JP2003039081A - Phosphorus recovery apparatus - Google Patents
Phosphorus recovery apparatusInfo
- Publication number
- JP2003039081A JP2003039081A JP2001229280A JP2001229280A JP2003039081A JP 2003039081 A JP2003039081 A JP 2003039081A JP 2001229280 A JP2001229280 A JP 2001229280A JP 2001229280 A JP2001229280 A JP 2001229280A JP 2003039081 A JP2003039081 A JP 2003039081A
- Authority
- JP
- Japan
- Prior art keywords
- phosphorus
- treated
- water
- exchange membrane
- cathode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
- Removal Of Specific Substances (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、被処理水中からリ
ンを回収するリン回収装置に係り、特に、下水などの排
水中の溶解性リン酸イオンを晶析反応させ粒状物として
回収するリン回収装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phosphorus recovery apparatus for recovering phosphorus from water to be treated, and in particular, phosphorus recovery for recovering soluble phosphate ions in wastewater such as sewage as a granular material by crystallization reaction. Regarding the device.
【0002】[0002]
【従来の技術】近年、河川,湖沼などでの富栄養化の進
行に伴って、藻類の増殖要因となる窒素,リンなどの栄
養塩類の排出を極力低減することが求められている。水
環境への負荷を低減するには、これら栄養塩類を同時に
除去することが望ましい。2. Description of the Related Art In recent years, along with the progress of eutrophication in rivers, lakes and marshes, it has been required to reduce the discharge of nutrient salts such as nitrogen and phosphorus, which are factors of algae growth, as much as possible. In order to reduce the load on the aquatic environment, it is desirable to remove these nutrient salts at the same time.
【0003】水中には、窒素を固定する藻類が存在する
ので、リンの方が藻類に対して制限的要素となり、窒素
よりもリン除去が重要となっている。Since algae that fix nitrogen exist in water, phosphorus is a limiting factor for algae, and phosphorus removal is more important than nitrogen.
【0004】リンは、主として肥料として用いられてい
る。資源的には、原料となるリン鉱石の埋蔵量が限られ
ており、全世界的にみて約50年で枯渇すると言われて
いる。Phosphorus is mainly used as a fertilizer. In terms of resources, the amount of phosphate rock used as a raw material is limited, and it is said that it will be exhausted in about 50 years worldwide.
【0005】したがって、下水を含め、各種排水から単
にリンを除去するだけなく、リンを有用物として回収す
ることが重要となっている。Therefore, it is important not only to remove phosphorus from various wastewaters including sewage, but also to recover phosphorus as a useful substance.
【0006】一般にリンを除去する方法として、凝集沈
殿法および生物学的脱リン法などが知られている。いず
れの方法においても、リンを有用物として回収すること
が困難である。[0006] Generally, as a method for removing phosphorus, a coagulation-precipitation method and a biological dephosphorization method are known. In either method, it is difficult to recover phosphorus as a useful substance.
【0007】しかし、近時、例えば、『環境技術』(vo
l.27 No.6 pp397−pp402 pp403−pp411 1998)などに記
載されているように、下水などのリン成分含有排水から
リンを有用物として回収する方法として、晶析反応を利
用したリン回収方法が提案されている。However, recently, for example, "environmental technology" (vo
l.27 No. 6 pp397-pp402 pp403-pp411 1998), etc., a phosphorus recovery method utilizing a crystallization reaction as a method for recovering phosphorus from wastewater containing phosphorus components such as sewage as a useful substance. Is proposed.
【0008】この方法は、アルカリ性側の領域で、例え
ば、下水中のリン酸イオン(HPO 4 2−)とアンモニウ
ムイオン(NH4 +)とマグネシウムイオン(Mg2+)と
を式(1)の晶析反応により処理し、リン酸アンモニウム
マグネシウム6水塩(Magnesium Ammonium Phosphate:
MAP)として粒状物の状態で回収する。窒素,リンを
含む回収MAPは、肥料として有効に利用できる。This method is used in the alkaline region, for example,
For example, phosphate ion in sewage (HPO Four 2-) And Ammoniu
Muion (NHFour +) And magnesium ion (Mg2+)When
Is treated by the crystallization reaction of formula (1) to give ammonium phosphate.
Magnesium Ammonium Phosphate:
It is recovered in the form of granules as MAP). Nitrogen, phosphorus
The recovered MAP containing it can be effectively used as a fertilizer.
【0009】
Mg2++NH4 ++HPO4 2−+OH−+6H2O
→ Mg(NH4)PO4.6H2O ………(1)
このリン晶析反応を利用したリン回収方法において、被
処理水中からMAPを有用物として生産するには、安定
した高い回収率で高品質のリンを低コストで回収するこ
とが要求される。Mg 2+ + NH 4 + + HPO 4 2 − + OH − + 6H 2 O → Mg (NH 4 ) PO 4 . 6H 2 O (1) In the phosphorus recovery method utilizing this phosphorus crystallization reaction, in order to produce MAP as useful substances from the water to be treated, stable high recovery rate and high quality phosphorus at low cost can be obtained. Collection is required.
【0010】[0010]
【発明が解決しようとする課題】被処理水中の含有リン
成分を晶析反応によりMAPとして回収する場合、処理
対象となる被処理水中にMAP生成成分とともに、H
g,Cdなどの有害重金属を含んでいると、これらが回
収MAP中に残存する恐れがある。MAPを回収して
も、MAP中の重金属が肥料取締法などの基準値を満足
しなければ、肥料としての品質を維持できず、有用物と
しては利用できない。また、リン晶析反応において、被
処理水中のリン濃度が低いと、リン回収率が低下し、被
処理水の水質に応じて、回収したMAPの品質も影響を
受ける。When the phosphorus component contained in the water to be treated is recovered as MAP by the crystallization reaction, H 2 and H 2
If harmful heavy metals such as g and Cd are contained, these may remain in the recovered MAP. Even if MAP is recovered, unless the heavy metals in MAP satisfy the standard values such as the Fertilizer Control Law, the quality as fertilizer cannot be maintained and it cannot be used as a useful product. Further, in the phosphorus crystallization reaction, when the phosphorus concentration in the water to be treated is low, the phosphorus recovery rate is lowered, and the quality of the recovered MAP is affected depending on the water quality of the water to be treated.
【0011】一方、リン晶析反応において、前記MAP
生成成分の各イオンは、等モル反応してMAPを生成す
る。このため、下水などの被処理液中の溶解性マグネシ
ウム濃度がリン濃度に対して低くなると、図8に示すよ
うに、リン回収率が低下する。図8は、マグネシウム添
加率とリン回収率との関係を示す特性図である。被処理
水中のマグネシウム濃度が変動すると、安定した高いリ
ン回収率が得られない。 対応策として、例えば、塩化
マグネシウム(MgCl2)または水酸化マグネシウム
(Mg(OH)2)などの薬剤添加が必要となる。その分、
MAP回収に要するコストが高くなる。On the other hand, in the phosphorus crystallization reaction, the MAP
Each ion of the produced component reacts equimolar to produce MAP. Therefore, when the concentration of soluble magnesium in the liquid to be treated such as sewage becomes lower than the concentration of phosphorus, the phosphorus recovery rate decreases as shown in FIG. FIG. 8 is a characteristic diagram showing the relationship between the magnesium addition rate and the phosphorus recovery rate. If the magnesium concentration in the water to be treated varies, a stable high phosphorus recovery rate cannot be obtained. As a countermeasure, for example, magnesium chloride (MgCl 2 ) or magnesium hydroxide
It is necessary to add a chemical such as (Mg (OH) 2 ). That much
The cost required for MAP collection increases.
【0012】MAPの生成反応は、水酸イオン(OH−)
の存在下で進行し、アルカリ性領域pH9付近で反応が
良好に進行し、リン回収率が高くなる。The reaction of MAP formation is based on the hydroxide ion (OH − )
The reaction proceeds well in the vicinity of pH 9 in the alkaline range, and the phosphorus recovery rate increases.
【0013】被処理水のpHが低いと、MAPの生成が
促進されず、図9に示すように、pHが低下するとリン
回収率が低下する。図9は、pHとリン回収率との関係
を示す特性図である。例えば、被処理水となる下水のp
Hは、約7.5前後なので、リン回収率の高いpH領域
に維持するためには、水酸化ナトリウム(NaOH)など
のアルカリ剤の添加が必要となり、MAP生産コストが
高くなる。When the pH of the water to be treated is low, the production of MAP is not promoted, and as shown in FIG. 9, the phosphorus recovery rate is lowered when the pH is lowered. FIG. 9 is a characteristic diagram showing the relationship between pH and phosphorus recovery rate. For example, p of sewage to be treated water
Since H is around 7.5, it is necessary to add an alkaline agent such as sodium hydroxide (NaOH) in order to maintain the pH range where the phosphorus recovery rate is high, which increases the MAP production cost.
【0014】さらに、リン回収率は、被処理水中のアン
モニウムイオン濃度の影響も受け、図10に示すよう
に、アンモニウムイオン濃度が低下すると、リン回収率
も低下する。図10は、アンモニウムイオン濃度とリン
回収率との関係を示す特性図である。Further, the phosphorus recovery rate is also affected by the ammonium ion concentration in the water to be treated, and as shown in FIG. 10, when the ammonium ion concentration decreases, the phosphorus recovery rate also decreases. FIG. 10 is a characteristic diagram showing the relationship between ammonium ion concentration and phosphorus recovery rate.
【0015】このように、従来のリン回収方法において
は、リン晶析反応によりMAPを有用物として回収でき
る反面、薬品添加によるコスト高の問題があり、被回収
物濃度の影響によりリン回収率が不安定になる問題もあ
った。As described above, in the conventional phosphorus recovery method, MAP can be recovered as a useful substance by the phosphorus crystallization reaction, but on the other hand, there is a problem of high cost due to the addition of chemicals, and the phosphorus recovery rate depends on the concentration of the recovered substance. There was also the problem of becoming unstable.
【0016】本発明の目的は、下水などの被処理水から
有用物として高品質のリン酸アンモニウムマグネシウム
MAPを回収する手段を備えたリン回収装置を提供する
ことである。An object of the present invention is to provide a phosphorus recovery apparatus equipped with a means for recovering high quality magnesium ammonium phosphate MAP as a useful substance from water to be treated such as sewage.
【0017】本発明の他の目的は、低コストで安定した
高いリン回収率を維持する手段を備えたリン回収装置を
提供することである。Another object of the present invention is to provide a phosphorus recovery apparatus having means for maintaining a stable and high phosphorus recovery rate at low cost.
【0018】[0018]
【課題を解決するための手段】本発明は、上記目的を達
成するために、第1のリン回収装置として、電解処理槽
内に陰イオン交換膜を介して陽極および陰極を浸漬する
とともに、前記陰イオン交換膜と陰極間の隔室にリン成
分含有被処理水を導入して、前記両極間に通電して電解
処理する手段を備え、さらに、前記陽極側の濃縮液をア
ルカリ性側のpH域でリン晶析反応させる手段を備え、
前記リン晶析反応により被処理水中のリン成分をリン酸
マグネシウムアンモニウムの粒状物として回収するリン
回収装置を提案する。In order to achieve the above object, the present invention provides, as a first phosphorus recovery apparatus, an anode and a cathode immersed in an electrolytic treatment tank through an anion exchange membrane, and The phosphorus-containing water to be treated is introduced into the compartment between the anion exchange membrane and the cathode, and a means for electrolyzing by energizing between the electrodes is further provided, and the concentrated solution on the anode side has a pH range on the alkaline side. Equipped with a means for causing a phosphorus crystallization reaction in
A phosphorus recovery device is proposed which recovers the phosphorus component in the water to be treated as granular magnesium ammonium phosphate by the phosphorus crystallization reaction.
【0019】このように構成したので、電解処理によっ
て被処理水中の負の電荷を有するリン成分(PO4 3−)
は、陰極の反発力を受けると同時に陽極側に引き寄せら
れる。そして、リン成分は、陰イオンのみを選択的に透
過させる陰イオン交換膜を透過して陽極側に移動するた
め、陽極側の濃縮液のリン濃度が高くなる。一方、H
g,Cdなどの正の電荷を有する重金属は、陰イオン交
換膜を透過せずに陰極側に向かって移動する。With this structure, the phosphorus component (PO 4 3− ) having a negative charge in the water to be treated by electrolytic treatment
Is attracted to the anode side at the same time as it receives the repulsive force of the cathode. Then, since the phosphorus component permeates the anion exchange membrane that selectively permeates only anions and moves to the anode side, the phosphorus concentration of the concentrated liquid on the anode side becomes high. On the other hand, H
Heavy metals having positive charges such as g and Cd move toward the cathode side without passing through the anion exchange membrane.
【0020】このように、被処理水が電解処理される場
合、陽極側の濃縮液には、重金属を含まないリンが回収
され、かつ、回収に伴い濃縮液中のリン濃度が高められ
ることになる。このため、この濃縮液を用いてアルカリ
性側のpH域でリン晶析反応させれば、回収MAP中に
は、重金属を含まず、肥料または肥料原料などに利用で
きる有用なMAPとして回収できる。また、晶析反応用
として濃縮液は、前述のように液中のリン濃度が高く維
持されているので、リン回収率が低下することなく低濃
度リンに伴うリン回収率の低下を抑制できる。Thus, when the water to be treated is subjected to the electrolytic treatment, phosphorus that does not contain heavy metals is recovered in the concentrated liquid on the anode side, and the phosphorus concentration in the concentrated liquid is increased with the recovery. Become. Therefore, if a phosphorus crystallization reaction is performed in the alkaline pH range using this concentrated liquid, the recovered MAP does not contain heavy metals and can be recovered as a useful MAP that can be used as a fertilizer or a fertilizer raw material. In addition, since the concentrated liquid for the crystallization reaction has a high phosphorus concentration in the liquid as described above, it is possible to suppress the decrease in the phosphorus recovery rate due to the low concentration of phosphorus without decreasing the phosphorus recovery rate.
【0021】その結果、被処理水中に重金属を含んでい
ても、この被処理水中から高い回収率で高品質の高いリ
ン酸アンモニウムマグネシウムを回収できるリン回収装
置を提供できる。As a result, it is possible to provide a phosphorus recovery device capable of recovering high-quality magnesium ammonium phosphate from the water to be treated with a high recovery rate even if the water to be treated contains heavy metals.
【0022】第2のリン回収装置として、上記第1のリ
ン回収装置において、陰イオン交換膜と陽極間との濃縮
室の容積を被処理水が導入される陰イオン交換膜と陰極
間との隔室の容積よりも小さく設定したリン回収装置を
提案する。As the second phosphorus recovery apparatus, in the first phosphorus recovery apparatus, the volume of the concentration chamber between the anion exchange membrane and the anode is set between the anion exchange membrane into which the water to be treated is introduced and the cathode. We propose a phosphorus recovery device that is smaller than the volume of the compartment.
【0023】電解処理時、陰イオン交換膜を介して陰極
側の隔室に導入された被処理水中のリン成分を陽極側に
移動させる場合、陽極側の濃縮室の容積が隔室の容積よ
りも大きいと、移動したリン濃度が低下することにな
る。During the electrolytic treatment, when the phosphorus component in the water to be treated introduced into the compartment on the cathode side through the anion exchange membrane is moved to the anode side, the volume of the concentration chamber on the anode side is larger than that of the compartment. If it is too large, the concentration of transferred phosphorus will decrease.
【0024】しかし、陽極と陰イオン交換膜間の濃縮室
の容積は、陰極と陰イオン交換膜間の隔室の容積よりも
大きく設定されているので、濃縮室におけるリン濃度の
低下を抑制できる。However, since the volume of the concentration chamber between the anode and the anion exchange membrane is set to be larger than the volume of the partition between the cathode and the anion exchange membrane, it is possible to suppress the decrease of the phosphorus concentration in the concentration chamber. .
【0025】第3のリン回収装置として、上記第1のリ
ン回収装置において、陰イオン交換膜と陽極間に陽イオ
ン交換膜を配置して、前記陰イオン交換膜と陽イオン交
換膜の隔室に被処理水を導入するとともに、前記陽極側
の濃縮液と陰極側の濃縮液とを混合して、アルカリ性側
のpH域でリン晶析反応させるリン回収装置を提案す
る。As a third phosphorus recovery device, in the above first phosphorus recovery device, a cation exchange membrane is arranged between the anion exchange membrane and the anode, and the anion exchange membrane and the cation exchange membrane are separated from each other. A phosphorus recovery device is proposed in which water to be treated is introduced and the concentrated liquid on the anode side and the concentrated liquid on the cathode side are mixed to cause a phosphorus crystallization reaction in a pH range on the alkaline side.
【0026】この構成によると、被処理水中に含まれる
負の電荷を有するリン成分(PO4 3−)は、電解処理に
よって陽極側に引き寄せられ、陰イオンを選択的に透過
させる陰イオン交換膜を透過して陽極側に移動する。こ
の結果、陽極側の濃縮液中のリン濃度が高くなる。一
方、MAP生成成分となる正の電荷を有するアンモニウ
ムイオン(NH4 +)およびマグネシウムイオン(Mg
2+)は、陰極の反発力を受け、かつ、陰極側に引き寄
せられて陽イオンを選択的に透過させる陽イオン交換膜
を透過して陰極側に移動し濃縮させられる。この結果、
両極側の濃縮液中のMAP生成成分濃度が高くなる。According to this structure, it is contained in the water to be treated.
Phosphorus component having negative charge (POFour 3-) Is for electrolytic treatment
Therefore, it is attracted to the anode side and selectively transmits anions.
It permeates the anion exchange membrane to be moved to the anode side. This
As a result, the phosphorus concentration in the concentrated liquid on the anode side becomes high. one
On the other hand, ammoniu having a positive charge as a MAP generating component
Muion (NHFour +) And magnesium ion (Mg
2+) Receives the repulsive force of the cathode and is attracted to the cathode side.
Cation-exchange membrane that allows selective permeation of cations
Permeate through to move to the cathode side for concentration. As a result,
The concentration of the MAP producing component in the concentrated liquid on both sides becomes high.
【0027】電解処理によって陽極表面では、水素イオ
ン(H+)が発生するため、陽極側の濃縮液は、酸性とな
る。逆に、陰極表面では、水酸イオン(OH−)が発生す
るため、陰極側の濃縮液は、アルカリ性となる。Since hydrogen ions (H + ) are generated on the surface of the anode by the electrolytic treatment, the concentrated liquid on the anode side becomes acidic. On the contrary, since hydroxide ions (OH − ) are generated on the surface of the cathode, the concentrated liquid on the cathode side becomes alkaline.
【0028】図11は、本発明による電解処理での被処
理水のpH変化特性を示す。被処理水として下水処理プ
ロセスの最終沈殿池の沈殿水(pH約7.5)を用い、電
極としてPt(チタン基板)を使用して回分式の電解処理
をした。陰イオン交換膜を介して陰極側の容積を1とし
て、陽極側の容積比を0.6に設定した。この結果、陽
極側の濃縮液のpHは約2となり、陰極側の濃縮液のp
Hは、約11となる。FIG. 11 shows the pH change characteristic of the water to be treated in the electrolytic treatment according to the present invention. Precipitation water (pH of about 7.5) in the final sedimentation tank of the sewage treatment process was used as the water to be treated, and Pt (titanium substrate) was used as the electrode for batch type electrolytic treatment. The volume on the cathode side was set to 1 through the anion exchange membrane, and the volume ratio on the anode side was set to 0.6. As a result, the pH of the concentrated liquid on the anode side becomes about 2, and the p
H will be about 11.
【0029】したがって、高濃度のリン成分を含む酸性
の濃縮液とアンモニウム,マグネシウムイオンを高濃度
に含むアルカリ性の濃縮液を混合して、アルカリ性のp
H域でリン晶析反応させると、先述したpH調整用のア
ルカリ剤などの薬品が不要となり、低コストで被処理水
中の含有リンをMAPとして回収できる。そして、被処
理水中のMAP生成成分となる成分濃度が低くとも、電
解処理によって各濃縮液中の成分濃度が高く維持される
ので、塩化マグネシウムなどの薬剤添加が不要、または
低減することでき、被処理水中のMAP生成成分濃度の
低下に伴うリン回収率の低下を抑制できる。この結果、
低コストで安定した高いリン回収率を維持できるリン回
収装置を提供できる。Therefore, an acidic concentrate containing a high concentration of phosphorus component and an alkaline concentrate containing a high concentration of ammonium and magnesium ions are mixed to form an alkaline p solution.
When the phosphorus crystallization reaction is performed in the H region, the above-mentioned chemical agent such as an alkaline agent for pH adjustment becomes unnecessary, and the phosphorus content in the water to be treated can be recovered as MAP at low cost. And, even if the concentration of the component that becomes the MAP-forming component in the water to be treated is low, the component concentration in each concentrated liquid is maintained high by the electrolytic treatment, so that the addition of a chemical such as magnesium chloride is unnecessary or can be reduced. It is possible to suppress a decrease in the phosphorus recovery rate due to a decrease in the concentration of the MAP producing component in the treated water. As a result,
A phosphorus recovery device that can maintain a stable and high phosphorus recovery rate at low cost can be provided.
【0030】第4のリン回収装置として、上記第3のリ
ン回収装置において、陽極側および陰極側の濃縮室の容
積を被処理水が導入される隔室の容積よりも小さく設定
したリン回収装置を提案する。As the fourth phosphorus recovery device, in the third phosphorus recovery device, the volume of the concentration chambers on the anode side and the cathode side is set smaller than the volume of the compartment into which the water to be treated is introduced. To propose.
【0031】電解処理時、陰イオン交換膜および陽イオ
ン交換膜間の隔室に導入された被処理水中のMAP生成
成分が陽極側および陰極側に移動後、陽極側および陰極
側の濃縮室の容積が隔室の容積よりも大きいと、各極側
に移動したMAP生成成分濃度が希釈された状態となり
濃度が低下することになる。これに対応するため、陽極
側および陰極側の濃縮室の容積を陰イオン交換膜と陽イ
オン交換膜間の隔室の容積よりも大きく設定しているの
で、各濃縮室におけるMAP生成成分濃度の低下を抑制
できる。During the electrolytic treatment, the MAP forming component in the water to be treated introduced into the compartment between the anion exchange membrane and the cation exchange membrane moves to the anode side and the cathode side, and then the concentration chambers on the anode side and the cathode side. When the volume is larger than the volume of the compartment, the concentration of the MAP producing component moved to each electrode side becomes diluted and the concentration decreases. In order to deal with this, the volumes of the concentration chambers on the anode side and the cathode side are set to be larger than the volume of the compartment between the anion exchange membrane and the cation exchange membrane. The decrease can be suppressed.
【0032】第5のリン回収装置として、上記第3のリ
ン回収装置において、陽極側の濃縮液と陰極側の濃縮液
との混合比率をリン晶析反応槽内のpHを検出して、こ
のpH値と設定目標pH値との偏差に基づいて調整する
リン回収装置を提案する。As a fifth phosphorus recovery device, in the third phosphorus recovery device, the mixing ratio of the concentrated liquid on the anode side and the concentrated liquid on the cathode side is detected by detecting the pH in the phosphorus crystallization reaction tank, We propose a phosphorus recovery device that adjusts based on the deviation between the pH value and the set target pH value.
【0033】リン晶析反応は、イオン状態で存在するリ
ンの安定域以上のpH領域(pH8からpH9)で進行
し、先述したように反応pHによってリン回収率が左右
される。このため、被処理水中のリン成分を晶析反応に
よりMAPとして回収する場合、リン回収率を高めるた
めには、適正pHに維持管理することが重要な要素とな
る。特に、電解処理した酸性液の濃縮液とアルカリ性液
の濃縮液を混合する際、pHが混合比率の影響を受ける
ため、この比率調整が重要となる。The phosphorus crystallization reaction proceeds in a pH region (pH 8 to pH 9) higher than the stable region of phosphorus existing in an ionic state, and the phosphorus recovery rate depends on the reaction pH as described above. Therefore, when the phosphorus component in the water to be treated is recovered as MAP by the crystallization reaction, maintaining the pH at an appropriate level is an important factor for increasing the phosphorus recovery rate. In particular, when mixing the concentrated solution of the acidic solution and the concentrated solution of the alkaline solution which have been subjected to the electrolytic treatment, the pH is influenced by the mixing ratio, so that the adjustment of this ratio is important.
【0034】そこで、この構成においては、酸性液であ
るリン成分含有濃縮液とアルカリ性液であるアンモニウ
ム,マグネシウムイオン含有濃縮液とを混合するに際し
て、適正な設定目標pH値に維持するため、リン晶析反
応槽内のpHを検出して設定目標pH値との偏差に基づ
き、各濃縮液の混合比率を調整するようにした。Therefore, in this structure, when the phosphorus component-containing concentrated liquid which is an acidic liquid and the ammonium and magnesium ion-containing concentrated liquid which is an alkaline liquid are mixed, in order to maintain an appropriate set target pH value, the phosphorus crystal is added. The pH in the precipitation reaction tank was detected, and the mixing ratio of each concentrate was adjusted based on the deviation from the set target pH value.
【0035】この構成によれば、pH調整用のアルカリ
剤を用いることなく、リン晶析反応槽内のpHを目標と
する適正pHに維持でき、pHの変動を抑制できる。そ
の結果、高いリン回収率を安定して得られる。According to this structure, the pH in the phosphorus crystallization reaction tank can be maintained at the target proper pH without using an alkaline agent for pH adjustment, and fluctuations in pH can be suppressed. As a result, a high phosphorus recovery rate can be stably obtained.
【0036】[0036]
【発明の実施の形態】次に、図1〜図7を参照して、本
発明によるリン回収装置の実施形態を説明する。BEST MODE FOR CARRYING OUT THE INVENTION Next, an embodiment of a phosphorus recovery apparatus according to the present invention will be described with reference to FIGS.
【0037】[0037]
【実施形態1】図1は、本発明によるリン回収装置を下
水処理場に適応した場合の下水処理場の系統構成と処理
手順とを併せて示すブロック図である。下水となる流入
水RWは、最初沈殿池1で微細な砂および浮遊物質が沈
降分離した後、活性汚泥処理槽2に導入される。[First Embodiment] FIG. 1 is a block diagram showing a system configuration and a treatment procedure of a sewage treatment plant when the phosphorus recovery apparatus according to the present invention is applied to the sewage treatment plant. The inflow water RW, which becomes sewage, is first introduced into the activated sludge treatment tank 2 after the fine sand and the suspended solids are settled and separated in the settling tank 1.
【0038】流入水RWは、活性汚泥処理槽2内の活性
汚泥とともに、所定時間は曝気混合され、活性汚泥の作
用により、有機物を酸化分解される。その後、活性汚泥
処理槽2内の活性汚泥と処理水の混合液MWは、最終沈
殿池3に導入される。The inflow water RW is aerated and mixed with the activated sludge in the activated sludge treatment tank 2 for a predetermined time, and the organic matter is oxidized and decomposed by the action of the activated sludge. Then, the mixed liquid MW of the activated sludge and the treated water in the activated sludge treatment tank 2 is introduced into the final settling tank 3.
【0039】最終沈殿池3では、汚泥ASが沈降分離さ
れ、上澄水は、処理水TWとして下水処理場の系外に放
流される。または、必要に応じて3次処理が実施されて
系外に放流される。In the final settling tank 3, the sludge AS is settled and separated, and the supernatant water is discharged as treated water TW out of the system of the sewage treatment plant. Alternatively, a tertiary treatment is carried out if necessary and the product is discharged to the outside of the system.
【0040】一方、最終沈殿池3の底部に沈降した汚泥
ASは、連続的に抜き出され、一部は、返送汚泥RAと
して活性汚泥処理槽2の上流側に返送される。また、有
機物を分解して増加した汚泥は、余剰汚泥SAとして抜
き出される。On the other hand, the sludge AS that has settled at the bottom of the final settling tank 3 is continuously withdrawn, and part of it is returned to the upstream side of the activated sludge treatment tank 2 as return sludge RA. The sludge increased by decomposing the organic matter is extracted as surplus sludge SA.
【0041】処理水TWを含む前記余剰汚泥SAは、そ
の後、例えば遠心分離機などの固液分離手段4によって
分離液と余剰汚泥SAとに分離され、分離液は、返送水
BWとして、最初沈殿池1の上流側に返送される。The excess sludge SA containing the treated water TW is then separated into a separated liquid and an excess sludge SA by a solid-liquid separation means 4 such as a centrifuge, and the separated liquid is first precipitated as return water BW. It is returned to the upstream side of pond 1.
【0042】一方、固液分離手段4によって分離された
余剰汚泥SAは、その後嫌気消化槽5に導入される。On the other hand, the excess sludge SA separated by the solid-liquid separation means 4 is then introduced into the anaerobic digestion tank 5.
【0043】嫌気消化槽5では、嫌気性細菌の作用によ
り、余剰汚泥SA中の有機物が嫌気消化(または、メタ
ン発酵)され、必要に応じてメタン(CH4)を主成分と
する消化ガスGが回収される。前記消化ガスGには、有
用成分のメタン以外に腐食および大気汚染の原因となる
微量の硫化水素(H2S)を含んでいるため、脱硫手段
(図示せず)を介した後、ガス貯留(図示せず)され、その
後ガス利用される。In the anaerobic digestion tank 5, the organic matter in the excess sludge SA is anaerobically digested (or methane-fermented) by the action of anaerobic bacteria, and if necessary, a digestion gas G containing methane (CH 4 ) as a main component. Is recovered. Since the digestive gas G contains a trace amount of hydrogen sulfide (H 2 S) that causes corrosion and air pollution in addition to the useful component methane, the desulfurization means
After passing through (not shown), gas is stored (not shown) and then used as gas.
【0044】前記嫌気消化槽5からの消化汚泥DSは、
遠心分離機などからなる固液分離手段6に導入され、こ
こで、消化汚泥DSが脱水ケーキSと消化液DLとに固
液分離される。The digested sludge DS from the anaerobic digestion tank 5 is
It is introduced into the solid-liquid separation means 6 including a centrifuge or the like, where the digested sludge DS is solid-liquid separated into the dehydrated cake S and the digested liquid DL.
【0045】なお、嫌気消化槽5では、好気状態で活性
汚泥に摂取されたリンが放出される。このため、消化液
DL中のリン濃度が高い。In the anaerobic digestion tank 5, phosphorus ingested in the activated sludge in an aerobic state is released. Therefore, the phosphorus concentration in the digestive fluid DL is high.
【0046】次に、この消化液DLは、被処理水Wとし
て、図2に示すように、電解処理槽7に導入され、ここ
で、電解処理分離される。図3にその詳細を示すよう
に、電解処理槽7は、内部が区画された複数の処理槽7
Aおよび'7Bを有し、この各槽7Aおよび7B内に
は、陽極8と陰極9が陰イオン交換膜10を介して対向
して浸漬されている。前記陰イオン交換膜10は、陽イ
オンを透過させず、陰イオンを選択的に透過させる機能
を有する。Next, the digested liquid DL is introduced into the electrolytic treatment tank 7 as the water to be treated W, as shown in FIG. 2, where it is electrolytically separated. As shown in detail in FIG. 3, the electrolytic treatment bath 7 includes a plurality of treatment baths 7 whose interiors are partitioned.
A and 8B are provided, and an anode 8 and a cathode 9 are immersed in the respective tanks 7A and 7B so as to face each other with an anion exchange membrane 10 interposed therebetween. The anion exchange membrane 10 does not allow cations to pass through, but has a function of selectively passing anions.
【0047】前記陽極8および陰極9は、直流安定化電
源11に接続され、両極8、9間に直流電流が通され
る。電極の材質として、本実施形態1では、表面にPt
コートしたものを選定しているが、例えば、鉄電極など
であってもよく特に限定されない。The anode 8 and the cathode 9 are connected to a stabilized DC power supply 11, and a DC current is passed between both electrodes 8 and 9. As the material of the electrode, in the first embodiment, Pt is formed on the surface.
A coated electrode is selected, but it may be an iron electrode or the like and is not particularly limited.
【0048】被処理水Wとなる消化液DLは、保護フィ
ルタ12を介して陰イオン交換膜10と陰極9間の隔室
13に供給される。陽極8および陰極9間に直流安定化
電源11から通電されると、被処理水W中にHg,Cd
などの重金属を含んでいる場合、正の電荷を有する重金
属は、陰イオン交換膜10を透過せずに陰極9側に引き
寄せられる。一方、被処理水Wとなる消化液DL中の負
イオンのリン成分は、陽極9側に引き寄せられて陰イオ
ンのみを選択的に透過させる陰イオン交換膜10を透過
して陽極8側に移動する。この結果、陽極8側の濃縮液
は、重金属を含まず、リン濃度が高くなる。The digestive liquid DL which becomes the water W to be treated is supplied to the compartment 13 between the anion exchange membrane 10 and the cathode 9 through the protective filter 12. When current is supplied from the stabilized DC power supply 11 between the anode 8 and the cathode 9, Hg and Cd are contained in the water W to be treated.
When a heavy metal having a positive charge is included, the heavy metal having a positive charge is attracted to the cathode 9 side without passing through the anion exchange membrane 10. On the other hand, the phosphorus component of the negative ions in the digestive liquid DL that becomes the water to be treated W is drawn to the anode 9 side and permeates the anion exchange membrane 10 that selectively allows only the anions to move to the anode 8 side. To do. As a result, the concentrated liquid on the side of the anode 8 does not contain heavy metals and has a high phosphorus concentration.
【0049】前記陽極8側に位置する濃縮室14の濃縮
液ACは、供液ポンプ15で後述するリン晶析反応槽1
6に供給される。排液ポンプ17は、電解処理槽7内の
隔室13内に導入された被処理水Wを必要に応じて排出
する。The concentrated liquid AC in the concentrating chamber 14 located on the side of the anode 8 is supplied to the phosphorus crystallization reaction tank 1 which will be described later by the feed pump 15.
6 is supplied. The drainage pump 17 discharges the water W to be treated introduced into the compartment 13 in the electrolytic treatment tank 7 as needed.
【0050】ここで、陽極8と陰イオン交換膜10間の
濃縮室14の容積Vnは、被処理水Wが導入される陰極9
と陰イオン交換膜10間の隔室13の容積V0よりも小
さく、陽極8側に移動したリン濃度の低下を抑制し、リ
ン濃縮度合いを高める設定が施されている。Here, the volume Vn of the concentrating chamber 14 between the anode 8 and the anion exchange membrane 10 is the cathode 9 into which the water W to be treated is introduced.
The volume V0 is smaller than the volume V0 of the compartment 13 between the anion exchange membrane 10 and the anion exchange membrane 10, and the decrease in the concentration of phosphorus that has moved to the anode 8 side is suppressed and the degree of concentration of phosphorus is increased.
【0051】なお、本実施形態1では、処理量増加のた
め、電解処理槽7内を複数の処理槽7A,7Bで区画し
て、区画されたそれぞれの槽7A,7B内に各電極8,
9および陰イオン交換膜10を浸漬して配置している
が、電解処理槽7内が単槽であってもよい。また、単槽
の電解処理槽7を複数個組み合わせてもよい。さらに、
電解処理槽7内が複数個に区画されて、これらの電解処
理槽7を複数個組み合わせてもよく、電解処理槽7の数
および内部構成は、本実施形態1のみには限定されな
い。In the first embodiment, in order to increase the treatment amount, the electrolytic treatment bath 7 is divided into a plurality of treatment baths 7A, 7B, and the electrodes 8, 8 are formed in the divided baths 7A, 7B.
Although 9 and the anion exchange membrane 10 are immersed and arranged, the electrolytic treatment tank 7 may be a single tank. Also, a plurality of single electrolytic treatment tanks 7 may be combined. further,
The inside of the electrolytic treatment tank 7 may be divided into a plurality of sections, and a plurality of these electrolytic treatment tanks 7 may be combined, and the number and internal configuration of the electrolytic treatment tanks 7 are not limited to those of the first embodiment.
【0052】次に、電解処理槽7で精製分離濃縮された
陽極8側の濃縮液ACは、図2に示すように、電解処理
槽7の下流側に配置されたリン晶析反応槽16内の底部
に位置する晶析部18に供給される。また、リン晶析反
応槽16内の晶析部18には、必要量のマグネシウム
(例えば、塩化マグネシウム,水酸化マグネシウム)が注
入される。マグネシウム溶液槽19は、薬液注入ポンプ
20を介してマグネシウムがリン晶析反応槽7内に注入
される。さらに、リン晶析反応槽16内の晶析部18に
は、必要に応じてアルカリ剤(例えば、水酸化ナトリウ
ム)が注入される。アルカリ剤溶液槽21は、薬液注入
ポンプ22を介してアルカリ剤がリン晶析反応槽16内
に注入される。Next, the concentrated liquid AC on the anode 8 side, which has been purified and separated and concentrated in the electrolytic treatment tank 7, is stored in the phosphorus crystallization reaction tank 16 arranged downstream of the electrolytic treatment tank 7 as shown in FIG. Is supplied to the crystallization part 18 located at the bottom of the. Further, the crystallization part 18 in the phosphorus crystallization reaction tank 16 has a required amount of magnesium.
(Eg magnesium chloride, magnesium hydroxide) is injected. In the magnesium solution tank 19, magnesium is injected into the phosphorus crystallization reaction tank 7 via the chemical injection pump 20. Furthermore, an alkaline agent (for example, sodium hydroxide) is injected into the crystallization part 18 in the phosphorus crystallization reaction tank 16 as needed. In the alkaline agent solution tank 21, the alkaline agent is injected into the phosphorus crystallization reaction tank 16 via the chemical solution injection pump 22.
【0053】リン晶析反応槽16内のpHは、pH計2
3で検出され、このpH計23の検出値pH0が演算器
24に入力される。一方、この演算器24には、予めア
ルカリ性側の設定目標値pHsが入力されている。そし
て、設定目標値pHsと検出値pH0との偏差ΔpHに
基づいてアルカリ剤を注入する薬液注入ポンプ22の流
量を制御し、設定目標値pHsを維持するように制御す
る。The pH in the phosphorus crystallization reaction tank 16 is measured by a pH meter 2
The detected value pH 0 of the pH meter 23 is input to the calculator 24. On the other hand, the set target value pHs on the alkaline side is previously input to the calculator 24. Then, the flow rate of the chemical liquid injection pump 22 that injects the alkaline agent is controlled based on the deviation ΔpH between the set target value pHs and the detected value pH0, and is controlled so as to maintain the set target value pHs.
【0054】反応槽16内では、供給された液のpHが
設定目標値pHsの適切な所定pHに維持されることに
より、リン晶析反応槽16では、(1)式で示すリン晶析
反応が進行し、MAPが析出する。なお、リン晶析反応
槽16内には、予め種晶(図示せず、例えば、MAP、
または、リン鉱石粉末)が供給され、析出反応は、種晶
表面上で選択的に進行して微細なMAPとなる。そし
て、種晶は、必要に応じて供給される。In the reaction tank 16, the pH of the supplied liquid is maintained at an appropriate predetermined pH of the set target value pHs, so that in the phosphorus crystallization reaction tank 16, the phosphorus crystallization reaction represented by the formula (1) is performed. Progresses and MAP is deposited. In the phosphorus crystallization reaction tank 16, seed crystals (not shown, for example, MAP,
Alternatively, phosphate rock powder) is supplied, and the precipitation reaction proceeds selectively on the seed crystal surface to form fine MAP. Then, seed crystals are supplied as needed.
【0055】リン晶析反応槽16内の下部には、ブロワ
25から空気が多数の孔を有する散気管26を介して供
給され、槽16内の液が攪拌混合される。微細なMAP
は、攪拌混合されながら粒子の成長が造粒反応部27で
進行すると同時に造粒反応部27を上昇して沈殿部28
に流入する。ここで、MAPが沈降分離され、沈殿部2
8から造粒反応部27に戻されるとともに、MAPが沈
降分離された脱リン処理水PWは、沈殿部28で溢れて
流れ、最初沈殿池1の上流側に返送される。循環ポンプ
29は、前記ポンプによって沈殿部28から晶析部18
に液を含むMAPが戻される。Air is supplied to the lower part of the phosphorus crystallization reaction tank 16 from a blower 25 through an air diffuser 26 having a large number of holes, and the liquid in the tank 16 is agitated and mixed. Fine MAP
The particle growth progresses in the granulation reaction section 27 while being stirred and mixed, and at the same time, the granulation reaction section 27 rises to rise to the precipitation section 28.
Flow into. Here, MAP is sedimented and separated, and the sedimentation part 2
The dephosphorized water PW from which the MAP has been settled and separated while being returned to the granulation reaction section 27 from 8 overflows in the settling section 28 and is first returned to the upstream side of the settling tank 1. The circulation pump 29 is used for the crystallization unit 18 from the precipitation unit 28 by the pump.
The MAP containing liquid is returned to.
【0056】一方、晶析反応の進行とともに粒径が大き
く成長したMAPは、リン晶析反応槽16の底部に沈降
して集積される。集積した成長MAPは、必要に応じて
リン晶析反応槽16の底部に配設された抜き出し管30
から、開閉弁31を介して、系外に排出される。液とと
もに排出されたMAPは、固液分離手段32で分離され
回収される。分離液SWは、回収液ポンプ33でリン晶
析反応槽16の沈殿部28に返送される。On the other hand, the MAP having a large grain size grown with the progress of the crystallization reaction settles and accumulates at the bottom of the phosphorus crystallization reaction tank 16. The accumulated growth MAP is taken out from the extraction tube 30 provided at the bottom of the phosphorus crystallization reaction tank 16 as needed.
Is discharged from the system through the on-off valve 31. The MAP discharged together with the liquid is separated and collected by the solid-liquid separation means 32. The separated liquid SW is returned to the precipitation part 28 of the phosphorus crystallization reaction tank 16 by the recovery liquid pump 33.
【0057】[0057]
【実施形態2】次に、図4,図5、図6を参照して、本
発明によるリン回収装置の実施形態2について説明す
る。Second Embodiment Next, a second embodiment of the phosphorus recovery apparatus according to the present invention will be described with reference to FIGS.
【0058】図4において、被処理水Wとなる消化液D
Lは、電解処理槽7に導入され、ここで、消化液DL中
に含有するMAP生成成分となる負の電荷を有するリン
(PO4 3−)成分と正の電荷を有するアンモニウムイオ
ン(NH4 +),マグネシウムイオン(Mg2+)とに電解
処理分離される。In FIG. 4, the digested liquid D which becomes the water W to be treated.
L is introduced into the electrolytic treatment tank 7, and here, phosphorus having a negative charge that becomes a MAP-forming component contained in the digestive juice DL.
It is electrolytically separated into a (PO 4 3− ) component and a positively charged ammonium ion (NH 4 + ) and magnesium ion (Mg 2+ ).
【0059】図5において、電解処理槽7Cおよび7D
内には、陽極8と陰極9が対向して配置され、さらに、
陽極8と陰極9間には、陰イオン交換膜10および陽イ
オン交換膜40が浸漬されて配置されている。そして、
前記各膜10および40の内、陰イオン交換膜10は、
陽極8側に位置して配置される。一方、陽イオン交換膜
40は、陰極9に位置して配置される。陰イオン交換膜
10は、前述のように陽イオンを透過させず、陰イオン
を透過させる。逆に、陽イオン交換膜40は、陰イオン
を透過させず、陽イオンを透過させる。In FIG. 5, electrolytic treatment tanks 7C and 7D are used.
Inside, an anode 8 and a cathode 9 are arranged so as to face each other.
An anion exchange membrane 10 and a cation exchange membrane 40 are immersed and arranged between the anode 8 and the cathode 9. And
Among the respective membranes 10 and 40, the anion exchange membrane 10 is
It is located on the side of the anode 8. On the other hand, the cation exchange membrane 40 is arranged at the cathode 9. The anion exchange membrane 10 does not allow cations to pass therethrough as described above, but allows anions to pass therethrough. On the contrary, the cation exchange membrane 40 does not allow anions to pass through, but allows cations to pass through.
【0060】被処理水Wとなる消化液DLは、保護フィ
ルタ12を介して陰イオン交換膜10と陽イオン交換膜
40との間の隔室41に供給される。両極8,9に通電
されると、消化液DL中の負イオンのリン成分は、陰イ
オン交換膜10を透過して陽極8側に移動し濃縮され
る。一方、消化液DL中の正イオンであるアンモニウム
イオンおよびマグネシウムイオンなどは、陽イオン交換
膜40を透過して陰極9側に移動し濃縮される。ここ
で、電極8,9と各イオン交換膜10,40間の濃縮室
14Aおよび14Bの容積Vnは、被処理水Wが導入され
る前記隔室41の容積V0よりも小さく、各MAP生成
成分の濃縮度合いを高める設定が施されている。The digestive liquid DL which becomes the water W to be treated is supplied to the compartment 41 between the anion exchange membrane 10 and the cation exchange membrane 40 via the protective filter 12. When the both electrodes 8 and 9 are energized, the negative ion phosphorus component in the digestive fluid DL permeates the anion exchange membrane 10 and moves to the anode 8 side to be concentrated. On the other hand, positive ions such as ammonium ions and magnesium ions in the digestive fluid DL pass through the cation exchange membrane 40, move to the cathode 9 side, and are concentrated. Here, the volume Vn of the concentrating chambers 14A and 14B between the electrodes 8 and 9 and the ion exchange membranes 10 and 40 is smaller than the volume V0 of the compartment 41 into which the water W to be treated is introduced, and each MAP producing component. It is set to increase the degree of concentration.
【0061】電解処理槽7で分離濃縮された陰極9側の
濃縮液KCおよび陽極8側の濃縮液ACは、図4に示す
ように、電解処理槽7の下流側に配置されたリン晶析反
応槽16内の底部に位置する晶析部18に供給される。As shown in FIG. 4, the concentrated liquid KC on the cathode 9 side and the concentrated liquid AC on the anode 8 side, which have been separated and concentrated in the electrolytic treatment tank 7, are phosphorus crystallizations arranged on the downstream side of the electrolytic treatment tank 7. It is supplied to the crystallization part 18 located at the bottom of the reaction tank 16.
【0062】ここで、陰極9側の濃縮液KCのpHは、
電解処理槽7での電解処理によって陰極9表面で水酸イ
オン(OH−)が発生するためアルカリ性を示す。一方、
陽極8側の濃縮液ACのpHは、陽極8表面で水素イオ
ン(H+)が発生するため酸性を示す。このため、各濃縮
液KC,ACを混合して適正pHでリン晶析反応させる
際、各濃縮液の混合比率の調整がリン晶析反応槽16内
のpH検出結果に基づいて制御される。Here, the pH of the concentrated liquid KC on the cathode 9 side is
By the electrolytic treatment in the electrolytic treatment tank 7, hydroxide ions (OH −) are generated on the surface of the cathode 9, and thus the alkaline nature is exhibited. on the other hand,
The pH of the concentrated liquid AC on the anode 8 side is acidic because hydrogen ions (H +) are generated on the surface of the anode 8. Therefore, when the concentrated solutions KC and AC are mixed and the phosphorus crystallization reaction is performed at an appropriate pH, the adjustment of the mixing ratio of the concentrated solutions is controlled based on the pH detection result in the phosphorus crystallization reaction tank 16.
【0063】図6にその詳細を示すように、pH計23
でリン晶析反応槽16内のpHが検出され、このpH計
23の検出値pH0が演算器24に入力される。一方、
この演算器24には、アルカリ性側の設定目標値pHs
が予め入力される。そして、設定目標値pHsと検出値
pH0との偏差ΔpHに基づいて、濃縮液KC,ACを
リン晶析反応槽16に導入する供液ポンプ15または、
供液ポンプ54の流量を制御し、設定目標値pHsを維
持するように各濃縮液KC,ACの混合比率を調整す
る。As shown in detail in FIG. 6, the pH meter 23
The pH in the phosphorus crystallization reaction tank 16 is detected at, and the detection value pH0 of the pH meter 23 is input to the calculator 24. on the other hand,
This calculator 24 has a set target value pHs on the alkaline side.
Is previously input. Then, based on the deviation ΔpH between the set target value pHs and the detected value pH0, the feed pump 15 for introducing the concentrated solutions KC and AC into the phosphorus crystallization reaction tank 16, or
The flow rate of the liquid supply pump 54 is controlled, and the mixing ratio of the concentrated liquids KC and AC is adjusted so as to maintain the set target value pHs.
【0064】[0064]
【実施形態3】なお、上記実施形態2において、電解処
理槽7を単数としているが、図7に示す実施形態3のよ
うに、複数個の電解処理槽50Aおよび50Bで交互に
被処理水Wとなる消化液DLを電解処理分離してもよ
い。[Third Embodiment] In the second embodiment, the single electrolytic treatment tank 7 is used. However, as in the third embodiment shown in Fig. 7, a plurality of electrolytic treatment tanks 50A and 50B are alternately provided with the water W to be treated. The digestive fluid DL to be obtained may be electrolyzed and separated.
【0065】複数の電解処理槽50Aおよび50Bの
内、一方の電解処理槽50Aの入口側の切替え弁51A
を開放して、被処理水Wとなる消化液DLを電解処理槽
50Aに導入する。そして、この電解処理槽50Aで
は、電解処理され、電解処理槽50Aの出口側に位置す
る陽極8側の切替え弁52Aと陰極9側の切替え弁53
Aが開放して、陽極8側の濃縮液ACおよび陰極9側の
濃縮液KCを各供液ポンプ15,54を介してリン晶析
反応槽16に供給する。A switching valve 51A on the inlet side of one of the electrolytic treatment tanks 50A and 50B.
Is opened and the digestive liquid DL to be treated water W is introduced into the electrolytic treatment tank 50A. Then, in this electrolytic treatment tank 50A, electrolytic processing is performed, and the switching valve 52A on the anode 8 side and the switching valve 53 on the cathode 9 side located on the outlet side of the electrolytic treatment tank 50A.
When A is opened, the concentrated liquid AC on the anode 8 side and the concentrated liquid KC on the cathode 9 side are supplied to the phosphorus crystallization reaction tank 16 via the respective supply pumps 15 and 54.
【0066】一方、各濃縮液AC,KCを供給した後、
電解処理槽50Aの出口側に位置する切替え弁52Aお
よび53Aを閉じる。同時に、電解処理槽50Aの入口
側に位置した切替え弁55が開放して、供給ポンプ56
によって水道水などの被濃縮液NCを各イオン交換膜1
0,40と電極8,9間の各濃縮液室14A,14Bに
供給する。また、隔室41の電解処理後の消化液は、切
替え弁57Aを開放して排水ポンプ58によって排出す
る。そして、排出完了後、切替え弁57Aを閉じる一
方、切替え弁51Aを開放して、新しい消化液DLを隔
室41に供給して電解処理する。On the other hand, after supplying the concentrates AC and KC,
The switching valves 52A and 53A located on the outlet side of the electrolytic treatment tank 50A are closed. At the same time, the switching valve 55 located on the inlet side of the electrolytic treatment tank 50A is opened, and the supply pump 56
Concentrated liquid NC such as tap water according to each ion exchange membrane 1
The concentrated liquid chambers 14A and 14B between the electrodes 0 and 40 and the electrodes 8 and 9 are supplied. Further, the digestive liquid in the compartment 41 after the electrolytic treatment is discharged by the drainage pump 58 by opening the switching valve 57A. Then, after the discharge is completed, the switching valve 57A is closed while the switching valve 51A is opened, and new digestive liquid DL is supplied to the compartment 41 for electrolytic treatment.
【0067】前記とは逆に、電解処理槽50Aで電解処
理が進行中、電解処理槽50Bからの各濃縮液AC,K
Cがリン晶析反応槽16に供給され、複数個の電解処理
槽50A,50Bが交互に運転されることによって電解
処理された各濃縮液AC,KCが連続的にリン晶析反応
槽16に供給されることになる。Contrary to the above, while the electrolytic treatment is proceeding in the electrolytic treatment tank 50A, the concentrated liquids AC and K from the electrolytic treatment tank 50B are discharged.
C is supplied to the phosphorus crystallization reaction tank 16 and a plurality of electrolytic treatment tanks 50A and 50B are alternately operated, whereby the concentrated solutions AC and KC electrolytically treated are continuously supplied to the phosphorus crystallization reaction tank 16. Will be supplied.
【0068】すなわち、一方の電解処理槽50Aが電解
処理進行中、他方の電解処理槽50Bの出口側に位置す
る陽極8側の切替え弁52Bと陰極9側の切替え弁53
Bが開放して、陽極8側の濃縮液ACおよび陰極9側の
濃縮液KCを各供液ポンプ15,54を介してリン晶析
反応槽16内に供給する。 一方、各濃縮液AC,KC
の供給後、電解処理槽50Bの出口側に位置する切替え
弁52B,53Bを閉じるとともに、電解処理槽50B
の入口側に位置した切替え弁55Bが開放して、被濃縮
液NCを各イオン交換膜と電極間の濃縮液室14A,1
4Bに供給する。同時に隔室41の電解処理後の消化液
は、切替え弁57Bを開放して排出する。そして、排出
完了後、切替え弁57Bを閉じる。That is, while one electrolytic treatment tank 50A is in progress of electrolytic treatment, the switching valve 52B on the anode 8 side and the switching valve 53 on the cathode 9 side located at the outlet side of the other electrolytic treatment tank 50B.
B is opened, and the concentrated liquid AC on the anode 8 side and the concentrated liquid KC on the cathode 9 side are supplied into the phosphorus crystallization reaction tank 16 via the respective supply pumps 15 and 54. On the other hand, each concentrate AC, KC
After the supply of, the switching valves 52B and 53B located on the outlet side of the electrolytic treatment tank 50B are closed and the electrolytic treatment tank 50B is closed.
The switching valve 55B located on the inlet side of the liquid is opened, and the liquid NC to be concentrated is supplied to the concentrated liquid chambers 14A, 1 between the ion exchange membranes and the electrodes.
Supply to 4B. At the same time, the digested liquid after the electrolytic treatment in the compartment 41 is discharged by opening the switching valve 57B. Then, after the discharge is completed, the switching valve 57B is closed.
【0069】一方、切替え弁51Bを開放して新しい消
化液DLを前記隔室41に供給して電解処理し、その
後、他方の電解処理槽50Aからの濃縮液AC,KCの
供給する。前記した各切替え弁の開閉操作とその指示お
よび各ポンプの運転指示は、制御器(図示せず)に予め入
力されたシーケンスに基づいてなされる。On the other hand, the switching valve 51B is opened to supply a new digestive liquid DL to the compartment 41 for electrolytic treatment, and then the concentrated liquids AC and KC are supplied from the other electrolytic treatment tank 50A. The above-mentioned opening / closing operation of each switching valve and the instruction thereof and the operation instruction of each pump are performed based on a sequence previously input to a controller (not shown).
【0070】なお、本実施形態3においては、電解処理
槽7内を複数に区画して、区画されたそれぞれの処理槽
50A,50B内に各電極8,9およびイオン交換膜1
0,40を浸漬して配置しているが、電解処理槽7が独
立した単槽であってもよい。また、単槽の電解処理槽7
を複数個組み合わせてもよい。さらに、電解処理槽7内
が複数個に区画されて、これらの電解処理槽7を複数組
み合わせてもよく、電解処理槽7の構成は、実施形態3
のみに限定されない。In the third embodiment, the electrolytic treatment bath 7 is partitioned into a plurality of compartments, and the electrodes 8 and 9 and the ion exchange membrane 1 are placed in the respective partitioned treatment baths 50A and 50B.
Although 0 and 40 are immersed and arranged, the electrolytic treatment tank 7 may be an independent single tank. In addition, a single electrolytic treatment tank 7
You may combine two or more. Furthermore, the inside of the electrolytic treatment tank 7 may be divided into a plurality of sections, and a plurality of these electrolytic treatment tanks 7 may be combined. The configuration of the electrolytic treatment tank 7 is the same as that of the third embodiment.
Not limited to only.
【0071】なお、本実施形態3では、一方の供液ポン
プ54の流量を一定とし、他方の供液ポンプ15の流量
を制御して、各濃縮液KC,ACの混合比率を調整して
いるが、両方の供液ポンプ15,54の流量を制御して
混合比率を調整してもよく、本実施形態3には限定され
ない。In the third embodiment, the flow rate of one of the liquid supply pumps 54 is constant and the flow rate of the other liquid supply pump 15 is controlled to adjust the mixing ratio of the concentrated liquids KC and AC. However, the flow rate of both liquid supply pumps 15 and 54 may be controlled to adjust the mixing ratio, and the present invention is not limited to the third embodiment.
【0072】前述のように構成されている場合、このリ
ン回収装置においては、陰イオン交換膜を介した電解処
理によって、被処理水中のリン成分を陽極側に回収し、
この陽極側の濃縮液を用いてアルカリ性側のpH域でリ
ン晶析反応させるようにしている。これにより、被処理
水中に重金属を含んでいても、この重金属は、陰極側に
残存し、陽極側のリン成分を含む濃縮液には、重金属を
含まない。このため、この陽極側の濃縮液を用いてアル
カリ性側のpH域でリン晶析反応させれば、回収MAP
中には、重金属を含まず、肥料または肥料原料などに利
用できる有用MAPとして回収できる。また、晶析反応
用として濃縮液は、液中のリン濃度が高く維持されてい
るので、リン回収率が低下することがない。この結果、
下水などのリン含有被処理水から、高い回収率で高品質
のMAPを回収できるリン回収装置を提供できる。In the case where it is constructed as described above, in this phosphorus recovery apparatus, the phosphorus component in the water to be treated is recovered to the anode side by electrolytic treatment through the anion exchange membrane,
The concentrated solution on the anode side is used to cause a phosphorus crystallization reaction in the alkaline pH range. As a result, even if the water to be treated contains a heavy metal, the heavy metal remains on the cathode side, and the concentrated liquid containing the phosphorus component on the anode side does not contain the heavy metal. For this reason, if the phosphorus crystallization reaction is performed in the alkaline pH range using this concentrated solution on the anode side, the recovered MAP
It contains no heavy metals and can be recovered as useful MAP that can be used as fertilizer or fertilizer raw material. Further, since the concentrated liquid for the crystallization reaction has a high phosphorus concentration in the liquid, the phosphorus recovery rate does not decrease. As a result,
It is possible to provide a phosphorus recovery device that can recover high-quality MAP with a high recovery rate from phosphorus-containing treated water such as sewage.
【0073】本実施形態3のリン回収装置においては、
陰イオンおよび陽イオン交換膜を介した電解処理によ
り、リン成分を酸性水側に濃縮する一方、アンモニウム
イオン,マグネシウムイオンをアルカリ性水側に濃縮
し、両者を混合して、アルカリ性側のpH域で晶析反応
をさせている。これにより、リン晶析反応をさせるに際
して、酸性液の濃縮液ACとアルカリ性液の濃縮液KC
とを混合して用いるので、アルカリ性側を適正pHに維
持するために必要なアルカリ剤が不要となる。In the phosphorus recovery system of the third embodiment,
By the electrolytic treatment through the anion and cation exchange membrane, the phosphorus component is concentrated to the acidic water side, while the ammonium ion and the magnesium ion are concentrated to the alkaline water side, and both are mixed in the alkaline pH range. The crystallization reaction is in progress. Thereby, when the phosphorus crystallization reaction is performed, the concentrated liquid AC of the acidic liquid and the concentrated liquid KC of the alkaline liquid are used.
Since and are used as a mixture, the alkaline agent necessary for maintaining the alkaline side at an appropriate pH is unnecessary.
【0074】また、被処理水W中のMAP原料となる成
分濃度が低くとも、陰,陽イオン交換膜を介した電解処
理により、各濃縮液中の成分濃度が高く維持される。こ
れにより、不足分を補う塩化マグネシウムなどの薬剤添
加が不要になりまたは低減でき、原料成分濃度の低下に
伴うリン回収率の低下を抑制できる。この結果、本実施
形態3によれば、低コストで安定した高いリン回収率が
得られるリン回収装置を提供できる。Further, even if the concentration of the component as the MAP raw material in the water to be treated W is low, the component concentration in each concentrated liquid is maintained high by the electrolytic treatment through the anion and cation exchange membranes. This makes it possible to eliminate or reduce the addition of a chemical such as magnesium chloride that supplements the deficiency, and suppress the decrease in phosphorus recovery rate due to the decrease in the raw material component concentration. As a result, according to the third embodiment, it is possible to provide a phosphorus recovery apparatus that can obtain a stable and high phosphorus recovery rate at low cost.
【0075】さらに、本実施形態3において、酸性液で
あるリン成分含有濃縮液とアルカリ性液であるアンモニ
ウム,マグネシウムイオン含有濃縮液を混合するに際し
て、各濃縮液の混合比率をリン晶析反応槽内のpH検出
結果と設定目標pH値との偏差に基づいて調整するよう
にしている。このようにすると、各濃縮液の混合比率の
調整によって、pH調整用のアルカリ剤を用いることな
く、リン晶析反応槽内のpHを目標とする適正pHに維
持でき、かつ、pHの変動を抑制できる。この結果、p
H低下に伴ってリン回収率が低下することなく、高いリ
ン回収率が安定して得られる。Further, in the third embodiment, when mixing the phosphorus component-containing concentrated liquid which is an acidic liquid and the ammonium and magnesium ion-containing concentrated liquid which is an alkaline liquid, the mixing ratio of each concentrated liquid is set in the phosphorus crystallization reaction tank. The adjustment is made based on the deviation between the pH detection result and the set target pH value. In this way, by adjusting the mixing ratio of each concentrated solution, the pH in the phosphorus crystallization reaction tank can be maintained at a target proper pH without using an alkaline agent for pH adjustment, and the fluctuation of pH can be prevented. Can be suppressed. As a result, p
A high phosphorus recovery rate can be stably obtained without decreasing the phosphorus recovery rate as H is lowered.
【0076】[0076]
【発明の効果】本発明によれば、電解処理した陽極側の
濃縮液をリン晶析反応に用いることにより、重金属を含
まない高品質のリン酸マグネシウムアンモニウムを回収
できるリン回収装置が提供される。According to the present invention, there is provided a phosphorus recovery apparatus capable of recovering high-quality magnesium ammonium phosphate containing no heavy metal by using the electrolytically treated concentrated solution on the anode side for the phosphorus crystallization reaction. .
【0077】また、リン晶析反応時のpH調整に必要な
アルカリ剤が不要となるともに晶析反応時のpH変動を
抑制できるので、下水などのリン含有被処理水中から低
コストで高い回収率が得られるリン回収装置を提供でき
る。In addition, since an alkali agent necessary for adjusting the pH during the phosphorus crystallization reaction is not necessary and the pH fluctuation during the crystallization reaction can be suppressed, the recovery rate of phosphorus-containing treated water such as sewage at a low cost and a high recovery rate. It is possible to provide a phosphorus recovery device that can obtain
【図1】本発明によるリン回収装置の実施形態1のシス
テム全体の系統構成を示す図である。FIG. 1 is a diagram showing a system configuration of an entire system of Embodiment 1 of a phosphorus recovery apparatus according to the present invention.
【図2】実施形態1のリン回収装置のリン晶析反応槽1
6周りの詳細な構成を示す図である。FIG. 2 is a phosphorus crystallization reaction tank 1 of the phosphorus recovery apparatus of the first embodiment.
It is a figure which shows the detailed structure of 6 circumference | surroundings.
【図3】実施形態1のリン回収装置の電解処理槽7周り
の詳細な構成を示す図である。FIG. 3 is a diagram showing a detailed configuration around an electrolytic treatment tank 7 of the phosphorus recovery apparatus of the first embodiment.
【図4】本発明によるリン回収装置の実施形態2のリン
晶析反応槽16周りの詳細な構成を示す図である。FIG. 4 is a diagram showing a detailed configuration around a phosphorus crystallization reaction tank 16 of a second embodiment of a phosphorus recovery apparatus according to the present invention.
【図5】実施形態2のリン回収装置の電解処理槽7周り
の詳細な構成を示す図である。FIG. 5 is a diagram showing a detailed configuration around an electrolytic treatment tank 7 of a phosphorus recovery apparatus according to a second embodiment.
【図6】実施形態2のリン晶析反応槽16周りのより詳
細な構成を示す図である。FIG. 6 is a diagram showing a more detailed structure around the phosphorus crystallization reaction tank 16 of the second embodiment.
【図7】本発明によるリン回収装置の実施形態3のリン
晶析反応槽16周りの詳細な構成を示す図である。FIG. 7 is a diagram showing a detailed configuration around a phosphorus crystallization reaction tank 16 of a third embodiment of a phosphorus recovery apparatus according to the present invention.
【図8】マグネシウム添加率とリン回収率との関係を示
す特性図である。FIG. 8 is a characteristic diagram showing a relationship between a magnesium addition rate and a phosphorus recovery rate.
【図9】pHとリン回収率との関係を示す特性図であ
る。FIG. 9 is a characteristic diagram showing the relationship between pH and phosphorus recovery rate.
【図10】アンモニウムイオン濃度とリン回収率との関
係を示す特性図である。FIG. 10 is a characteristic diagram showing a relationship between ammonium ion concentration and phosphorus recovery rate.
【図11】本発明の一実施形態による電解処理前後の陰
極側および陽極側のpH変化を示す特性図である。FIG. 11 is a characteristic diagram showing pH changes on the cathode side and the anode side before and after electrolytic treatment according to an embodiment of the present invention.
1 最初沈殿池 2 活性汚泥処理槽 3 最終沈殿池 4 固液分離手段 5 嫌気消化槽 6 固液分離手段 7 電解処理槽 8 陽極 9 陰極 10 陰イオン交換膜 11 直流安定化電源 12 保護フィルタ 13 隔室 14 濃縮室 15 供液ポンプ 16 リン晶析反応槽 17 排液ポンプ 18 晶析部 19 マグネシウム溶液槽 20 薬液注入ポンプ 21 アルカリ剤溶液槽 22 薬液注入ポンプ 23 pH計 24 演算器 25 ブロワ 26 散気管 27 造粒反応部 28 沈殿部 29 循環ポンプ 30 抜き出し管 31 開閉弁 32 固液分離手段 33 回収液ポンプ 40 陽イオン交換膜 41 隔室 50 電解処理槽 51 切替え弁 52 切替え弁 53 切替え弁 54 供液ポンプ 55 切替え弁 56 供給ポンプ 57 切替え弁 58 排水ポンプ AC 濃縮液 AS 汚泥 BW 返送水 DL 消化液 DS 消化汚泥 G 消化ガス KC 濃縮液 MAP リン酸アンモニウムマグネシウム MW 混合液 NC 被濃縮液 PW 脱リン処理水 RA 返送汚泥 SA 余剰汚泥 TW 処理水 W 被処理水 1 first settling tank 2 Activated sludge treatment tank 3 final settling tank 4 Solid-liquid separation means 5 Anaerobic digester 6 Solid-liquid separation means 7 Electrolytic treatment tank 8 anode 9 cathode 10 Anion exchange membrane 11 DC stabilized power supply 12 Protection filter 13 compartments 14 Concentration room 15 Supply pump 16 Phosphorus crystallization reaction tank 17 Drainage pump 18 crystallization part 19 Magnesium solution tank 20 Chemical injection pump 21 Alkaline solution tank 22 Chemical injection pump 23 pH meter 24 arithmetic unit 25 Blower 26 Air diffuser 27 Granulation reaction part 28 sedimentation part 29 Circulation pump 30 Extraction tube 31 on-off valve 32 solid-liquid separation means 33 Recovery liquid pump 40 cation exchange membrane 41 compartment 50 Electrolytic treatment tank 51 switching valve 52 Switching valve 53 Switching valve 54 Liquid supply pump 55 Switching valve 56 supply pump 57 Switching valve 58 drainage pump AC concentrate AS sludge BW return water DL digestive fluid DS digested sludge G digestion gas KC concentrate MAP Magnesium ammonium phosphate MW mixed liquid NC Concentrated liquid PW dephosphorized water RA return sludge SA surplus sludge TW treated water W treated water
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 9/02 625 B01D 9/02 625Z 61/44 500 61/44 500 61/46 61/46 C02F 1/46 C02F 1/46 Z (72)発明者 圓佛 伊智朗 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 渡辺 昭二 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 (72)発明者 森 利克 茨城県日立市大みか町七丁目2番1号 株 式会社日立製作所電力・電機開発研究所内 Fターム(参考) 4D006 GA13 KA31 KB01 MA13 MA14 MB07 PB08 PB27 4D038 AA08 AB48 AB54 BA04 BA06 BB10 4D061 DA08 DB19 DC25 DC26 EA02 EB01 EB13 EB17 EB19 EB20Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) B01D 9/02 625 B01D 9/02 625Z 61/44 500 61/44 500 61/46 61/46 C02F 1/46 C02F 1 / 46 Z (72) Inventor Enrobu Ichiro 72-1 Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi Ltd. Electric Power and Electrical Development Laboratory (72) Inventor Shoji Watanabe 7-2 Omika-cho, Hitachi City, Ibaraki Prefecture No. 1 Incorporated Hitachi, Ltd. Electric Power & Electric Development Laboratory (72) Inventor Toshikatsu Mori 7-21 Omika-cho, Hitachi City, Ibaraki Prefecture F-Term (Informative) 4D006 in Hitachi Electric Power & Electric Development Laboratory GA13 KA31 KB01 MA13 MA14 MB07 PB08 PB27 4D038 AA08 AB48 AB54 BA04 BA06 BB10 4D061 DA08 DB19 DC25 DC26 EA02 EB01 EB13 EB17 EB19 EB20
Claims (5)
陽極および陰極を浸漬するとともに、前記陰イオン交換
膜と陰極間の隔室にリン成分含有被処理水を導入して、
前記両極間に通電して電解処理する手段を備え、 さらに、前記陽極側の濃縮液をアルカリ性側のpH域で
リン晶析反応させる手段を備え、 前記リン晶析反応により被処理水中のリン成分をリン酸
マグネシウムアンモニウムの粒状物として回収すること
を特徴とするリン回収装置。1. An anode and a cathode are immersed in an electrolytic treatment tank via an anion exchange membrane, and phosphorus-containing water to be treated is introduced into a compartment between the anion exchange membrane and the cathode,
A means for conducting an electrolytic treatment by energizing between both electrodes is further provided, and a means for causing a phosphorus crystallization reaction in the concentrated liquid on the anode side in a pH range on the alkaline side, and a phosphorus component in water to be treated by the phosphorus crystallization reaction. Is recovered as granular magnesium ammonium phosphate.
て、 陰イオン交換膜と陽極間との濃縮室の容積を被処理水が
導入される陰イオン交換膜と陰極間との隔室の容積より
も小さく設定したことを特徴とするリン回収装置。2. The phosphorus recovery apparatus according to claim 1, wherein the volume of the concentration chamber between the anion exchange membrane and the anode is the volume of the compartment between the anion exchange membrane into which the water to be treated is introduced and the cathode. A phosphorus recovery device characterized by being set smaller than the above.
て、 陰イオン交換膜と陰極間に陽イオン交換膜を配置して、
前記陰イオン交換膜と陽イオン交換膜間の隔室に被処理
水を導入するとともに、前記陽極側の濃縮液と陰極側の
濃縮液を混合して、アルカリ性側のpH域でリン晶析反
応させることを特徴とするリン回収装置。3. The phosphorus recovery apparatus according to claim 1, wherein a cation exchange membrane is arranged between the anion exchange membrane and the cathode,
The water to be treated is introduced into the compartment between the anion exchange membrane and the cation exchange membrane, and the concentrated solution on the anode side and the concentrated solution on the cathode side are mixed to perform a phosphorus crystallization reaction in the pH range on the alkaline side. A phosphorus recovery device characterized by:
て、 陽極側および陰極側の濃縮室の容積を被処理水が導入さ
れる隔室の容積よりも小さく設定したことを特徴とする
リン回収装置。4. The phosphorus recovery apparatus according to claim 3, wherein the volumes of the concentration chambers on the anode side and the cathode side are set smaller than the volume of the compartment into which the water to be treated is introduced. apparatus.
て、 電解処理槽側から各濃縮液が供給されるリン晶析反応槽
内のpHを検出して、このpH値とアルカリ性側の設定
目標pH値との偏差に基づいて陽極側の濃縮液と陰極側
の濃縮液との混合比率を調整することを特徴とするリン
回収装置。5. The phosphorus recovery apparatus according to claim 3, wherein the pH in the phosphorus crystallization reaction tank to which each concentrated solution is supplied from the electrolytic treatment tank side is detected, and the pH value and the alkaline-side setting target are set. A phosphorus recovery device, wherein the mixing ratio of the concentrated liquid on the anode side and the concentrated liquid on the cathode side is adjusted based on the deviation from the pH value.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001229280A JP2003039081A (en) | 2001-07-30 | 2001-07-30 | Phosphorus recovery apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001229280A JP2003039081A (en) | 2001-07-30 | 2001-07-30 | Phosphorus recovery apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003039081A true JP2003039081A (en) | 2003-02-12 |
Family
ID=19061650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001229280A Pending JP2003039081A (en) | 2001-07-30 | 2001-07-30 | Phosphorus recovery apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003039081A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005121028A1 (en) * | 2004-06-10 | 2005-12-22 | Matsushita Electric Industrial Co., Ltd. | Apparatus for removing phosphorus |
JP2006305474A (en) * | 2005-04-28 | 2006-11-09 | Matsushita Electric Ind Co Ltd | Organic waste treatment method and its treatment apparatus |
JP2007505732A (en) * | 2003-09-15 | 2007-03-15 | ザ ビーオーシー グループ ピーエルシー | Treatment of water-soluble chemical waste |
JP2007534459A (en) * | 2004-04-28 | 2007-11-29 | 株式会社荏原製作所 | Organic drainage and sludge treatment method and treatment equipment |
CN104817154A (en) * | 2015-04-08 | 2015-08-05 | 昆明理工大学 | Method for recovering ammonia nitrogen in wastewater |
CN108751359A (en) * | 2018-06-20 | 2018-11-06 | 哈尔滨工业大学 | The method that immersion electrochemical in-situ is enriched with nutritive salt device and removes nutritive salt in surface water |
-
2001
- 2001-07-30 JP JP2001229280A patent/JP2003039081A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007505732A (en) * | 2003-09-15 | 2007-03-15 | ザ ビーオーシー グループ ピーエルシー | Treatment of water-soluble chemical waste |
JP2007534459A (en) * | 2004-04-28 | 2007-11-29 | 株式会社荏原製作所 | Organic drainage and sludge treatment method and treatment equipment |
WO2005121028A1 (en) * | 2004-06-10 | 2005-12-22 | Matsushita Electric Industrial Co., Ltd. | Apparatus for removing phosphorus |
JP2006305474A (en) * | 2005-04-28 | 2006-11-09 | Matsushita Electric Ind Co Ltd | Organic waste treatment method and its treatment apparatus |
CN104817154A (en) * | 2015-04-08 | 2015-08-05 | 昆明理工大学 | Method for recovering ammonia nitrogen in wastewater |
CN108751359A (en) * | 2018-06-20 | 2018-11-06 | 哈尔滨工业大学 | The method that immersion electrochemical in-situ is enriched with nutritive salt device and removes nutritive salt in surface water |
CN108751359B (en) * | 2018-06-20 | 2021-10-08 | 哈尔滨工业大学 | Immersed electrochemical in-situ nutrient salt enrichment device and method for removing nutrient salt in surface water |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5538636A (en) | Process for chemically oxidizing highly concentrated waste waters | |
US8147695B2 (en) | Method of removing phosphorus from wastewater | |
US4176057A (en) | Method and apparatus for recovering liquid and solid constituents of water solutions containing sparingly soluble solids | |
CN103304104B (en) | Zero-sewage discharge novel process for development of natural gas fields | |
CN105565581B (en) | Coal ethylene wastewater integrated conduct method | |
KR101462033B1 (en) | Sewage and wastewater treatment system with crystallization apparatus for phosphorus recovery | |
KR101102443B1 (en) | complexed water treatment method and the apparatus preparing for water-lack situation | |
CN108911318A (en) | A kind of purification device and purification method of black and odorous water | |
CN106396169A (en) | Process and device for treating high-hardness and high-alkalinity strong brine from iron and steel plants | |
CN113248060A (en) | Rare earth high-ammonium wastewater treatment system and method | |
CN106007272A (en) | Biochemical treatment method and apparatus for high calcium and high magnesium waste water | |
CN111153531A (en) | Liquid crystal display panel production plant fluorine-containing wastewater treatment device and process | |
CN117401860B (en) | Fracturing flow-back fluid treatment equipment and treatment method | |
CN117964058A (en) | Electrolysis system and method for recycling phosphorus from sludge digestion liquid | |
CN109879512A (en) | Method for treating garbage percolation liquid based on ceramic membrane | |
CN207121501U (en) | A kind of hardness removing device suitable for the hard waste water of high magnesium | |
CN109437448A (en) | Pb-Zn deposits beneficiation wastewater treatment for reuse devices and methods therefor | |
JP2003039081A (en) | Phosphorus recovery apparatus | |
KR101278475B1 (en) | Sludge Treatment Facility Combining Swirl Flow Type Inorganic Sludge Selective Discharge Device and Bioreactor | |
CN102390905B (en) | Advanced treatment device and method of micropolluted organic sewage | |
CN111484173A (en) | High-efficient clean system of degree of depth of water | |
CN218435280U (en) | High ammonium effluent disposal system of tombarthite | |
JP4568391B2 (en) | Fluidized bed crystallization reactor | |
KR100441405B1 (en) | A method for anion removal by forming chemical precipitation under an electric field and a continuous process for anion removal | |
CN208949051U (en) | A kind of plasma coagulation integrated effluent disposal system |