高負荷の処理が可能であること等の
効果を発揮することができる。また本発明の廃水の嫌気
処理装置の運転方法によれば、カルシウムやマグネシウ
ム等の金属塩を結晶化させることにより、顆粒状菌体の
造粒作用を促進することができ、スタートアップに要す
る期間を短縮することができる。また、処理水を反応部
に返送することにより、pH調整用のアルカリ薬品の消費
量を低減することができる。As described above in detail, according to the wastewater anaerobic treatment apparatus of the present invention, it is possible to prevent the outflow of bacterial cells and maintain a high bacterial concentration in the reaction section, and the floating sludge spraying means. The gas-solid separation can be efficiently performed, and a higher load can be achieved than in the past. Further, according to the operating method of the anaerobic treatment apparatus for wastewater of the present invention, by crystallizing a metal salt such as calcium or magnesium, it is possible to promote the granulation action of granular bacterial cells, and the period required for start-up can be increased. It can be shortened. Further, by returning the treated water to the reaction section, it is possible to reduce the consumption amount of the alkaline chemicals for pH adjustment.
【図1】本発明の第1の実施例を示す断面図である。FIG. 1 is a sectional view showing a first embodiment of the present invention.
【図2】本発明の第2の実施例を示す断面図である。FIG. 2 is a sectional view showing a second embodiment of the present invention.
【図3】本発明の第3の実施例を示す断面図である。FIG. 3 is a sectional view showing a third embodiment of the present invention.
1 メタン発酵槽、3 反応部、6 脱気部、7 分離
部、8沈降部、10 安定部、16 浮上汚泥散布手段、18
沈降汚泥返送手段、20 ガス回収手段、20a 加圧手
段、24 第3の実施例の静置部1 methane fermentation tank, 3 reaction section, 6 degassing section, 7 separation section, 8 sedimentation section, 10 stabilization section, 16 floating sludge spraying means, 18
Settling sludge returning means, 20 gas recovery means, 20a pressurizing means, 24 stationary part of the third embodiment
Claims (6)
部と安定部の順に区画して配置し、原水を反応部に供給
する原水供給手段と処理水を安定部から排出する処理水
排出手段を設け、反応部と脱気部と分離部とを密封構造
としてその上部に発生ガスを回収するガス回収手段を設
け、分離部から回収された浮上汚泥を反応部と脱気部の
液面に散布する浮上汚泥散布手段を設け、また分離部の
底から回収した沈降汚泥を返送する沈降汚泥返送手段と
沈降汚泥を排出する沈降汚泥排出手段とを設けたことを
特徴とする廃水の嫌気性処理装置。1. A methane fermentation tank is divided into a reaction section, a deaeration section, a separation section and a stabilization section in this order, and a raw water supply means for supplying raw water to the reaction section and a treatment for discharging treated water from the stabilization section. A water discharge means is provided, and a gas recovery means for recovering the generated gas is provided on the upper part of the reaction section, the degassing section, and the separation section in a sealed structure, and the floating sludge collected from the separation section is connected to the reaction section and the degassing section. Wastewater characterized by being provided with floating sludge spraying means for spraying on the liquid surface, and also provided with settling sludge returning means for returning settling sludge collected from the bottom of the separation section and settling sludge discharging means for discharging settling sludge. Anaerobic treatment equipment.
とを加圧する加圧手段を設けた請求項1に記載の廃水の
嫌気性処理装置。2. The anaerobic treatment apparatus for wastewater according to claim 1, further comprising a pressurizing means for pressurizing the reaction section, the degassing section, and the separating section, which have a sealed structure.
降汚泥返送手段と、安定部から排出される処理水の一部
を反応部に返送する処理水返送手段とを設けた請求項1
または2に記載の廃水の嫌気性処理装置。3. A settling sludge returning means for returning the settled sludge obtained in the separation section, and a treated water returning section for returning a part of the treated water discharged from the stabilizing section to the reaction section.
Or the anaerobic treatment apparatus for wastewater according to 2.
の脱気部、分離部、安定部とからなる気固液分離部との
容積比を、変更可能とした請求項1〜3の何れかに記載
の廃水の嫌気性処理装置。4. The volume ratio between the reaction section of the methane fermentation tank and the gas-liquid separation section composed of the degassing section, separation section and stabilizing section of the methane fermentation tank can be changed. An anaerobic treatment apparatus for wastewater according to any one of claims.
気性処理装置の運転方法であって、メタン発酵槽の反応
部に供給した原水を、分離部で回収された浮上汚泥と沈
降汚泥とともに嫌気性処理することにより生成したガス
の気泡を抱えて浮上してくる懸濁粒子に、分離部で回収
された浮上汚泥を散布して脱気したのち分離部に送入
し、分離部において浮上汚泥と沈降汚泥を回収したのち
安定部に送入し、更に固液分離して清澄な処理液とする
ことを特徴とする廃水の嫌気性処理装置の運転方法。5. The method for operating the anaerobic treatment apparatus for wastewater according to claim 1, wherein the raw water supplied to the reaction section of the methane fermentation tank is used as floating sludge recovered in the separation section. The suspended sludge collected in the separation unit is sprinkled with the floating sludge collected by the anaerobic treatment together with the settling sludge and floating on the suspended particles. A method for operating an anaerobic treatment apparatus for wastewater, comprising collecting floating sludge and settling sludge in a section, feeding them into a stable section, and further separating them into solid and liquid to obtain a clear treatment liquid.
の運転方法であって、密封構造とした反応部と脱気部と
分離部とを加圧し、大気開放系とした安定部における圧
力低下を利用し、pHを上昇させてカルシウムやマグネシ
ウム等の金属塩を結晶化させ、回収した結晶化物を含む
沈降汚泥とpH上昇した処理水の一部を反応部に返送する
ことを特徴とする廃水の嫌気性処理装置の運転方法。6. The method of operating the anaerobic treatment apparatus for wastewater according to claim 2, wherein the reaction section, the deaeration section and the separation section, which have a sealed structure, are pressurized to stabilize the atmosphere in a stable section. Utilizing the pressure reduction, the pH is increased to crystallize metal salts such as calcium and magnesium, and the settled sludge containing the recovered crystallization product and a part of the treated water having an increased pH are returned to the reaction section. Method for operating wastewater anaerobic treatment equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22731693A JP2698310B2 (en) | 1993-09-13 | 1993-09-13 | Anaerobic wastewater treatment system and its operation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22731693A JP2698310B2 (en) | 1993-09-13 | 1993-09-13 | Anaerobic wastewater treatment system and its operation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0780493A true JPH0780493A (en) | 1995-03-28 |
JP2698310B2 JP2698310B2 (en) | 1998-01-19 |
Family
ID=16858896
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22731693A Expired - Fee Related JP2698310B2 (en) | 1993-09-13 | 1993-09-13 | Anaerobic wastewater treatment system and its operation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2698310B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001252685A (en) * | 2000-03-13 | 2001-09-18 | Sumitomo Heavy Ind Ltd | Methane fermentation treatment device |
JP2011098344A (en) * | 2010-12-24 | 2011-05-19 | Kobelco Eco-Solutions Co Ltd | Organic wastewater treatment method and organic wastewater treatment apparatus |
JP2011115689A (en) * | 2009-12-01 | 2011-06-16 | Ishigaki Co Ltd | Nitrogen removal apparatus and method |
CN102219298A (en) * | 2010-03-12 | 2011-10-19 | 三菱丽阳株式会社 | biological treating device and biological treating method |
JP2012187543A (en) * | 2011-03-11 | 2012-10-04 | Kobelco Eco-Solutions Co Ltd | Anaerobic treatment apparatus and anaerobic treatment method |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102659243A (en) * | 2012-05-21 | 2012-09-12 | 苏州苏水环境工程有限公司 | Separated anaerobic baffled reactor and work method of separated anaerobic baffled reactor |
KR101273659B1 (en) * | 2012-11-22 | 2013-06-11 | 송영희 | Apparatus for treatment of wastewater capable of ph controlling and method thereof by pressure controlled |
-
1993
- 1993-09-13 JP JP22731693A patent/JP2698310B2/en not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001252685A (en) * | 2000-03-13 | 2001-09-18 | Sumitomo Heavy Ind Ltd | Methane fermentation treatment device |
JP2011115689A (en) * | 2009-12-01 | 2011-06-16 | Ishigaki Co Ltd | Nitrogen removal apparatus and method |
CN102219298A (en) * | 2010-03-12 | 2011-10-19 | 三菱丽阳株式会社 | biological treating device and biological treating method |
JP2011098344A (en) * | 2010-12-24 | 2011-05-19 | Kobelco Eco-Solutions Co Ltd | Organic wastewater treatment method and organic wastewater treatment apparatus |
JP2012187543A (en) * | 2011-03-11 | 2012-10-04 | Kobelco Eco-Solutions Co Ltd | Anaerobic treatment apparatus and anaerobic treatment method |
Also Published As
Publication number | Publication date |
---|---|
JP2698310B2 (en) | 1998-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7648631B2 (en) | Apparatus for wastewater treatment using nitrogen/phosphorus removal and floatation separation | |
JP5238518B2 (en) | Method and apparatus for wastewater anaerobic treatment | |
US20100018918A1 (en) | Method and device for the aerobic treatment of waste water | |
US20040074845A1 (en) | Method and device for fluid treatment | |
US4069149A (en) | Continuous fermentation process and apparatus | |
JP2008518753A (en) | Biological denitrification method and apparatus | |
JP5064338B2 (en) | Wastewater treatment equipment | |
JPH0780493A (en) | Anaerobic treating device for waste water and operating method thereof | |
JPH10249359A (en) | Phosphorus removing and recovering device utilizing seawater | |
US7485231B2 (en) | Activated sludge process using downflow sludge blanket filtration | |
JP2006281215A (en) | Apparatus for treating organic waste water and method therefor | |
JPH11165189A (en) | Apparatus and method for treating water | |
JP4001507B2 (en) | Method and apparatus for treating organic wastewater | |
CN108911242B (en) | Super nano bubble circulating ozone sewage treatment method and device | |
JP2000070990A (en) | Method for removing nitrogen and suspended matter in wastewater and removal system therefor | |
USRE30944E (en) | Continuous fermentation process and apparatus | |
JP3009936B2 (en) | Ultra deep aeration method | |
JP4747567B2 (en) | Nitrogen-containing wastewater treatment method and treatment equipment | |
JP3087914B2 (en) | Aeration treatment equipment | |
JP2003039081A (en) | Phosphorus recovery apparatus | |
JP3009938B2 (en) | Ultra deep aeration equipment | |
JP2000237786A (en) | Anaerobic treatment device for organic waste water | |
JP2008200577A (en) | Waste liquid treatment system | |
JPH027717B2 (en) | ||
JP4001514B2 (en) | Biological denitrification method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19970829 |
|
LAPS | Cancellation because of no payment of annual fees |