JPH0778510A - Nonreducing dielectric porcelain composition - Google Patents
Nonreducing dielectric porcelain compositionInfo
- Publication number
- JPH0778510A JPH0778510A JP5169621A JP16962193A JPH0778510A JP H0778510 A JPH0778510 A JP H0778510A JP 5169621 A JP5169621 A JP 5169621A JP 16962193 A JP16962193 A JP 16962193A JP H0778510 A JPH0778510 A JP H0778510A
- Authority
- JP
- Japan
- Prior art keywords
- dielectric
- composition
- sample
- dielectric constant
- dielectric porcelain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Capacitors (AREA)
- Inorganic Insulating Materials (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は非還元性誘電体磁器組
成物に関し、特にたとえば積層セラミックコンデンサな
どに用いられる非還元性誘電体磁器組成物に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-reducing dielectric porcelain composition, and more particularly to a non-reducing dielectric porcelain composition for use in, for example, laminated ceramic capacitors.
【0002】[0002]
【従来の技術】積層セラミックコンデンサを製造工程で
は、まず、その表面に内部電極となる電極材料を塗布し
たシート状の誘電体材料が準備される。この誘電体材料
としては、たとえばBaTiO3 を主成分とする材料な
どが用いられる。この電極材料を塗布したシート状の誘
電体材料を積層して熱圧着し、一体化したものを自然雰
囲気中において1250〜1350℃で焼成することに
よって、内部電極を有する誘電体磁器が得られる。そし
て、この誘電体磁器の端面に、内部電極と導通する外部
電極を焼き付けて、積層セラミックコンデンサが得られ
る。2. Description of the Related Art In the process of manufacturing a monolithic ceramic capacitor, first, a sheet-shaped dielectric material is prepared by coating an electrode material for forming internal electrodes on the surface thereof. As the dielectric material, for example, a material containing BaTiO 3 as a main component is used. A sheet-shaped dielectric material coated with this electrode material is laminated, thermocompression bonded, and the integrated product is fired at 1250 to 1350 ° C. in a natural atmosphere to obtain a dielectric ceramic having internal electrodes. Then, an external electrode that is electrically connected to the internal electrode is printed on the end surface of the dielectric ceramic to obtain a monolithic ceramic capacitor.
【0003】したがって、内部電極の材料としては、次
のような条件を満たす必要がある。Therefore, the material for the internal electrodes must satisfy the following conditions.
【0004】(a)誘電体磁器と内部電極とが同時に焼
成されるので、誘電体磁器が焼成される温度以上の融点
を有すること。(A) Since the dielectric porcelain and the internal electrodes are fired at the same time, the dielectric porcelain must have a melting point higher than the firing temperature.
【0005】(b)酸化性の高温雰囲気中においても酸
化されず、しかも誘電体と反応しないこと。(B) It should not be oxidized even in an oxidizing high temperature atmosphere and should not react with the dielectric.
【0006】このような条件を満足する電極材料として
は、白金,金,パラジウムあるいはこれらの合金などの
ような貴金属が用いられていた。Noble metals such as platinum, gold, palladium or alloys thereof have been used as the electrode material satisfying such conditions.
【0007】しかしながら、これらの電極材料は優れた
特性を有する反面、高価であった。そのため、積層セラ
ミックコンデンサに占める電極材料費の割合は30〜7
0%にも達し、製造コストを上昇させる最大の要因とな
っていた。However, while these electrode materials have excellent characteristics, they are expensive. Therefore, the ratio of the electrode material cost to the monolithic ceramic capacitor is 30 to 7
It reached 0%, which was the biggest factor in raising the manufacturing cost.
【0008】貴金属以外に高融点をもつものとしてN
i,Fe,Co,W,Moなどの卑金属があるが、これ
らの卑金属は高温の酸化性雰囲気中では容易に酸化され
てしまい、電極としての役目を果たさなくなってしま
う。そのため、これらの卑金属を積層セラミックコンデ
ンサの内部電極として使用するためには、誘電体磁器と
ともに中性または還元性雰囲気中で焼成される必要があ
る。しかしながら、従来の誘電体磁器材料では、このよ
うな還元性雰囲気中で焼成すると著しく還元されてしま
い、半導体化してしまうという欠点があった。N having a high melting point other than precious metals
Although there are base metals such as i, Fe, Co, W, and Mo, these base metals are easily oxidized in a high-temperature oxidizing atmosphere and cannot serve as an electrode. Therefore, in order to use these base metals as the internal electrodes of the monolithic ceramic capacitor, it is necessary to fire them together with the dielectric ceramic in a neutral or reducing atmosphere. However, the conventional dielectric ceramic material has a drawback that it is remarkably reduced when it is fired in such a reducing atmosphere and becomes a semiconductor.
【0009】このような欠点を克服するために、たとえ
ば特公昭57−42588号公報に示されるように、チ
タン酸バリウム固溶体において、バリウムサイト/チタ
ンサイトの比を化学量論比より過剰にした誘電体材料が
考え出された。このような誘電体材料を使用することに
よって、還元性雰囲気中で焼成しても半導体化しない誘
電体磁器を得ることができ、内部電極としてニッケルな
どの卑金属を使用した積層セラミックコンデンサの製造
が可能となった。In order to overcome such drawbacks, for example, as shown in Japanese Patent Publication No. 57-42588, in a barium titanate solid solution, the barium site / titanium site ratio is set to be more than stoichiometric. The body material was devised. By using such a dielectric material, it is possible to obtain a dielectric ceramic that does not become a semiconductor even when fired in a reducing atmosphere, and it is possible to manufacture a monolithic ceramic capacitor that uses a base metal such as nickel as an internal electrode. Became.
【0010】[0010]
【発明が解決しようとする課題】近年のエレクトロニク
スの発展に伴い電子部品の小型化が急速に進行し、積層
セラミックコンデンサも小型化の傾向が顕著になってき
た。積層セラミックコンデンサを小型化する方法として
は、一般的に大きな誘電率を有する材料を用いるか、誘
電体層を薄膜化することが知られている。しかし、大き
な誘電率を有する材料は結晶粒が大きく、10μm以下
のような薄膜になると、1つの層中に存在する結晶粒の
数が減少し、信頼性が低下してしまう。With the recent development of electronics, miniaturization of electronic parts has rapidly progressed, and the tendency of miniaturization of monolithic ceramic capacitors has become remarkable. As a method for miniaturizing the monolithic ceramic capacitor, it is generally known to use a material having a large dielectric constant or to thin the dielectric layer. However, a material having a large dielectric constant has a large number of crystal grains, and when the film is a thin film having a thickness of 10 μm or less, the number of crystal grains present in one layer decreases, and reliability decreases.
【0011】一方、特開昭61−101459号公報に
示されるように、チタン酸バリウム固溶体にLa,N
d,Sm,Dyなどの希土類酸化物を添加した、結晶粒
径の小さい非還元性誘電体磁器が知られている。このよ
うに結晶粒径を小さくすることによって、1つの層中に
存在する結晶粒の数を増やすことができ、信頼性の低下
を防ぐことができる。On the other hand, as disclosed in Japanese Patent Laid-Open No. 61-101459, a solid solution of barium titanate with La, N is used.
There is known a non-reducing dielectric ceramic having a small crystal grain size, to which a rare earth oxide such as d, Sm or Dy is added. By reducing the crystal grain size in this manner, the number of crystal grains present in one layer can be increased, and a decrease in reliability can be prevented.
【0012】しかしながら、この希土類酸化物を添加し
た材料では、大きな誘電率を得ることができない上、焼
成するときに還元されやすくなり、特性の面で問題があ
った。[0012] However, the material to which the rare earth oxide is added cannot obtain a large dielectric constant and is easily reduced during firing, which is a problem in terms of characteristics.
【0013】それゆえに、この発明の主たる目的は、還
元性雰囲気中で焼成しても半導体化せず、しかも結晶粒
径が小さいにもかかわらず、大きな誘電率が得られ、こ
れを用いることによって積層セラミックコンデンサを小
型化することができる、非還元性誘電体磁器組成物を提
供することである。Therefore, the main object of the present invention is that even if it is fired in a reducing atmosphere, it does not become a semiconductor and, despite its small crystal grain size, a large dielectric constant is obtained. It is an object of the present invention to provide a non-reducing dielectric ceramic composition capable of miniaturizing a monolithic ceramic capacitor.
【0014】[0014]
【課題を解決するための手段】この発明は、その主成分
が次の組成式、{ (Ba1-x-y-z Srx Cay Rez)
O1+z/2 }m ( Ti1-o-p-q Zro Hfp Nbq ) O
2+q/2 (ただし、ReはDy,Ho,Er,Ybおよび
Yの中から選ばれる少なくとも一種類)で表され、x,
y,z,o,p,qおよびmが、0<x≦0.32、0
≦y≦0.20、0<z≦0.02、0<o≦0.2
4、0<p≦0.16、0<q≦0.015、1.00
≦m≦1.03、0<z+q≦0.025の関係を満足
し、前記主成分100モルに対して、Mn,Fe,C
r,Co,Niの各酸化物をMnO2 ,Fe2 O3 ,C
r2 O3 ,CoO,NiOと表したとき、各酸化物の少
なくとも一種類を0.02〜2.0モル含む、非還元性
誘電体磁器組成物である。According to the present invention, the main component is the following composition formula: {(Ba 1-xyz Sr x Ca y Re z ).
O 1 + z / 2} m (Ti 1-opq Zr o Hf p Nb q) O
2 + q / 2 (where Re is at least one selected from Dy, Ho, Er, Yb and Y), x,
y, z, o, p, q and m are 0 <x ≦ 0.32, 0
≦ y ≦ 0.20, 0 <z ≦ 0.02, 0 <o ≦ 0.2
4, 0 <p ≦ 0.16, 0 <q ≦ 0.015, 1.00
Satisfying the relations of ≦ m ≦ 1.03 and 0 <z + q ≦ 0.025, and Mn, Fe, and C with respect to 100 moles of the main component.
The oxides of r, Co, and Ni were replaced with MnO 2 , Fe 2 O 3 , and C.
When represented as r 2 O 3 , CoO, and NiO, the non-reducing dielectric ceramic composition contains 0.02 to 2.0 mol of at least one kind of each oxide.
【0015】[0015]
【発明の効果】この発明によれば、還元性雰囲気中で焼
成しても還元されず、半導体化しない非還元性誘電体磁
器組成物を得ることができる。したがって、この非還元
性誘電体磁器組成物を用いて磁器積層コンデンサを製造
すれば、電極材料として卑金属を用いることができ、1
300℃以下と比較的低温で焼成可能であるため、積層
セラミックコンデンサのコストダウンを図ることができ
る。According to the present invention, it is possible to obtain a non-reducing dielectric ceramic composition which is not reduced even when fired in a reducing atmosphere and does not become a semiconductor. Therefore, if a porcelain multilayer capacitor is manufactured using this non-reducing dielectric porcelain composition, a base metal can be used as an electrode material.
Since it can be fired at a relatively low temperature of 300 ° C. or lower, the cost of the monolithic ceramic capacitor can be reduced.
【0016】また、この非還元性誘電体磁器組成物を用
いた磁器では、誘電率が11000以上あり、しかもこ
のように高誘電率であるにもかかわらず、結晶粒が3μ
m以下と小さい。したがって、積層セラミックコンデン
サを製造するときに、誘電体層を薄膜化しても、従来の
積層セラミックコンデンサのように層中に存在する結晶
粒の量が少なくならない。このため、信頼性が高く、し
かも小型で大容量の積層セラミックコンデンサを得るこ
とができる。Further, in the porcelain using this non-reducing dielectric ceramic composition, the dielectric constant is 11,000 or more, and despite having such a high dielectric constant, the crystal grain is 3 μm.
It is as small as m or less. Therefore, when a multilayer ceramic capacitor is manufactured, even if the dielectric layer is thinned, the amount of crystal grains existing in the layer does not decrease unlike the conventional multilayer ceramic capacitor. Therefore, it is possible to obtain a highly reliable, small-sized, large-capacity monolithic ceramic capacitor.
【0017】この発明の上述の目的,その他の目的,特
徴および利点は、以下の実施例の詳細な説明から一層明
らかとなろう。The above and other objects, features and advantages of the present invention will become more apparent from the detailed description of the embodiments below.
【0018】[0018]
【実施例】まず、原料として、純度99.8%以上のB
aCO3 ,SrCO3 ,CaCO3 ,Dy2 O3 ,Ho
2 O3 ,Er2 O3 ,Yb2 O3 ,Y2 O3 ,Ti
O2 ,ZrO2 ,HfO2 ,Nb2 O5 ,MnO2 ,F
e2 O3 ,Cr2 O3 ,CoO,NiOを準備した。こ
れらの原料を{ (Ba1-x-y-z Srx Cay Rez ) O
1+z/2 }m ( Ti1-o-p-q Zro Hfp Nbq ) O
2+q/2 の組成式で表され、x,y,z,m,o,p,q
が表1および表2に示す割合となるように配合して、配
合原料を得た。この配合原料をボールミルで湿式混合
し、粉砕したのち乾燥し、空気中において1100℃で
2時間仮焼して仮焼物を得た。この仮焼物を乾式粉砕機
によって粉砕し、粒径が1μm以下の粉砕物を得た。こ
の粉砕物に純水と酢酸ビニルバインダを加えて、ボール
ミルで16時間混合して混合物を得た。EXAMPLES First, as a raw material, B having a purity of 99.8% or more was used.
aCO 3 , SrCO 3 , CaCO 3 , Dy 2 O 3 , Ho
2 O 3 , Er 2 O 3 , Yb 2 O 3 , Y 2 O 3 , Ti
O 2 , ZrO 2 , HfO 2 , Nb 2 O 5 , MnO 2 , F
e 2 O 3 , Cr 2 O 3 , CoO, and NiO were prepared. These raw materials {(Ba 1-xyz Sr x Ca y Re z) O
1 + z / 2 } m (Ti 1-opq Zr o Hf p Nb q ) O
Expressed by the composition formula of 2 + q / 2 , x, y, z, m, o, p, q
Were blended in the proportions shown in Table 1 and Table 2 to obtain blended raw materials. The blended raw materials were wet mixed in a ball mill, pulverized, dried, and calcined in air at 1100 ° C. for 2 hours to obtain a calcined product. The calcined product was crushed by a dry crusher to obtain a crushed product having a particle size of 1 μm or less. Pure water and a vinyl acetate binder were added to this pulverized product, and the mixture was mixed for 16 hours with a ball mill to obtain a mixture.
【0019】[0019]
【表1】 [Table 1]
【0020】[0020]
【表2】 [Table 2]
【0021】この混合物を乾燥造粒した後、2000k
g/cm2 の圧力で成形し、直径10mm,厚さ0.5
mmの円板を得た。得られた円板を空気中において50
0℃まで加熱して有機バインダを燃焼させたのち、酸素
分圧が2×10-10 〜3×10-12 atmのH2 −N2
−空気ガスからなる還元雰囲気炉中において表3および
表4に示す温度で2時間焼成し、円板状の磁器を得た。
得られた磁器の表面を、走査型電子顕微鏡で倍率150
0倍で観察し、グレインサイズを測定した。After this mixture was dry granulated, 2000 k
Molded with a pressure of g / cm 2 , diameter 10 mm, thickness 0.5
A disc of mm was obtained. The resulting disk is 50 in air
After heating to 0 ° C. to burn the organic binder, H 2 —N 2 having an oxygen partial pressure of 2 × 10 −10 to 3 × 10 −12 atm.
-In a reducing atmosphere furnace composed of air gas, firing was performed for 2 hours at the temperatures shown in Tables 3 and 4 to obtain a disk-shaped porcelain.
The surface of the obtained porcelain was magnified 150 with a scanning electron microscope.
Observation was carried out at 0 times and the grain size was measured.
【0022】[0022]
【表3】 [Table 3]
【0023】[0023]
【表4】 [Table 4]
【0024】そして、得られた磁器の主表面に銀電極
を、N2 雰囲気中において600℃の温度で焼き付けて
測定試料(コンデンサ)とした。得られた試料につい
て、室温での誘電率(ε),誘電損失(tanδ)およ
び温度変化に対する静電容量(C)の変化率を測定し
た。なお、誘電率および誘電損失は、温度25℃,1k
Hz,1Vrms の条件で測定した。また、温度変化に対
する静電容量の変化率については、20℃での静電容量
を基準とした−25℃と85℃での変化率(ΔC/
C20)および−25℃から85℃の範囲内で絶対値とし
てその変化率が最大である値(|ΔC/C20|max )を
示した。Then, a silver electrode was baked on the main surface of the obtained porcelain at a temperature of 600 ° C. in an N 2 atmosphere to obtain a measurement sample (capacitor). The rate of change of the dielectric constant (ε) at room temperature, the dielectric loss (tan δ), and the capacitance (C) with respect to temperature changes was measured for the obtained sample. The dielectric constant and the dielectric loss are 25 ° C and 1k.
It was measured under the conditions of Hz and 1 V rms . Regarding the rate of change of the capacitance with respect to temperature change, the rate of change at −25 ° C. and 85 ° C. (ΔC /
C 20 ) and a value (| ΔC / C 20 | max ) at which the rate of change is maximum as an absolute value within the range of −25 ° C. to 85 ° C.
【0025】さらに、また、絶縁抵抗計によって、50
0Vの直流電流を2分間印加したのちの絶縁抵抗値を測
定した。絶縁抵抗は、25℃および85℃の値を測定
し、それぞれの体積抵抗率の対数(logρ)を算出し
た。これらの測定結果を表3および表4に示す。Furthermore, by means of an insulation resistance tester, 50
The insulation resistance value was measured after a direct current of 0 V was applied for 2 minutes. The insulation resistance was measured at 25 ° C. and 85 ° C., and the logarithm (logρ) of each volume resistivity was calculated. The results of these measurements are shown in Tables 3 and 4.
【0026】次に、各組成の限定理由について説明す
る。Next, the reasons for limiting each composition will be described.
【0027】{ (Ba1-x-y-z Srx Cay Rez ) O
1+z/2 }m ( Ti1-o-p-q Zro Hfp Nbq ) O
2+q/2 において、試料番号1のように、Sr量xが0の
場合、誘電率が11000未満で、誘電損失が2.0%
を超え、静電容量の温度変化率も大きくなり好ましくな
い。一方、試料番号18のように、Sr量xが0.32
を超えると、誘電率が11000未満で、静電容量の温
度変化率がJIS規格のF特性を満足しなくなり好まし
くない。[0027] {(Ba 1-xyz Sr x Ca y Re z) O
1 + z / 2 } m (Ti 1-opq Zr o Hf p Nb q ) O
At 2 + q / 2 , when the Sr amount x is 0 as in sample number 1, the dielectric constant is less than 11000 and the dielectric loss is 2.0%.
And the rate of change in capacitance with temperature is large, which is not preferable. On the other hand, as in sample No. 18, the Sr amount x is 0.32
When it exceeds, the dielectric constant is less than 11,000 and the temperature change rate of the capacitance does not satisfy the F characteristic of JIS standard, which is not preferable.
【0028】また、試料番号19のように、Ca量yが
0.20を超えると、焼結性が悪くなり、誘電率が低下
し好ましくない。When the Ca content y exceeds 0.20 as in Sample No. 19, the sinterability deteriorates and the dielectric constant decreases, which is not preferable.
【0029】さらに、試料番号2のように、Re量zが
0の場合、誘電率が11000未満で、静電容量の温度
変化率も大きくなり好ましくない。一方、試料番号20
のように、Re量zが0.02を超えると、誘電損失が
2.0%を超え、絶縁抵抗が低下し好ましくない。Further, when the Re amount z is 0 as in Sample No. 2, the dielectric constant is less than 11000 and the temperature change rate of the capacitance is large, which is not preferable. On the other hand, sample number 20
As described above, when the Re amount z exceeds 0.02, the dielectric loss exceeds 2.0% and the insulation resistance decreases, which is not preferable.
【0030】試料番号3のように、Zr量oが0の場
合、誘電率が11000未満になり、静電容量の温度変
化率が大きくなり好ましくない。一方、試料番号22の
ように、Zr量oが0.24を超えると、焼結性が低下
し、誘電率が11000未満になり好ましくない。When the Zr amount o is 0 as in Sample No. 3, the dielectric constant is less than 11000 and the rate of change in capacitance with temperature is large, which is not preferable. On the other hand, when the Zr amount o exceeds 0.24 as in Sample No. 22, the sinterability decreases and the dielectric constant becomes less than 11,000, which is not preferable.
【0031】また、試料番号4のように、Hf量pが0
の場合、誘電率が11000未満で、静電容量の温度変
化率がJIS規格のF特性を満足しなくなり好ましくな
い。また、試料番号23のように、Hf量pが0.16
を超えると、静電容量の温度変化率がJIS規格のF特
性を満足しなくなり好ましくない。Further, as in Sample No. 4, the Hf amount p is 0.
In the case of, the dielectric constant is less than 11000, and the temperature change rate of the capacitance does not satisfy the JIS standard F characteristics, which is not preferable. In addition, as in Sample No. 23, the Hf amount p is 0.16
When it exceeds, the temperature change rate of the capacitance does not satisfy the F characteristic of JIS standard, which is not preferable.
【0032】さらに、試料番号5のように、Nb量qが
0の場合、誘電率が11000未満になり、結晶粒径が
3μmより大きくなり、積層セラミックコンデンサにし
た場合、誘電体層を薄膜化できず好ましくない。一方、
試料番号24のように、Nb量qが0.015を超える
と、還元性雰囲気で焼成したときに、磁器が還元され、
半導体化して絶縁抵抗が大幅に低下し好ましくない。Further, as in Sample No. 5, when the Nb amount q is 0, the dielectric constant is less than 11000 and the crystal grain size is larger than 3 μm, and in the case of a laminated ceramic capacitor, the dielectric layer is thinned. It is not possible and not preferable. on the other hand,
When the Nb amount q exceeds 0.015 as in Sample No. 24, the porcelain is reduced when fired in a reducing atmosphere,
It is not preferable because it becomes a semiconductor and the insulation resistance is significantly reduced.
【0033】試料番号25のように、Re量zとNb量
qの和z+qが0.025を超えると、還元性雰囲気で
焼成したときに、磁器が還元され、半導体化して絶縁抵
抗が大幅に低下し好ましくない。When the sum z + q of the Re amount z and the Nb amount q exceeds 0.025 as in Sample No. 25, the porcelain is reduced when it is fired in a reducing atmosphere to become a semiconductor, and the insulation resistance is greatly increased. It is not preferable because it decreases.
【0034】また、試料番号6のように、{ (Ba
1-x-y-z Srx Cay Rez ) O1+z/2}m ( Ti
1-o-p-q Zro Hfp Nbq ) O2+q/2 のモル比mが
1.00未満では、還元性雰囲気中で焼成したときに磁
器が還元され、半導体化して絶縁抵抗が低下してしまい
好ましくない。一方、試料番号21のように、モル比m
が1.03を超えると、焼結性が極端に悪くなり好まし
くない。In addition, like sample No. 6, {(Ba
1-xyz Sr x Ca y Re z) O 1 + z / 2} m (Ti
When the molar ratio m of 1-opq Zr o Hf p Nb q ) O 2 + q / 2 is less than 1.00, the porcelain is reduced when fired in a reducing atmosphere, becoming a semiconductor, and the insulation resistance decreases. It is not desirable. On the other hand, as in Sample No. 21, the molar ratio m
Is more than 1.03, the sinterability is extremely deteriorated, which is not preferable.
【0035】さらに、試料番号7のように、添加物とし
てのMnO2 ,Fe2 O3 ,Cr2O3 ,CoO,Ni
Oの添加量が0.02モル未満の場合、85℃以上での
絶縁抵抗が小さくなり、高温中における長時間使用の信
頼性が低下し好ましくない。一方、試料番号26のよう
に、これらの添加物の量が2.0モルを超えると、誘電
損失が2.0%を超えて大きくなり、同時に絶縁抵抗も
劣化し好ましくない。Further, as in Sample No. 7, MnO 2 , Fe 2 O 3 , Cr 2 O 3 , CoO, Ni as additives were added.
If the amount of O added is less than 0.02 mol, the insulation resistance at 85 ° C. or higher becomes small, and the reliability of long-term use at high temperature is reduced, which is not preferable. On the other hand, if the amount of these additives exceeds 2.0 mol as in Sample No. 26, the dielectric loss increases to more than 2.0% and at the same time the insulation resistance deteriorates, which is not preferable.
【0036】それに対して、この発明の非還元性誘電体
磁器組成物を用いれば、誘電率が11000以上と高
く、誘電損失が2.0%以下で、温度に対する静電容量
の変化率が、−25℃〜85℃の範囲でJIS規格に規
定するF特性規格を満足する誘電体磁器を得ることがで
きる。さらに、この誘電体磁器では、25℃,85℃に
おける絶縁抵抗は、体積抵抗率の対数で表したときに1
2以上と高い値を示す。また、この発明の非還元性誘電
体磁器組成物は、焼成温度も1300℃以下と比較的低
温で焼結可能であり、粒径についても3μm以下と小さ
い。On the other hand, when the non-reducing dielectric ceramic composition of the present invention is used, the dielectric constant is as high as 11000 or more, the dielectric loss is 2.0% or less, and the rate of change in capacitance with temperature is It is possible to obtain a dielectric porcelain satisfying the F characteristic standard defined in JIS in the range of -25 ° C to 85 ° C. Furthermore, in this dielectric porcelain, the insulation resistance at 25 ° C. and 85 ° C. is 1 when expressed as the logarithm of the volume resistivity.
It shows a high value of 2 or more. Further, the non-reducing dielectric ceramic composition of the present invention can be sintered at a relatively low firing temperature of 1300 ° C. or less, and has a small particle size of 3 μm or less.
【0037】なお、上記実施例では、出発原料として、
BaCO3 ,CaCO3 ,TiO2,ZrO2 ,HfO
2 などの酸化物粉末を用いたが、これらの酸化物粉末に
限定されるものではなく、アルコキシド法,共沈法また
は水熱合成法によって作製された粉末を用いてもよい。
これらの粉末を用いることによって、本実施例で示した
特性より向上する可能性もある。In the above embodiment, the starting material is
BaCO 3 , CaCO 3 , TiO 2 , ZrO 2 , HfO
Although oxide powders such as 2 are used, the oxide powders are not limited to these oxide powders, and powders produced by an alkoxide method, a coprecipitation method, or a hydrothermal synthesis method may be used.
By using these powders, there is a possibility that the characteristics shown in this example will be improved.
【0038】また、この発明にかかる非還元性誘電体磁
器組成物において、微量のシリカあるいは酸化物ガラス
のような焼結助剤を添加しても、得られる特性を何ら損
なうものではない。In the non-reducing dielectric ceramic composition according to the present invention, the addition of a slight amount of a sintering aid such as silica or oxide glass does not impair the obtained characteristics.
Claims (1)
1-x-y-z Srx Cay Rez ) O1+z/2 }m ( Ti
1-o-p-q Zro Hfp Nbq ) O2+q/2 (ただし、Re
はDy,Ho,Er,YbおよびYの中から選ばれる少
なくとも一種類)で表され、x,y,z,o,p,qお
よびmが、 0<x≦0.32 0≦y≦0.20 0<z≦0.02 0<o≦0.24 0<p≦0.16 0<q≦0.015 1.00≦m≦1.03 0<z+q≦0.025 の関係を満足し、前記主成分100モルに対して、M
n,Fe,Cr,Co,Niの各酸化物をMnO2 ,F
e2 O3 ,Cr2 O3 ,CoO,NiOと表したとき、
各酸化物の少なくとも一種類を0.02〜2.0モル含
む、非還元性誘電体磁器組成物。1. The composition formula {(Ba
1-xyz Sr x Ca y Re z) O 1 + z / 2} m (Ti
1-opq Zr o Hf p Nb q ) O 2 + q / 2 (where Re
Is at least one kind selected from Dy, Ho, Er, Yb and Y), and x, y, z, o, p, q and m are 0 <x ≦ 0.32 0 ≦ y ≦ 0 .20 0 <z ≦ 0.02 0 <o ≦ 0.24 0 <p ≦ 0.16 0 <q ≦ 0.015 1.00 ≦ m ≦ 1.03 0 <z + q ≦ 0.025 However, based on 100 moles of the main component, M
The oxides of n, Fe, Cr, Co, and Ni are mixed with MnO 2 , F.
e 2 O 3 , Cr 2 O 3 , CoO, NiO,
A non-reducing dielectric ceramic composition containing 0.02 to 2.0 mol of at least one kind of each oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16962193A JP3438261B2 (en) | 1993-06-15 | 1993-06-15 | Non-reducing dielectric porcelain composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16962193A JP3438261B2 (en) | 1993-06-15 | 1993-06-15 | Non-reducing dielectric porcelain composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0778510A true JPH0778510A (en) | 1995-03-20 |
JP3438261B2 JP3438261B2 (en) | 2003-08-18 |
Family
ID=15889899
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16962193A Expired - Lifetime JP3438261B2 (en) | 1993-06-15 | 1993-06-15 | Non-reducing dielectric porcelain composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3438261B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1192220A (en) * | 1997-07-23 | 1999-04-06 | Murata Mfg Co Ltd | Dielectric porcelain composition and laminated ceramic capacitor |
JPH11322414A (en) * | 1998-05-12 | 1999-11-24 | Murata Mfg Co Ltd | Dielectric porcelain composition and laminated ceramic capacitor |
WO2002000568A1 (en) * | 2000-06-29 | 2002-01-03 | Tdk Corporation | Dielectrics porcelain composition and electronic parts |
-
1993
- 1993-06-15 JP JP16962193A patent/JP3438261B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1192220A (en) * | 1997-07-23 | 1999-04-06 | Murata Mfg Co Ltd | Dielectric porcelain composition and laminated ceramic capacitor |
JPH11322414A (en) * | 1998-05-12 | 1999-11-24 | Murata Mfg Co Ltd | Dielectric porcelain composition and laminated ceramic capacitor |
WO2002000568A1 (en) * | 2000-06-29 | 2002-01-03 | Tdk Corporation | Dielectrics porcelain composition and electronic parts |
US6962888B2 (en) | 2000-06-29 | 2005-11-08 | Tdk Corporation | Dielectric ceramic composition and electronic device |
Also Published As
Publication number | Publication date |
---|---|
JP3438261B2 (en) | 2003-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3435607B2 (en) | Non-reducing dielectric porcelain composition | |
JP3180681B2 (en) | Multilayer ceramic capacitors | |
JP3389408B2 (en) | Multilayer capacitors | |
JP3368602B2 (en) | Non-reducing dielectric porcelain composition | |
JPH09142926A (en) | Dielectric ceramic powder composition and production of multilayer ceramic capacitor | |
JP3438261B2 (en) | Non-reducing dielectric porcelain composition | |
US5202814A (en) | Nonreducing dielectric ceramic composition | |
JPH0925162A (en) | Nonreducing dielectric porcelain composition and laminated ceramic capacitor using the same | |
JP3321823B2 (en) | Non-reducing dielectric porcelain composition | |
JPH0734327B2 (en) | Non-reducing dielectric ceramic composition | |
JP3385631B2 (en) | Non-reducing dielectric porcelain composition | |
JP3385630B2 (en) | Non-reducing dielectric porcelain composition | |
JP3368599B2 (en) | Non-reducing dielectric porcelain composition | |
JPH06318404A (en) | Dielectric ceramic composition powder and multilayered ceramic capacitor using same | |
JP3438334B2 (en) | Non-reducing dielectric porcelain composition | |
JP3316717B2 (en) | Multilayer ceramic capacitors | |
JPH0734326B2 (en) | Non-reducing dielectric ceramic composition | |
JP3603842B2 (en) | Non-reducing dielectric ceramic composition | |
JP3362408B2 (en) | Dielectric porcelain composition | |
JP2958820B2 (en) | Non-reducing dielectric porcelain composition | |
JP3318952B2 (en) | Dielectric ceramic composition and multilayer ceramic capacitor using the same | |
JP3318951B2 (en) | Dielectric ceramic composition and multilayer ceramic capacitor using the same | |
JP2958822B2 (en) | Non-reducing dielectric porcelain composition | |
JPH03112858A (en) | Dielectric porcelain composition | |
JPH05194027A (en) | Dielectric ceramic composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080613 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090613 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090613 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100613 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110613 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120613 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130613 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130613 Year of fee payment: 10 |
|
EXPY | Cancellation because of completion of term |