JPH0778536B2 - Ranging device - Google Patents

Ranging device

Info

Publication number
JPH0778536B2
JPH0778536B2 JP62293324A JP29332487A JPH0778536B2 JP H0778536 B2 JPH0778536 B2 JP H0778536B2 JP 62293324 A JP62293324 A JP 62293324A JP 29332487 A JP29332487 A JP 29332487A JP H0778536 B2 JPH0778536 B2 JP H0778536B2
Authority
JP
Japan
Prior art keywords
light
polarization
laser
reflected
interference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62293324A
Other languages
Japanese (ja)
Other versions
JPH01136088A (en
Inventor
滋 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62293324A priority Critical patent/JPH0778536B2/en
Publication of JPH01136088A publication Critical patent/JPH01136088A/en
Publication of JPH0778536B2 publication Critical patent/JPH0778536B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は測距装置に関し、特に基準光路と被測定物体ま
での光路との光の位相差を使って被測定物体までの距離
を測定する光ホモダイン計測法による測距装置に関す
る。
The present invention relates to a distance measuring device, and more particularly to measuring a distance to an object to be measured by using a phase difference of light between a reference optical path and an optical path to the object to be measured. The present invention relates to a distance measuring device using an optical homodyne measurement method.

〔従来の技術〕[Conventional technology]

従来、光を用いて物体までの距離を測定する手段として
光ディスクの焦点位置検出機構を用いる方法や、基準光
路との光路差を光の位相差として検出する光ホモダイン
計測法がある。光ディスクの焦点位置検出機構にはいく
つかの方法があるが、例えば、非点収差法による検出機
構は対物レンズの移動によって物体面に光を集光させ、
反射して戻ってきた光を収束する光路中に円筒レンズを
配置したものである。対物レンズと物体の距離が基準の
長さにある時、ビーム形状が真円となる位置に4分割光
検出器を配置する距離が変化することによってビーム形
状が変化し、これを検出することによって相対距離を測
定できる。詳しくは、例えば雑誌「アイイーイーイー・
トランザクションズ・オン・コンシューマ・エレクトロ
ニクス(IEEE Transactions on Consumer Electronic
s),22巻,1976年,304〜308ページに記載の論文「ビデオ
ディスクの光学的出力(Optical Readout of Videodis
c)」に述べられている。しかし、この方法では測定範
囲が限られており汎用的でない。一方、光ホモダイン計
測法は物体に光を照射して戻ってきた反射光と基準光路
の光を干渉させるものである。この時の基準光の位相の
変調や光の波長の変調によって干渉光にビート信号を発
生させ、その周波数から距離を測定する。光の波長を変
調する方法についての詳細は、例えば雑誌「アプライド
・オプティックス(Applied Optics),20巻,1981年,400
〜ページに記載の論文「波長可変干渉計による絶対距離
測定(Absolute Distance Measurements by Variable W
avelength Interferometry)」に述べられている。この
方法は数10m以上の距離を数μm以下の精度で測定する
ことができ、高精度でしかも汎用性のある計測法であ
る。
Conventionally, there are a method of using a focus position detection mechanism of an optical disc as a means for measuring a distance to an object using light, and an optical homodyne measurement method of detecting an optical path difference from a reference optical path as a phase difference of light. There are several methods for detecting the focal position of an optical disc. For example, a detection mechanism using the astigmatism method collects light on the object plane by moving the objective lens,
A cylindrical lens is arranged in the optical path for converging the light reflected and returned. When the distance between the objective lens and the object is the reference length, the beam shape changes due to the change in the distance to place the 4-division photodetector at the position where the beam shape becomes a perfect circle. The relative distance can be measured. For details, refer to the magazine “IEE
IEEE Transactions on Consumer Electronic
s), Vol. 22, 1976, pp. 304-308, "Optical Readout of Videodis
c) ”. However, this method is not versatile because the measurement range is limited. On the other hand, the optical homodyne measurement method irradiates an object with light and causes the reflected light returned from the object to interfere with the light in the reference optical path. At this time, a beat signal is generated in the interference light by modulating the phase of the reference light or the wavelength of the light, and the distance is measured from the frequency. For details on how to modulate the wavelength of light, see, for example, the magazine "Applied Optics, Vol. 20, 1981, 400.
~ Paper on page "Absolute Distance Measurements by Variable W
avelength Interferometry) ”. This method is a highly accurate and versatile measuring method capable of measuring a distance of several tens of meters or more with an accuracy of several μm or less.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述した光ホモダイン計測法においては、物体光と基準
光の強度を干渉面で等しくすることが必要であるが、従
来の方法では、単色光源から出射した光をハーフミラー
で分割し、物体光と基準光の強度をそろえるために基準
光路中にNDフィルタを置く場合が一般的で、光の出力を
著しく損失していた。
In the above-mentioned optical homodyne measurement method, it is necessary to make the intensities of the object light and the reference light equal on the interference surface, but in the conventional method, the light emitted from the monochromatic light source is divided by the half mirror, and It is common to put an ND filter in the reference optical path in order to make the intensity of the reference light uniform, and the output of the light was significantly lost.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の測距装置は、半導体レーザと、前記レーザの波
長を変化せしめる信号発生手段と、前記レーザから出射
されたビームを整形する光学系と、前記光学系から出射
されたビームの直線偏光成分を透過して第1のビームと
し前記直線偏光成分と直交する偏光成分を反射して第2
のビームとするビームスプリッタと、前記ビームスプリ
ッタによって分離された前記第1のビームを反射するビ
ーム反射手段と、前記第1のビームの偏光状態を直線偏
光から円偏光に変化せしめる第1の移相子と、前記第2
のビームの偏光状態を直線偏光から円偏光に変化せしめ
る第2の移相子と、前記第2のビームを被測定物体に照
射して散乱する散乱光および前記第1のビームを干渉せ
しめて生じる干渉パターンを検出する光検出器と、前記
光検出器からの信号を処理する演算装置とを備えること
を特徴とする。
The distance measuring device of the present invention includes a semiconductor laser, a signal generating unit that changes the wavelength of the laser, an optical system that shapes the beam emitted from the laser, and a linearly polarized component of the beam emitted from the optical system. To be a first beam and to reflect a polarization component orthogonal to the linear polarization component to a second beam.
Beam splitter for converting the first beam separated by the beam splitter, and a first phase shifter for changing the polarization state of the first beam from linearly polarized light to circularly polarized light. Child and the second
Second retarder for changing the polarization state of the beam of the beam from linearly polarized light to circularly polarized light, and the scattered light scattered by irradiating the measured object with the second beam and the first beam are caused to interfere with each other. It is characterized by comprising a photodetector for detecting an interference pattern and an arithmetic unit for processing a signal from the photodetector.

〔作用・原理〕[Action / Principle]

第2図は本発明の原理を示す概念図、第3図はレーザ光
の発振周波数の時間的変化を示すグラフである。
FIG. 2 is a conceptual diagram showing the principle of the present invention, and FIG. 3 is a graph showing temporal changes in the oscillation frequency of laser light.

第2図に示すような干渉計を構成し、周波数変調された
半導体レーザ101の光を偏光ビームスプリッタ102で2分
し、物体106からの反射光とミラー104で反射された基準
光路からの反射光との干渉のビート周波数を測定して、
物体106と基準光路の光路差を求める。周波数変調され
たレーザ光は次式で表わされる。
In the interferometer as shown in FIG. 2, the frequency-modulated light of the semiconductor laser 101 is split into two by the polarization beam splitter 102, and the reflected light from the object 106 and the reflection from the reference optical path reflected by the mirror 104. By measuring the beat frequency of interference with light,
The optical path difference between the object 106 and the reference optical path is obtained. The frequency-modulated laser light is expressed by the following equation.

E(t)=A0exp[i{2π(V0+ΔV(t)}] ……
(1) ここで、A0は振幅,V0は中心周波数,ΔV(t)は周波
数ずれ量である。この時の瞬間周波数は V(t)=V0+ΔV(t) ……(2) である。ここで、レーザ光の周波数を第3図に示すよう
な三角波状に変調させると、半周期の時間T=1/2fにお
ける周波数変化量は一定である。この量をδとする。一
方、信号光の時間差は、物体面までの光路長をl2,基準
光路長をl1として r=2(l2-l1)/C ……(3) である。ただし、Cは光速度である。この時の光検出器
107の面における2つの光路の位相差は である。従って、2光束の干渉稿強度の半周期の時間に
おける位相変化量は となる。従って、ビート成分の位相偏移ΔΦを測定する
ことによりrを求め、l2が得らえる。
E (t) = A 0 exp [i {2π (V 0 + ΔV (t)}] ...
(1) Here, A 0 is the amplitude, V 0 is the center frequency, and ΔV (t) is the frequency shift amount. The instantaneous frequency at this time is V (t) = V 0 + ΔV (t) (2) Here, when the frequency of the laser light is modulated into a triangular wave shape as shown in FIG. 3, the amount of frequency change at a half cycle time T = 1 / 2f is constant. Let this amount be δ. On the other hand, the time difference between the signal lights is r = 2 (l 2 -l 1 ) / C (3), where l 2 is the optical path length to the object surface and l 1 is the reference optical path length. However, C is the speed of light. Photodetector at this time
The phase difference between the two optical paths on the plane 107 is Is. Therefore, the amount of phase change in the half cycle time of the interference intensity of the two light beams is Becomes Therefore, r 2 is obtained by measuring the phase shift ΔΦ of the beat component, and l 2 is obtained.

この際、干渉縞のコントラストを大きくし、ビート信号
の振幅を大きくするために、干渉面において物体からの
反射港と基準光路からの反射光の強度を等しくする必要
がある。ところが、一般には基準光路からの反射光が物
体からの反射光に比べて著しく大きく、従来は基準光路
にNDフィルタを置いて反射光の強度を低減していた。そ
こで、光を有効に利用するため、偏光ビームスプリッタ
102によって基準光と物体光を分離する。この時、レー
ザの偏光面をわずかに傾け、物体からの散乱光と基準光
の強度が干渉面上で等しくなるように調整する。例えば
レーザ101から出射した光の偏光面がほとんど紙面に平
行である場合、ほとんどの光が偏光ビームスプリッタ10
2を透過し、紙面に垂直なわずかの成分が反射される。
反射した光は1/4波長板103によって円偏光になり、ミラ
ー104で反射された後、再び1/4波長板103を透過して紙
面に平行な偏光となって偏光ビームスプリッタ102を透
過する。一方、偏光ビームスプリッタ102を透過したレ
ーザ出射光は1/4波長板105によって円偏光になり、物体
106を照射する。物体106からの散乱光は1/4波長板105に
よって紙面に垂直な偏光に変換され、偏光ビームスプリ
ッタ102で反射して光検出器107上に集光され基準光と干
渉する。
At this time, in order to increase the contrast of the interference fringes and increase the amplitude of the beat signal, it is necessary to equalize the intensities of the reflected light from the object and the reflected light from the reference optical path on the interference surface. However, in general, the reflected light from the reference optical path is significantly larger than the reflected light from the object, and conventionally, an ND filter was placed in the reference optical path to reduce the intensity of the reflected light. Therefore, in order to use the light effectively,
Reference light and object light are separated by 102. At this time, the polarization plane of the laser is slightly tilted, and the intensity of the scattered light from the object and the reference light are adjusted to be equal on the interference surface. For example, when the polarization plane of the light emitted from the laser 101 is almost parallel to the paper surface, most of the light is polarized beam splitter 10.
A small component that passes through 2 and is perpendicular to the paper surface is reflected.
The reflected light becomes circularly polarized light by the 1/4 wavelength plate 103, is reflected by the mirror 104, and then passes through the 1/4 wavelength plate 103 again to become polarized light parallel to the paper surface and transmitted through the polarization beam splitter 102. . On the other hand, the laser emission light transmitted through the polarization beam splitter 102 is circularly polarized by the 1/4 wavelength plate 105,
Irradiate 106. The scattered light from the object 106 is converted into polarized light perpendicular to the paper surface by the quarter-wave plate 105, reflected by the polarization beam splitter 102, condensed on the photodetector 107, and interferes with the reference light.

物体からの反射光は基準光の1/100以下であるため、従
来の方法ではレーザの光量の99%以上を無駄に捨ててい
た。しかし、本発明の方法での光の損失は数%以下であ
り、90%以上の光量を有効に利用できる。
Since the reflected light from the object is 1/100 or less of the reference light, 99% or more of the light amount of the laser is wasted by the conventional method. However, the loss of light in the method of the present invention is a few% or less, and a light amount of 90% or more can be effectively used.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明す
る。
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の測距装置の一実施例の構成図である。
レーザ1から出射した光はレンズ2によりコリメートさ
れ、偏光ビームスプリッタ3に入射する。偏光ビームス
プリッタ3によって分けられた反射光はミラー5により
基準光となる。この時、1/4波長板4を2回透過するこ
とによって直線偏光の方向が90°回転し、基準光は偏光
ビームスプリッタ3を透過する。偏光ビームスプリッタ
3を透過したもう一方の光はレンズ7によって物体8に
集光する。物体8からの散乱光は1/4波長板6を2回透
過することによって直線偏光の方向が90°回転し、偏光
ビームスプリッタ3で反射され、レンズ9によって集光
されて光検出器10でミラー5からの基準光と干渉する。
FIG. 1 is a block diagram of an embodiment of the distance measuring device of the present invention.
The light emitted from the laser 1 is collimated by the lens 2 and enters the polarization beam splitter 3. The reflected light split by the polarization beam splitter 3 becomes reference light by the mirror 5. At this time, the direction of linearly polarized light is rotated by 90 ° by transmitting the light through the ¼ wavelength plate 4 twice, and the reference light is transmitted through the polarization beam splitter 3. The other light transmitted through the polarization beam splitter 3 is focused on the object 8 by the lens 7. The scattered light from the object 8 is transmitted through the quarter-wave plate 6 twice so that the direction of the linearly polarized light is rotated by 90 °, is reflected by the polarization beam splitter 3, is condensed by the lens 9, and is then detected by the photodetector 10. It interferes with the reference light from the mirror 5.

レーザ1は、GP−IBインターフェイスの付いたパソコン
などの演算装置12に制御される例えばGP−IBインターフ
ェイスの付いたファンクションジェネレータなどのレー
ザ駆動装置13により、第3図に示したように周波数変調
される。ミラー5からの基準光と物体8からの反射光の
干渉パターンは光路差に比例してうねりを生じる。この
うねりの周波数を例えばGP−IBの付いた周波数カウンタ
11によって測定し、演算装置12によって光路差を求める
ことができる。
The laser 1 is frequency-modulated as shown in FIG. 3 by a laser driving device 13 such as a function generator having a GP-IB interface, which is controlled by an arithmetic unit 12 such as a personal computer having a GP-IB interface. It The interference pattern of the reference light from the mirror 5 and the reflected light from the object 8 causes a waviness in proportion to the optical path difference. The frequency of this swell is measured by a frequency counter with GP-IB, for example.
It is possible to measure with 11 and to obtain the optical path difference with the arithmetic unit 12.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明は、偏光ビームスプリッタと
1/4波長板を用いて基準光と物体からの反射光の強度を
等しくすることによって、光源の光パワーを有効に利用
できる効果がある。
As described above, the present invention provides a polarization beam splitter and
By using a quarter-wave plate to equalize the intensities of the reference light and the reflected light from the object, the light power of the light source can be effectively used.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の測距装置の一実施例の構成図、第2図
は本発明の原理を示す概念図、第3図はレーザ光の発振
周波数の時間的変化を示すグラフである。 1,101…レーザ、2,7,9…レンズ、3,102…偏光ビームス
プリッタ、4,6,103,105…1/4波長板、5…ミラー、8,10
6…物体、10,107…光検出器、11…周波数カウンタ、12
…演算装置、13…レーザ駆動装置。
FIG. 1 is a configuration diagram of an embodiment of the distance measuring device of the present invention, FIG. 2 is a conceptual diagram showing the principle of the present invention, and FIG. 3 is a graph showing temporal changes in the oscillation frequency of laser light. 1,101… Laser, 2,7,9… Lens, 3,102… Polarizing beam splitter, 4,6,103,105… 1/4 wavelength plate, 5… Mirror, 8,10
6 ... Object, 10, 107 ... Photodetector, 11 ... Frequency counter, 12
... arithmetic unit, 13 ... laser drive unit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半導体レーザと、前記レーザに波長を変化
せしめる信号発生手段と、前記レーザから出射されたビ
ームを整形する光学系と、前記光学系から出射されたビ
ームを分離する偏光ビームスプリッタと、前記偏光ビー
ムスプリッタで反射されたビームを第1のビーム、透過
したビームを第2のビームとしたとき、前記第1のビー
ムの偏光状態を直線偏光から円偏光に変化せしめる第1
の移相子と、前記第1の移相子を透過した第1のビーム
を反射するビーム反射手段と、前記第2のビームの偏光
状態を直線偏光から円変偏光に変化せしめる第2の移相
子と、前記反射手段で反射し前記第1の移相子を透過し
てきた第1のビームと前記第2のビームを被測定物体に
照射して散乱する散乱光とを干渉せしめて生じる干渉パ
ターンを光検出器に導く光学系と、前記光検出器からの
信号を処理し前記信号発生手段を制御する演算装置とを
備える測距装置であって、前記半導体レーザは物体から
の反射光と第1の移相子を通過してきた第1のビームと
の強度が干渉面上で等しくなるようにレーザの偏光面を
変えられることを特徴とする測距装置。
1. A semiconductor laser, signal generating means for changing the wavelength of the laser, an optical system for shaping a beam emitted from the laser, and a polarization beam splitter for separating the beam emitted from the optical system. Changing the polarization state of the first beam from linear polarization to circular polarization when the beam reflected by the polarization beam splitter is the first beam and the transmitted beam is the second beam.
Phase shifter, a beam reflecting means for reflecting the first beam transmitted through the first phase shifter, and a second shifter for changing the polarization state of the second beam from linearly polarized light to circularly polarized light. Interference caused by interference between the phase beam, the first beam reflected by the reflecting means and transmitted through the first phase shifter, and the scattered light that is scattered by irradiating the object to be measured with the second beam. A distance measuring device comprising: an optical system for guiding a pattern to a photodetector; and a computing device for processing a signal from the photodetector and controlling the signal generating means, wherein the semiconductor laser is light reflected from an object. A distance measuring device characterized in that the polarization plane of the laser can be changed so that the intensity of the first beam having passed through the first retarder becomes equal on the interference plane.
JP62293324A 1987-11-20 1987-11-20 Ranging device Expired - Lifetime JPH0778536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62293324A JPH0778536B2 (en) 1987-11-20 1987-11-20 Ranging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62293324A JPH0778536B2 (en) 1987-11-20 1987-11-20 Ranging device

Publications (2)

Publication Number Publication Date
JPH01136088A JPH01136088A (en) 1989-05-29
JPH0778536B2 true JPH0778536B2 (en) 1995-08-23

Family

ID=17793354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62293324A Expired - Lifetime JPH0778536B2 (en) 1987-11-20 1987-11-20 Ranging device

Country Status (1)

Country Link
JP (1) JPH0778536B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147384A (en) * 1985-12-23 1987-07-01 Shibuya Kogyo Co Ltd Laser distance measuring instrument

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147384A (en) * 1985-12-23 1987-07-01 Shibuya Kogyo Co Ltd Laser distance measuring instrument

Also Published As

Publication number Publication date
JPH01136088A (en) 1989-05-29

Similar Documents

Publication Publication Date Title
JP2553276B2 (en) Three-wavelength optical measuring device and method
JPH07311182A (en) Evaluation of sample by measurement of thermo-optical displacement
JP2004527765A5 (en)
JP5428538B2 (en) Interfering device
Orakzai et al. Fast and highly accurate phase unwrapping algorithm for displacement retrieval using self-mixing interferometry sensor
JPH0339605A (en) Optical surface shape measuring instrument
JP3029757B2 (en) Sample evaluation method by photothermal displacement measurement
JP2011027647A (en) Measurement device and measurement method
US20230062525A1 (en) Heterodyne light source for use in metrology system
JPH0778536B2 (en) Ranging device
JPH063128A (en) Optical type surface shape measuring apparatus
JP2873962B1 (en) Heterodyne interferometry of white light
EP0050144B1 (en) Process for measuring motion- and surface characterizing physical parameters of a moving body
JPH0749922B2 (en) Optical measuring device
JPS639877A (en) Three-dimensional measuring method
JPH01134285A (en) Distance measuring instrument
JPH06194125A (en) Method and apparatus for detecting deviation of object from focal point of objective lens or change in position
US20230069087A1 (en) Digital holography metrology system
JPS63128211A (en) Spacing measuring method
Kumano et al. Real-time laser shape measurement using intensity correlation with phase modulation signal
Tiziani Heterodyne interferometry using two wavelengths for dimensional measurements
JP3310022B2 (en) Surface profile measuring device
JPH0339563B2 (en)
JPS58151509A (en) Optical measuring method of surface roughness
JPH0742084Y2 (en) Surface shape measuring instrument