JPH077863B2 - Visible semiconductor laser device - Google Patents

Visible semiconductor laser device

Info

Publication number
JPH077863B2
JPH077863B2 JP1083107A JP8310789A JPH077863B2 JP H077863 B2 JPH077863 B2 JP H077863B2 JP 1083107 A JP1083107 A JP 1083107A JP 8310789 A JP8310789 A JP 8310789A JP H077863 B2 JPH077863 B2 JP H077863B2
Authority
JP
Japan
Prior art keywords
substrate
layer
active layer
algainp
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1083107A
Other languages
Japanese (ja)
Other versions
JPH02260682A (en
Inventor
弘喜 浜田
正治 本多
昌幸 庄野
隆夫 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP1083107A priority Critical patent/JPH077863B2/en
Priority to US07/412,786 priority patent/US5016252A/en
Publication of JPH02260682A publication Critical patent/JPH02260682A/en
Priority to US07/664,866 priority patent/US5146466A/en
Priority to US07/896,386 priority patent/US5264389A/en
Priority to US08/134,293 priority patent/US5411915A/en
Priority to US08/372,147 priority patent/US5619519A/en
Publication of JPH077863B2 publication Critical patent/JPH077863B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はAlGaInP系の可視光半導体レーザ装置に関す
る。
The present invention relates to an AlGaInP-based visible light semiconductor laser device.

(ロ)従来の技術 AlGaInPは0.6μm帯のバンドギャップを有し、可視光半
導体レーザ装置の材料として用いられている。
(B) Conventional technology AlGaInP has a band gap of 0.6 μm band and is used as a material for visible light semiconductor laser devices.

第6図は従来のAlGaInP系半導体レーザ装置を示し、例
えば昭和63年秋季応用物理学会予稿集、4p-ZC-10、836
頁に開示されている。
FIG. 6 shows a conventional AlGaInP-based semiconductor laser device, for example, Proceedings of the Autumn Society of Applied Physics 1988, 4p-ZC-10, 836.
It is disclosed on the page.

図において(11)はn型GaAsからなる基板、(12)はn
型(Al0.7Ga0.3)0.5In0.5Pからなるn型クラッド層、(1
3)はアンドープの(AlXGa1-X)0.5In0.5Pからなる活性
層、(14)はp型(Al0.7Ga0.3)0.5In0.5Pからなるp型
クラッド層である。これらの層は周知のMOCVD法、MBE法
等を用いて基板(11)の一主面上に順次エピタキシャル
成長される。またp型クラッド層(14)にはエッチング
により幅5μmのリッジが形成されている。
In the figure, (11) is a substrate made of n-type GaAs, and (12) is n.
Type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P n-type cladding layer, (1
3) is an active layer made of undoped (Al X Ga 1-X ) 0.5 In 0.5 P, and (14) is a p-type clad layer made of p-type (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P. These layers are sequentially epitaxially grown on one main surface of the substrate (11) by using the well-known MOCVD method, MBE method or the like. A ridge having a width of 5 μm is formed on the p-type cladding layer (14) by etching.

(15)はp型クラッド層(14)上にエピタキシャル成長
されたn型GaAsからなるブロック層で、マスクによりp
型クラッド層(14)のリッジ頂部には積層されていな
い。(16)は露出したp型クラッド層(14)の頂部及び
ブロック層(15)上にエピタキシャル成長されたp型Ga
Asからなるキャップ層である。
(15) is a block layer made of n-type GaAs epitaxially grown on the p-type clad layer (14), and is a p-type mask layer.
It is not laminated on the ridge top of the mold cladding layer (14). (16) is p-type Ga epitaxially grown on the exposed top of the p-type cladding layer (14) and the block layer (15).
It is a cap layer made of As.

(17)はキャップ層(16)上に形成されたAu/Zn/Auから
なるp型電極、(18)は基板(11)の他主面上に形成さ
れたAuGe/Auからなるn型電極である。
(17) is a p-type electrode made of Au / Zn / Au formed on the cap layer (16), and (18) is an n-type electrode made of AuGe / Au formed on the other main surface of the substrate (11). Is.

斯る装置では活性層(13)のAl組成比をx=0.1とした
時、波長649nmのレーザ光が得られる。
In such a device, when the Al composition ratio of the active layer (13) is x = 0.1, laser light having a wavelength of 649 nm can be obtained.

一方、現在、可視光レーザ光を用いた計測器やPOS(poi
nt of sales)システムに用いられるバーコードスキャ
ナの光源として波長632.8nmのHe-Neレーザが用いられて
いる。そこで、斯るHe-Neレーザと同じ波長が発振可能
であり、軽量、小型、低消費電力であるAlGaInP系半導
体レーザ装置は、He-Neレーザに代わる光源として望ま
れている。このために、上記従来装置をより短波長発振
させる必要がある。
On the other hand, currently, measuring instruments and POS (poi
A He-Ne laser with a wavelength of 632.8 nm is used as the light source of the barcode scanner used in the nt of sales system. Therefore, an AlGaInP-based semiconductor laser device that can oscillate at the same wavelength as the He-Ne laser, is lightweight, small-sized, and has low power consumption is desired as a light source to replace the He-Ne laser. For this reason, it is necessary to oscillate the above conventional device at a shorter wavelength.

AlGaInP系の半導体レーザ装置を短波長化する方法とし
て、 活性層のAl組成比を大きくする 活性層を超格子構造とする(Electronics Letters、V
ol.24、No.24(1988)、p.1489参照) 各層の成長温度を700℃より大とする(Japanese Jour
nal of Applied Physics、Vol.27、No.11(1988)、p.2
098参照) 活性層にZnを拡散させる(IEEE、Journal of Quantum
Electronics、QE-23、No.6(1987)、p.704参照) ことが考えられている。
As a method of shortening the wavelength of AlGaInP-based semiconductor laser devices, increase the Al composition ratio of the active layer. Make the active layer a superlattice structure (Electronics Letters, V
ol.24, No.24 (1988), p.1489) The growth temperature of each layer is higher than 700 ℃ (Japanese Jour.
nal of Applied Physics, Vol.27, No.11 (1988), p.2
098) Diffusing Zn into active layer (IEEE, Journal of Quantum
Electronics, QE-23, No.6 (1987), p.704).

しかし乍ら、の方法ではAl組成比率の増加と共に活性
層(13)の結晶性が低下するため、発振しきい値が大き
くなり、連続動作が困難となる。例えば、活性層(13)
のAl組成比をx=0.2とすると、発振波長は630〜640nm
となり、He-Neレーザの波長と略等しくなるが、発振し
きい値電流密度は10kA/cm2以上となり、実用的でなくな
る。
However, in the above method, the crystallinity of the active layer (13) decreases as the Al composition ratio increases, so that the oscillation threshold value increases and continuous operation becomes difficult. For example, active layer (13)
If the Al composition ratio of x is 0.2, the oscillation wavelength is 630 to 640 nm.
However, the oscillation threshold current density is 10 kA / cm 2 or more, which is not practical.

また、、、の方法では、装置の発振動作が不安定
になり、活性層(13)の劣化が激しくなるため、装置の
製造歩留りが低く、寿命が短いといった問題が生じる。
Further, in the methods (1) and (2), the oscillating operation of the device becomes unstable and the active layer (13) deteriorates significantly, so that there arises a problem that the manufacturing yield of the device is low and the life is short.

(ハ)発明が解決しようとする課題 したがって、本発明は装置の発振しきい値が低く、製造
歩留りが高く、且つ寿命が長いAlGaInP系の可視光半導
体レーザ装置を提供するものである。
(C) Problem to be Solved by the Invention Therefore, the present invention provides an AlGaInP-based visible light semiconductor laser device having a low oscillation threshold of the device, a high manufacturing yield, and a long life.

(ニ)課題を解決するための手段 本発明は、(100)面から[011]方向に5度以上傾斜し
た面を主面とするGaAs基板と、該主面上に形成されたAl
GaInPからなる活性層を含むAlGaInP系半導体層と、を備
え、上記活性層の上記AlGaInPのAl組成比を0より大き
く且つ0.15以下としたことを特徴とする。
(D) Means for Solving the Problem The present invention is directed to a GaAs substrate having a main surface inclined by 5 degrees or more in the [011] direction from the (100) surface, and an Al formed on the main surface.
And an AlGaInP-based semiconductor layer including an active layer made of GaInP, wherein the Al composition ratio of the AlGaInP in the active layer is greater than 0 and 0.15 or less.

(ホ)作用 本発明は、(100)面から[011]方向に5度以上傾斜し
た面を主面とするGaAs基板と、該主面上に形成されたAl
GaInPからなる活性層を含むAlGaInP系半導体層と、を備
え、上記活性層の上記AlGaInPのAl組成比を0より大き
く且つ0.15以下としたので、この活性層のAl組成比を0
より大きく且つ0.15以下と極力小さくしつつ発振光の短
波長化が図れる。従って、所望の波長を得る場合従来よ
りもしきい値電流の増加を抑えることができる。しか
も、本発明の構成であれば、上記活性層は結晶性が向上
し、良結晶性となるので、本発明装置の製造歩留まりは
高くなり、寿命も長くなる。
(E) Action The present invention is directed to a GaAs substrate whose main surface is a surface inclined by 5 degrees or more from the (100) surface in the [011] direction, and an Al formed on the main surface.
An AlGaInP-based semiconductor layer including an active layer made of GaInP, and the Al composition ratio of the AlGaInP of the active layer is set to be larger than 0 and 0.15 or less.
The wavelength of the oscillated light can be shortened while making it larger and 0.15 or less as much as possible. Therefore, when the desired wavelength is obtained, the increase in threshold current can be suppressed more than in the conventional case. Moreover, according to the constitution of the present invention, the above-mentioned active layer has improved crystallinity and good crystallinity, so that the manufacturing yield and the life of the device of the present invention are increased.

(ヘ)実施例 本発明は、AlGaInP系の半導体層のバンドギャップがGaA
s基板の面方位に依存して変化するといった現象、即
ち、GaAs基板の成長面に(100)面から[011]方向に5
度以上傾斜した面を用いることによって、この上に形成
されるAlGaInP系半導体層のバンドギャップが広がる現
象を利用するものである。またこの現象は本発明者らに
よって初めて見いだされたものである。
(F) Example In the present invention, the band gap of the AlGaInP-based semiconductor layer is GaA.
s Phenomenon that changes depending on the plane orientation of the substrate, that is, 5 from the (100) plane to the [011] direction on the growth surface of the GaAs substrate.
By utilizing a surface inclined by more than one degree, the phenomenon in which the band gap of the AlGaInP-based semiconductor layer formed thereon is widened is utilized. Moreover, this phenomenon was first discovered by the present inventors.

第2図に斯る現象の一例を示す。同図はGaAs基板の一主
面を(100)面から[011]方向に種々傾け、この上に形
成したGa0.5In0.5Pのフォトルミネッセンス(PL)から
ピークエネルギを測定したものである。また、このGa
0.5In0.5Pは成長温度710℃、成長圧力70Torrの減圧MOCV
D法を用いて形成されたものである。図から明らかな如
く、傾斜角の増加に伴いピークエネルギは増加してい
き、傾斜角が5°以上になると飽和していく。
FIG. 2 shows an example of such a phenomenon. In this figure, one main surface of the GaAs substrate is tilted in various directions from the (100) plane in the [011] direction, and the peak energy is measured from the photoluminescence (PL) of Ga 0.5 In 0.5 P formed on this. Also this Ga
0.5 In 0.5 P is a reduced pressure MOCV with a growth temperature of 710 ° C and a growth pressure of 70 Torr.
It was formed using the D method. As is clear from the figure, the peak energy increases as the tilt angle increases, and becomes saturated when the tilt angle becomes 5 ° or more.

第3図は基板の一主面上にGa0.5In0.5Pを形成し、この
上に(AlXGa1-X)0.5In0.5P(X≧0)を形成した時の(Al
XGa1-X)0.5In0.5PのAl組成比に対するフォトルミネッセ
ンスのピーク波長を示したものである。ここで基板の一
主面として、(100)面から[011]方向に0°、5°、
7°傾斜した面を夫々用いた。また一例として、Al組成
比xを0.15とし、基板の傾斜角を0°、5°とした時の
フォトルミネッセンスのスペクトルを第4図及び第5図
に示す。また、測定はいずれも室温で行った。
FIG. 3 shows that when Ga 0.5 In 0.5 P is formed on one main surface of the substrate and (Al X Ga 1-X ) 0.5 In 0.5 P (X ≧ 0) is formed thereon (Al
It shows the peak wavelength of photoluminescence with respect to the Al composition ratio of ( X Ga 1-X ) 0.5 In 0.5 P. Here, as one main surface of the substrate, 0 °, 5 ° from the (100) plane in the [011] direction,
The surfaces inclined by 7 ° were used respectively. As an example, FIGS. 4 and 5 show the photoluminescence spectra when the Al composition ratio x is 0.15 and the tilt angle of the substrate is 0 ° and 5 °. Moreover, all measurements were performed at room temperature.

第3図から明らかな如く、基板傾斜によるピーク波長の
変化量はAl組成比xにかかわらず略一定となっている。
例えば第4図及び第5図に示されるようにAl組成比x=
0.15の時、傾斜角0°、5°のピーク波長は夫々642.2n
m、622.0nmであり、その変化量は約20nmとなる。また、
基板の傾斜角に対するピーク波長は、Al組成比xにかか
わらず第2図に示したGa0.5In0.5Pの場合と同様に5°
以上で飽和していく傾向にあった。
As is apparent from FIG. 3, the amount of change in the peak wavelength due to the substrate inclination is substantially constant regardless of the Al composition ratio x.
For example, as shown in FIGS. 4 and 5, Al composition ratio x =
When it is 0.15, the peak wavelengths of tilt angles 0 ° and 5 ° are 642.2n respectively.
m, 622.0 nm, and the amount of change is about 20 nm. Also,
The peak wavelength with respect to the tilt angle of the substrate is 5 ° as in the case of Ga 0.5 In 0.5 P shown in Fig. 2 regardless of the Al composition ratio x.
The above tended to be saturated.

以上より、AlGaInP系の半導体レーザ装置において、基
板の一主面に(100)面から[011]方向に傾斜した面を
用いることにより、短波長化が図れることは明らかであ
る。但し本発明における基板の一主面に(100)面から
[011]方向に5°以上、好ましくは5〜7°傾斜した
面が選択される。これは、傾斜角が5°以上で最大且つ
同程度の波長変化が得られることに加え、この面上に形
成されるGa0.5In0.5P及び(AlXGa1-X)0.5In0.5Pから結晶
欠陥が急激に減少し、結晶性が向上することによる。例
えば基板の(100)面上に形成されたGa0.5In0.5Pにはヒ
ロックと呼ばれる結晶欠陥が約10000個/cm2発生してい
たが、5°傾斜した面上では100個/cm2以下となる。即
ち、本発明は、基板の一主面に(100)面から[011]方
向へ5°以上の傾斜面を用いることによって、所望の短
波長化をするのに活性層のAl組成比を極力小さくし、活
性層の結晶性の低下を抑えることにとどまらず、活性層
の結晶性を向上させることができるものである。
From the above, it is apparent that in the AlGaInP-based semiconductor laser device, the wavelength can be shortened by using a plane inclined from the (100) plane in the [011] direction as one main surface of the substrate. However, a plane inclined by 5 ° or more, preferably 5-7 ° in the [011] direction from the (100) plane is selected as one main surface of the substrate in the present invention. This is because in addition to the maximum and similar wavelength change can be obtained when the tilt angle is 5 ° or more, Ga 0.5 In 0.5 P and (Al X Ga 1-X ) 0.5 In 0.5 P formed on this surface This is because the crystal defects are sharply reduced and the crystallinity is improved. For example, Ga 0.5 In 0.5 P formed on the (100) plane of the substrate had about 10,000 crystal defects called hillocks / cm 2 , but 100 planes / cm 2 or less on the 5 ° inclined plane. Becomes That is, according to the present invention, the Al composition ratio of the active layer is reduced as much as possible in order to achieve a desired short wavelength by using an inclined surface of 5 ° or more from the (100) plane to the [011] direction as the main surface of the substrate. It is possible to improve the crystallinity of the active layer as well as to suppress the reduction of the crystallinity of the active layer by reducing the size.

第1図に本発明装置の一実施例を示す。FIG. 1 shows an embodiment of the device of the present invention.

図において、(1)はキャリア濃度2×1018cm-3のn型
GaAsからなる基板で、その一主面(1a)を研摩により
(100)面から[011]方向に5°以上、例えば5°傾斜
したものである。
In the figure, (1) is an n-type with a carrier concentration of 2 × 10 18 cm -3
The substrate is made of GaAs, and one main surface (1a) thereof is inclined by 5 ° or more, for example, 5 ° in the [011] direction from the (100) surface by polishing.

(2)はバッファ層、(3)はn型クラッド層、(4)
は活性層、(5)はp型クラッド層、(6)はキャップ
層で、これらの層は成長温度620〜670℃例えば670℃、
反応室内圧力70Torrの減圧MOCVD法を用いて、基板
(1)の一主面(1a)上に順次積層される。下表にこれ
らの層の他の形成条件を示す。
(2) is a buffer layer, (3) is an n-type cladding layer, (4)
Is an active layer, (5) is a p-type cladding layer, and (6) is a cap layer. These layers have a growth temperature of 620 to 670 ° C., for example 670 ° C.
Using a low pressure MOCVD method with a reaction chamber pressure of 70 Torr, they are sequentially laminated on one main surface (1a) of the substrate (1). The table below shows other conditions for forming these layers.

(7)はキャップ層(6)上にスパッタ法を用いて積層
されたSiO2からなるブロック層で、キャップ層(6)に
達する幅6μmのストライプ溝(8)がエッチング形成
されている。
(7) is a block layer made of SiO 2 laminated on the cap layer (6) by a sputtering method, and a stripe groove (8) having a width of 6 μm reaching the cap layer (6) is formed by etching.

(9)は露出したキャップ層(6)上及びブロック層
(7)上にCr膜、Au膜がこの順に真空蒸着されたAu/Cr
電極からなるp型電極、(10)は基板(1)の他主面
(1b)上にCr膜、Sn膜、Au膜がこの順に真空蒸着された
Au/Sn/Cr電極からなるn型電極である。これらの電極は
400℃の熱処理によって、キャップ層(6)あるいは基
板(1)とオーミック接触する。
(9) is Au / Cr in which a Cr film and an Au film are vacuum-deposited in this order on the exposed cap layer (6) and block layer (7).
A p-type electrode made of an electrode, (10) a Cr film, a Sn film, and an Au film were vacuum-deposited in this order on the other main surface (1b) of the substrate (1).
It is an n-type electrode composed of Au / Sn / Cr electrodes. These electrodes
The heat treatment at 400 ° C. makes ohmic contact with the cap layer (6) or the substrate (1).

また、装置の動作電圧の増加を抑える目的で、p型クラ
ッド層(5)のキャップ層(6)の間にGa0.5In0.5Pか
らなる周知の中間層を設けてもよい。
A known intermediate layer made of Ga 0.5 In 0.5 P may be provided between the cap layers (6) of the p-type cladding layer (5) for the purpose of suppressing an increase in operating voltage of the device.

以上、本実施例ではブロック層(7)にSiO2を用いた所
謂オキサイドストライプ構造のものについて説明した
が、本発明は第6図に示す従来装置の様なインナースト
ライプ構造等の他の構造にも容易に適用し得る。
As described above, in the present embodiment, the so-called oxide stripe structure in which SiO 2 is used for the block layer (7) has been described, but the present invention is not limited to the inner stripe structure such as the conventional device shown in FIG. Can also be easily applied.

また、本実施例装置では活性層(4)のAl組成比xを0.
15としたが、本発明はこれに限定されるものではなく、
所望の波長を得るため、種々の値が選択されることは勿
論である。例えば、He-Neレーザの代用を目的として、6
30nm程度の波長を得る場合、例えば基板(1)の傾斜角
を5°として、活性層(4)のAl組成比xを0.1〜0.15
とすれば良い。
Further, in the device of this embodiment, the Al composition ratio x of the active layer (4) is set to 0.
15, but the present invention is not limited to this,
Of course, various values are selected to obtain the desired wavelength. For example, to replace the He-Ne laser,
When obtaining a wavelength of about 30 nm, for example, the inclination angle of the substrate (1) is 5 ° and the Al composition ratio x of the active layer (4) is 0.1 to 0.15.
It should be done.

(ト)発明の効果 本発明は、(100)面から[011]方向に5度以上傾斜し
た面を主面とするGaAs基板と、該主面上に形成されたAl
GaInPからなる活性層を含むAlGaInP系半導体層と、を備
え、上記活性層の上記AlGaInPのAl組成比を0より大き
く且つ0.15以下としたので、この活性層のAl組成比を0
より大きく且つ0.15以下と極力小さくしつつ発振光の短
波長化が図れる。従って、所望の波長を得る場合従来よ
りもしきい値電流の増加を抑えることができる。しか
も、本発明の構成であれば、上記活性層は結晶性が向上
し、良結晶性となるので、本発明装置の製造歩留まりは
高くなり、寿命も長くなる。
(G) Effect of the Invention The present invention provides a GaAs substrate whose main surface is a surface inclined by 5 degrees or more from the (100) surface in the [011] direction, and an Al formed on the main surface.
An AlGaInP-based semiconductor layer including an active layer made of GaInP, and the Al composition ratio of the AlGaInP of the active layer is set to be larger than 0 and 0.15 or less.
The wavelength of the oscillated light can be shortened while making it as large as possible and as small as 0.15 or less. Therefore, when the desired wavelength is obtained, the increase in threshold current can be suppressed more than in the conventional case. Moreover, according to the constitution of the present invention, the above-mentioned active layer has improved crystallinity and good crystallinity, so that the manufacturing yield and the life of the device of the present invention are increased.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明装置の一実施例を示す断面図、第2図は
基板傾斜角に対するPLピークエネルギを示す特性図、第
3図はAl組成比に対するピーク波長を示す特性図、第4
図及び第5図はAl組成比を0.15とし、基板の傾斜角を夫
々0°、5°としたときのPLスペクトル特性図、第6図
は従来装置を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of the device of the present invention, FIG. 2 is a characteristic diagram showing PL peak energy with respect to a substrate tilt angle, FIG. 3 is a characteristic diagram showing peak wavelength with respect to Al composition ratio, and FIG.
5 and 5 are PL spectrum characteristic diagrams when the Al composition ratio is 0.15 and the tilt angles of the substrate are 0 ° and 5 °, respectively, and FIG. 6 is a sectional view showing a conventional device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 隆夫 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (56)参考文献 特開 平1−128423(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takao Yamaguchi 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (56) Reference JP-A-1-128423 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】(100)面から[011]方向に5度以上傾斜
した面を主面とするGaAs基板と、該主面上に形成された
AlGaInPからなる活性層を含むAlGaInP系半導体層と、を
備え、上記活性層の上記AlGaInPのAl組成比を0より大
きく且つ0.15以下としたことを特徴とする可視光半導体
レーザ装置。
1. A GaAs substrate whose main surface is a surface inclined by 5 degrees or more from the (100) surface in the [011] direction, and formed on the main surface.
A visible light semiconductor laser device, comprising: an AlGaInP-based semiconductor layer including an active layer made of AlGaInP;
JP1083107A 1988-09-29 1989-03-31 Visible semiconductor laser device Expired - Lifetime JPH077863B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1083107A JPH077863B2 (en) 1989-03-31 1989-03-31 Visible semiconductor laser device
US07/412,786 US5016252A (en) 1988-09-29 1989-09-26 Semiconductor laser device
US07/664,866 US5146466A (en) 1988-09-29 1991-04-11 Semiconductor laser device
US07/896,386 US5264389A (en) 1988-09-29 1992-06-10 Method of manufacturing a semiconductor laser device
US08/134,293 US5411915A (en) 1988-09-29 1993-10-08 Method of manufacturing a single crystal layers
US08/372,147 US5619519A (en) 1988-09-29 1995-01-13 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1083107A JPH077863B2 (en) 1989-03-31 1989-03-31 Visible semiconductor laser device

Related Child Applications (4)

Application Number Title Priority Date Filing Date
JP6107150A Division JPH0750452A (en) 1994-05-20 1994-05-20 Visible light semiconductor laser device and its manufacture
JP6107151A Division JPH0750453A (en) 1994-05-20 1994-05-20 Visible light semiconductor laser device and its manufacture
JP33718795A Division JP2804737B2 (en) 1995-12-25 1995-12-25 Visible light semiconductor light emitting device and method of manufacturing the same
JP7337188A Division JPH08228050A (en) 1995-12-25 1995-12-25 Visible light semiconductor light emitting device and manufacture thereof

Publications (2)

Publication Number Publication Date
JPH02260682A JPH02260682A (en) 1990-10-23
JPH077863B2 true JPH077863B2 (en) 1995-01-30

Family

ID=13792979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1083107A Expired - Lifetime JPH077863B2 (en) 1988-09-29 1989-03-31 Visible semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH077863B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0750452A (en) * 1994-05-20 1995-02-21 Sanyo Electric Co Ltd Visible light semiconductor laser device and its manufacture
JPH0750453A (en) * 1994-05-20 1995-02-21 Sanyo Electric Co Ltd Visible light semiconductor laser device and its manufacture
JP3982985B2 (en) 1999-10-28 2007-09-26 シャープ株式会社 Manufacturing method of semiconductor laser device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2750856B2 (en) * 1987-11-12 1998-05-13 シャープ株式会社 Semiconductor device

Also Published As

Publication number Publication date
JPH02260682A (en) 1990-10-23

Similar Documents

Publication Publication Date Title
JPH04229689A (en) Light emitting semiconductor diode and its manufacture
US5345463A (en) Semiconductor laser with improved oscillation wavelength reproducibility
JPH0856045A (en) Semiconductor laser device
JPH0722696A (en) Semiconductor laser element
JPH077863B2 (en) Visible semiconductor laser device
JP2001068789A (en) Semiconductor laser
JP2804737B2 (en) Visible light semiconductor light emitting device and method of manufacturing the same
JPH10154847A (en) Semiconductor laser element and its designing method
JPH0750452A (en) Visible light semiconductor laser device and its manufacture
JPH0750453A (en) Visible light semiconductor laser device and its manufacture
JP3025747B2 (en) Semiconductor laser device
JP3129384B2 (en) Nitride semiconductor laser device
JPH08228050A (en) Visible light semiconductor light emitting device and manufacture thereof
JPH07111367A (en) Semiconductor laser device
JP3674139B2 (en) Visible semiconductor laser
JP2889645B2 (en) Semiconductor laser
JP3075728B2 (en) Semiconductor laser
JP3490923B2 (en) Method of setting carrier concentration of semiconductor layer and method of setting carrier concentration of semiconductor laser
JP2000151020A (en) Semiconductor laser
JP3138503B2 (en) Semiconductor laser device
JPH05145182A (en) Manufacture of semiconductor laser device with end plane window construction
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same
JPH06268322A (en) Semiconductor laser and fabrication thereof
JPH0537090A (en) Semiconductor optical reflection layer
JPH06112586A (en) Semiconductor laser diode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 15