JPH0779039B2 - Beam focusing electromagnet - Google Patents

Beam focusing electromagnet

Info

Publication number
JPH0779039B2
JPH0779039B2 JP63074587A JP7458788A JPH0779039B2 JP H0779039 B2 JPH0779039 B2 JP H0779039B2 JP 63074587 A JP63074587 A JP 63074587A JP 7458788 A JP7458788 A JP 7458788A JP H0779039 B2 JPH0779039 B2 JP H0779039B2
Authority
JP
Japan
Prior art keywords
electromagnet
vacuum chamber
vacuum
magnetic field
beam focusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63074587A
Other languages
Japanese (ja)
Other versions
JPH01248500A (en
Inventor
隆 矢野
直樹 安光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP63074587A priority Critical patent/JPH0779039B2/en
Publication of JPH01248500A publication Critical patent/JPH01248500A/en
Publication of JPH0779039B2 publication Critical patent/JPH0779039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は加速器からの加速された荷電粒子(以下ビーム
という)集束用に使用する電磁石に関するものである。
TECHNICAL FIELD The present invention relates to an electromagnet used for focusing accelerated charged particles (hereinafter referred to as a beam) from an accelerator.

(従来技術) 電磁石を真空槽内に置いた場合、その構造材料及び絶縁
材料からの放出ガスが真空を汚すため、その槽内を超高
真空とすることは困難である。ビームに対し直流的に磁
場を印加するビーム集束用電磁石(以下直流電磁石とい
う)では、この問題を解決するために非磁性の金属容器
中に電磁石を封止して真空槽内で使用することが可能で
あるが、ビームに対しパルス的に磁場を印加するビーム
集束用電磁石(以下パルス電磁石という)の場合では該
金属容器壁に渦電流が発生してビーム軌道面上の磁場精
度が悪くなる。
(Prior Art) When an electromagnet is placed in a vacuum chamber, it is difficult to create an ultrahigh vacuum in the chamber because the gas released from the structural material and the insulating material pollutes the vacuum. In order to solve this problem, a beam focusing electromagnet that applies a magnetic field to the beam in a direct current (hereinafter referred to as a DC electromagnet) can be used in a vacuum chamber by sealing the electromagnet in a non-magnetic metal container. Although possible, in the case of a beam focusing electromagnet (hereinafter referred to as a pulse electromagnet) that applies a magnetic field to the beam in a pulsed manner, an eddy current is generated in the wall of the metal container, and the accuracy of the magnetic field on the beam orbit surface deteriorates.

このように電磁石と真空領域とを遮蔽するために金属容
器を使用出来ないパルス電磁石の場合、放出ガスの比較
的少ない材料を用いて電磁石を作成して全体を真空槽内
へ収納し、かつその真空槽を大排気量のポンプで排気す
る方法を用いており、超高真空を保つことは困難であっ
た(第3図)。別の方法としてビームを非金属の真空槽
内で走らせ、外部大気中にパルス電磁石を設ける方法も
あるが、電磁石の小型化・高効率化の点で大きな妨げと
なっている(第4図)。
As described above, in the case of a pulse electromagnet in which a metal container cannot be used to shield the electromagnet and the vacuum region, the electromagnet is made using a material with a relatively small amount of released gas, and the whole is housed in a vacuum chamber, and A method of exhausting the vacuum chamber with a pump with a large displacement was used, and it was difficult to maintain an ultrahigh vacuum (Fig. 3). Another method is to run the beam in a non-metallic vacuum chamber and provide a pulse electromagnet in the external atmosphere, but this is a major obstacle to downsizing and high efficiency of the electromagnet (Fig. 4). .

(発明により解決しようとする課題) 従来技術に鑑み、ビーム集束用電磁石を超高真空中に備
えることを可能にしようとするものである。
(Problem to be Solved by the Invention) In view of the prior art, it is an object of the present invention to provide a beam focusing electromagnet in an ultrahigh vacuum.

(発明による課題の解決手段) 加速された荷電粒子が所定のビーム軸に沿って走る真空
槽と、該真空槽内に設置され、該ビーム軸に対し対称的
に配された1対の励磁用コイルと、それらコイルの収納
容器を有し、該励磁用コイル収納容器は、通過するビー
ムに対向する面はセラミック材により、かつビームに対
向する面以外は金属材により形成される。
(Means for Solving the Problems According to the Invention) A vacuum chamber in which accelerated charged particles run along a predetermined beam axis, and a pair of excitation units installed in the vacuum chamber and symmetrically arranged with respect to the beam axis. The excitation coil storage container has coils and a storage container for the coils. The excitation coil storage container is formed of a ceramic material on the surface facing the passing beam and a metal material except the surface facing the beam.

(実施例) 第1図は空芯四極パルス電磁石の断面図である。図で1
は超高真空槽で、内側が超高真空域V、外側が大気Aで
ある。2は励磁用の空芯コイル3を収納する空芯コイル
収納容器で、金属容器部2aと、通過するビームBに対向
するセラミック窓2bとで構成されている。金属容器部2a
とセラミック窓2bとは銀ロウ付にて間隙なく一体に接合
されている。かくして空芯コイル3は外部超高真空域V
に対して隔離されている。
(Example) FIG. 1 is a sectional view of an air-core quadrupole pulse electromagnet. 1 in the figure
Is an ultra-high vacuum tank, the inside is the ultra-high vacuum region V, and the outside is the atmosphere A. Reference numeral 2 denotes an air-core coil housing container for housing an exciting air-core coil 3, which is composed of a metal container portion 2a and a ceramic window 2b facing the passing beam B. Metal container part 2a
The ceramic window 2b and the ceramic window 2b are joined together with a silver braze without a gap. Thus, the air-core coil 3 has an external ultra-high vacuum region V
Is quarantined against.

内部に空芯コイル3を収納した収納容器2はサポート4
によってビーム軸に対称的に配され、前記セラミック窓
2bが対向するようになっている。そして発生したパルス
磁場はセラミック窓2bに磁気的に遮られることなく、ま
た渦電流も発生させることなく透過するので、ビームB
の通る領域Cには第2図に示すような所定の磁場を得る
ことが出来る。
The storage container 2 having the air core coil 3 stored therein has a support 4
Are arranged symmetrically to the beam axis by the ceramic window
2b face each other. The generated pulsed magnetic field is transmitted without being magnetically blocked by the ceramic window 2b and without generating an eddy current.
A predetermined magnetic field as shown in FIG. 2 can be obtained in a region C passing through.

上記の例は、空芯パルス電磁石の場合であるが、当然交
流電磁石等の場合であっても、同様の構成で高真空度を
害することなく、所定の磁場を所定の領域に得ることが
できる。
Although the above example is the case of the air-core pulse electromagnet, even in the case of an AC electromagnet or the like, a similar structure can obtain a predetermined magnetic field in a predetermined region without impairing the high vacuum degree. .

(効果) 以上の構成であるから、超高真空槽1内の超高真空域V
内の直高真空度を全く損うことなく、ビーム集束用電磁
石を超高真空中に備えることができるし、又電磁石が発
生する磁場は、パルス磁場、交流磁場を問わずセラミッ
ク窓2b(第1図)を完全に透過してビームBの通る領域
Cに所定の磁場を得ることができる。更に本構成をとれ
ば電磁石をビーム軸近くへ設置できるので、該電磁石を
小型化・高効率化することができる。
(Effects) Due to the above configuration, the ultra-high vacuum region V in the ultra-high vacuum chamber 1
The beam focusing electromagnet can be provided in the ultra-high vacuum without any loss of the direct high vacuum inside, and the magnetic field generated by the electromagnet is the ceramic window 2b (first It is possible to obtain a predetermined magnetic field in a region C through which the beam B passes completely through (FIG. 1). Further, with this configuration, the electromagnet can be installed near the beam axis, so that the electromagnet can be downsized and highly efficient.

励磁用コイル収納容器は通過するビームに対向する面が
セラミック材で形成したので、セラミック材からの放出
ガスを少なくすることができ、全面セラミック材とした
場合に比べ、真空度の低下を極くわずかにすることがで
きる。
Since the surface of the coil housing for excitation that faces the passing beam is made of ceramic material, it is possible to reduce the amount of gas emitted from the ceramic material, and the degree of vacuum is extremely reduced compared to the case of using a full ceramic material. Can be slight.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る電磁石。 第2図はビーム通過部に発生する磁場を示す。 第3図は真空槽内に電磁石を設置する従来例。 第4図は真空槽外に電磁石を設置する従来例。 図において; 1……超高真空槽 2……空芯コイル収納容器 2a……金属容器部、2b……セラミック窓 3……空芯コイル、4……サポート V……超高真空域、A……大気 B……ビーム C……ビームの通る領域 FIG. 1 shows an electromagnet according to the present invention. FIG. 2 shows the magnetic field generated in the beam passage portion. FIG. 3 shows a conventional example in which an electromagnet is installed in a vacuum chamber. FIG. 4 shows a conventional example in which an electromagnet is installed outside the vacuum chamber. In the figure; 1 ... Ultra-high vacuum chamber 2 ... Air core coil storage container 2a ... Metal container part, 2b ... Ceramic window 3 ... Air core coil, 4 ... Support V ... Ultra high vacuum region, A …… Atmosphere B …… Beam C …… The region where the beam passes

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】加速された荷電粒子が所定のビーム軸に沿
って走る真空槽と、該真空槽内に設置され該ビーム軸に
対し対称的に配された1対の励磁用コイルと、それらコ
イルの収納容器を有し、該励磁用コイル収納容器は、通
過するビームに対向する面はセラミック材により、かつ
ビームに対向する面以外は金属材により形成されること
を特徴とするビーム集束用電磁石。
1. A vacuum chamber in which accelerated charged particles run along a predetermined beam axis, a pair of exciting coils disposed in the vacuum chamber and symmetrically arranged with respect to the beam axis, and A beam focusing container having a coil housing, wherein the exciting coil housing is formed of a ceramic material on a surface facing a passing beam and a metal material other than a surface facing the beam. electromagnet.
JP63074587A 1988-03-30 1988-03-30 Beam focusing electromagnet Expired - Lifetime JPH0779039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63074587A JPH0779039B2 (en) 1988-03-30 1988-03-30 Beam focusing electromagnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63074587A JPH0779039B2 (en) 1988-03-30 1988-03-30 Beam focusing electromagnet

Publications (2)

Publication Number Publication Date
JPH01248500A JPH01248500A (en) 1989-10-04
JPH0779039B2 true JPH0779039B2 (en) 1995-08-23

Family

ID=13551442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63074587A Expired - Lifetime JPH0779039B2 (en) 1988-03-30 1988-03-30 Beam focusing electromagnet

Country Status (1)

Country Link
JP (1) JPH0779039B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58181300A (en) * 1982-04-19 1983-10-22 工業技術院長 Charged particle sorting acceleration system
JPS62259410A (en) * 1986-05-02 1987-11-11 Hitachi Ltd Bipolar superconducting magnet for accelerator

Also Published As

Publication number Publication date
JPH01248500A (en) 1989-10-04

Similar Documents

Publication Publication Date Title
US5036290A (en) Synchrotron radiation generation apparatus
KR100442990B1 (en) Systems and Methods for Generating Nested Static and Time-Varying Magnetic Fields
US5014028A (en) Triangular section permanent magnetic structure
US7304435B2 (en) Device for confinement of a plasma within a volume
JP2637094B2 (en) Electron cyclotron resonance ion source
US2872574A (en) Cloverleaf cyclotron
US7566892B2 (en) Electron beam apparatus and method for production of its specimen chamber
US5111494A (en) Magnet for use in a drift tube of an x-ray tube
JPH0779039B2 (en) Beam focusing electromagnet
GB1461521A (en) Focusing magnet
JP2004335253A (en) Electromagnet for fixed field alternating gradient accelerator
JPH1064699A (en) Circular accelerator
JPH0193031A (en) Magnetron
JPH03141615A (en) Solid mass iron core electromagnet
JPS6222400A (en) Cooler for ion beam by electron beam
JPS5915513Y2 (en) gas laser equipment
JPS636800A (en) Accelerator
JPH0525387B2 (en)
JPH0544800Y2 (en)
JPS63244546A (en) Malti-pole lens employing permanent magnet
JP2022084397A (en) ECR ion source
JPS62296400A (en) Incident apparatus of magnetic resonance type accelerator
JPS62226600A (en) Accelerator
GB1063279A (en) A source of negatively-charged particles
JPH05258897A (en) Septum electromagnet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 13