JPH06318404A - Dielectric ceramic composition powder and multilayered ceramic capacitor using same - Google Patents

Dielectric ceramic composition powder and multilayered ceramic capacitor using same

Info

Publication number
JPH06318404A
JPH06318404A JP5131399A JP13139993A JPH06318404A JP H06318404 A JPH06318404 A JP H06318404A JP 5131399 A JP5131399 A JP 5131399A JP 13139993 A JP13139993 A JP 13139993A JP H06318404 A JPH06318404 A JP H06318404A
Authority
JP
Japan
Prior art keywords
dielectric ceramic
dielectric
powder
composition powder
ceramic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5131399A
Other languages
Japanese (ja)
Other versions
JP3482654B2 (en
Inventor
Harunobu Sano
野 晴 信 佐
Yukio Hamachi
地 幸 生 浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP13139993A priority Critical patent/JP3482654B2/en
Publication of JPH06318404A publication Critical patent/JPH06318404A/en
Application granted granted Critical
Publication of JP3482654B2 publication Critical patent/JP3482654B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide dielectric ceramic composition powder capable of obtaining a large dielectric constant and a multilayered ceramic capacitor at a low cost having high reliability, a small size, and a large capacit-ance and made of this powder by using perovskite type oxide powder expressed by a specific formula. CONSTITUTION:At least one or more kinds of perovskite type oxide powders are used as main components, which include 0.03wt.% or less of alkaline metal oxide as impurity, are expressed by a formula ABO3, and are produced by utilizing a hydrothermal reaction, thus obtaining dielectric ceramic composition powder which satisfies a formula {(Ba1-xCax)O}m(Ti1-o-pZroNbp)O2+p/2, wherein 0 <= (x) <=0.20, 0< (o) <= 0.25, 0 <= (p) <= 0.015, and 1<= (m) (-) 1.03. An A group element is selected from Ba and Ca, and a B group element is selected from Ti, Zr and Nb. As auxiliary components 0.02-2.0 mols of at least one or more kinds of oxides of Mn, Fe, Cr, Co and Ni are added to be included into 100 mols of the main components, where a specific surface is set to 8.0m<2>/g or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は誘電体磁器組成物およ
びそれを用いた積層セラミックコンデンサに関し、特に
たとえばNiあるいはNi合金からなる内部電極を含む
積層セラミックコンデンサに用いられる誘電体磁器組成
物粉末およびそれを用いた積層セラミックコンデンサに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition and a laminated ceramic capacitor using the same, and particularly to a dielectric ceramic composition powder used for a laminated ceramic capacitor including internal electrodes made of Ni or Ni alloy, and The present invention relates to a laminated ceramic capacitor using the same.

【0002】[0002]

【従来の技術】一般的に積層セラミックコンデンサの製
造工程では、まず、その表面に内部電極となる電極材料
を塗布したシート状の誘電体材料が準備される。誘電体
材料としては、たとえばBaTiO3 を主成分とする材
料などが用いられる。この電極材料を塗布したシート状
の誘電体材料を積層して熱圧着し、一体化したものを自
然雰囲気中において1250〜1350℃で焼成するこ
とで、内部電極を有する誘電体磁器が得られる。そし
て、この誘電体磁器の端面に、内部電極と導通する外部
電極を焼き付けて、積層セラミックコンデンサが得られ
る。
2. Description of the Related Art Generally, in a manufacturing process of a monolithic ceramic capacitor, first, a sheet-shaped dielectric material having an electrode material applied to the surface thereof as an internal electrode is prepared. As the dielectric material, for example, a material containing BaTiO 3 as a main component is used. A sheet-shaped dielectric material coated with this electrode material is laminated, thermocompressed, and integrated to be fired at 1250 to 1350 ° C. in a natural atmosphere to obtain a dielectric ceramic having internal electrodes. Then, an external electrode that is electrically connected to the internal electrode is printed on the end surface of the dielectric ceramic to obtain a monolithic ceramic capacitor.

【0003】[0003]

【発明が解決しようとする課題】このような積層セラミ
ックコンデンサに用いられる内部電極の材料としては、
次のような条件を満たす必要がある。
The materials for the internal electrodes used in such a monolithic ceramic capacitor are as follows:
The following conditions must be met.

【0004】(a)誘電体磁器と内部電極とが同時に焼
成されるので、誘電体磁器が焼成される温度以上の融点
を有すること。
(A) Since the dielectric porcelain and the internal electrodes are fired at the same time, the dielectric porcelain must have a melting point higher than the firing temperature.

【0005】(b)酸化性の高温雰囲気中においても酸
化されず、しかも誘電体と反応しないこと。
(B) It should not be oxidized even in an oxidizing high temperature atmosphere and should not react with the dielectric.

【0006】このような条件を満足する電極材料として
は、白金,金,パラジウムあるいはこれらの合金などの
ような貴金属が用いられていた。
Noble metals such as platinum, gold, palladium or alloys thereof have been used as the electrode material satisfying such conditions.

【0007】しかしながら、これらの電極材料は優れた
特性を有する反面、高価であった。そのため、積層セラ
ミックコンデンサに占める電極材料費の割合は30〜7
0%にも達し、製造コストを上昇させる最大の要因とな
っていた。
However, while these electrode materials have excellent characteristics, they are expensive. Therefore, the ratio of the electrode material cost to the monolithic ceramic capacitor is 30 to 7
It reached 0%, which was the biggest factor in raising the manufacturing cost.

【0008】貴金属以外に高融点をもつものとしてN
i,Fe,Co,W,Moなどの卑金属があるが、これ
らの卑金属は高温の酸化性雰囲気中では容易に酸化され
てしまい、電極としての役目を果たさなくなってしま
う。そのため、これらの卑金属を積層セラミックコンデ
ンサの内部電極として使用するためには、誘電体磁器と
ともに中性または還元性雰囲気中で焼成する必要があ
る。しかしながら、従来の誘電体磁器材料では、このよ
うな還元性雰囲気中で焼成すると著しく還元されてしま
い、半導体化してしまうという欠点があった。
N having a high melting point other than precious metals
Although there are base metals such as i, Fe, Co, W, and Mo, these base metals are easily oxidized in a high-temperature oxidizing atmosphere and cannot serve as an electrode. Therefore, in order to use these base metals as the internal electrodes of the monolithic ceramic capacitor, it is necessary to fire them together with the dielectric ceramic in a neutral or reducing atmosphere. However, the conventional dielectric ceramic material has a drawback that it is remarkably reduced when it is fired in such a reducing atmosphere and becomes a semiconductor.

【0009】このような欠点を克服するために、たとえ
ば特公昭57−42588号公報に示されるように、チ
タン酸バリウム固溶体において、バリウムサイト/チタ
ンサイトの比を化学量論比より過剰にした誘電体材料が
知られている。
In order to overcome these drawbacks, for example, as shown in Japanese Patent Publication No. 57-42588, a barium titanate solid solution having a barium site / titanium site ratio in excess of the stoichiometric ratio should be used. Body materials are known.

【0010】こうした誘電体材料を使用することによっ
て、還元性雰囲気で焼成しても半導体化しない誘電体磁
器を得ることができ、内部電極としてNiなどの卑金属
を使用した積層セラミックコンデンサの製造が可能とな
った。
By using such a dielectric material, it is possible to obtain a dielectric ceramic which does not become a semiconductor even when fired in a reducing atmosphere, and it is possible to manufacture a monolithic ceramic capacitor using a base metal such as Ni as an internal electrode. Became.

【0011】しかし、内部電極として、Niなどの卑金
属を使用した積層セラミックコンデンサは、自然雰囲気
中で焼成される白金,金,パラジウムあるいは銀−パラ
ジウム合金などのような貴金属を内部電極とする積層セ
ラミックコンデンサと比較して、高温負荷,湿中負荷時
の絶縁抵抗の寿命が短く、信頼性が低いという問題点を
有していた。
However, a monolithic ceramic capacitor using a base metal such as Ni as an internal electrode is a monolithic ceramic whose internal electrode is a precious metal such as platinum, gold, palladium or silver-palladium alloy which is fired in a natural atmosphere. As compared with a capacitor, it has a problem that the insulation resistance has a shorter life under a high temperature load and a humidity load, and the reliability is low.

【0012】一方、近年のエレクトロニクスの発展に伴
い電子部品の小型化が急速に進行し、積層セラミックコ
ンデンサも小型化の傾向が顕著になってきた。また、積
層セラミックコンデンサを小型化する方法としては、一
般的に大きな誘電率を有する材料を用いるか、誘電体層
を薄膜化することが知られている。しかし、大きな誘電
率を有する材料は結晶粒が大きく、15μm以下のよう
な薄膜になると、1つの層中に存在する結晶粒の数が減
少し、著しく信頼性が低下してしまう。
On the other hand, with the recent development of electronics, miniaturization of electronic parts has rapidly progressed, and the trend toward miniaturization of monolithic ceramic capacitors has become remarkable. Further, as a method of miniaturizing the monolithic ceramic capacitor, it is generally known to use a material having a large dielectric constant or to thin the dielectric layer. However, a material having a large dielectric constant has large crystal grains, and if the film is a thin film having a thickness of 15 μm or less, the number of crystal grains present in one layer decreases, resulting in a significant decrease in reliability.

【0013】それゆえに、この発明の主たる目的は、還
元性雰囲気中で焼成しても半導体化せず、しかも結晶粒
径が小さいにもかかわらず、大きな誘電率が得られる誘
電体磁器組成物粉末および低コストで信頼性の高い小型
大容量の積層セラミックコンデンサを提供することであ
る。
Therefore, a main object of the present invention is to obtain a dielectric ceramic composition powder which does not become a semiconductor even when fired in a reducing atmosphere and has a large dielectric constant despite its small crystal grain size. Another object of the present invention is to provide a small-sized and large-capacity multilayer ceramic capacitor that is low in cost and highly reliable.

【0014】[0014]

【課題を解決するための手段】第1の発明は、水熱反応
を利用して製造した、不純物として含まれるアルカリ金
属酸化物の含有量が0.03重量%以下、ハロゲンの含
有量が0.03重量%以下の一般式ABO3 で表される
ペロブスカイト型酸化物粉末(ただし、A群元素はBa
またはCaであり、B群元素はTi,ZrまたはNbで
ある。)を少なくとも1種類以上用いて得られ、次の一
般式、{ (Ba1-x Cax ) O}m ( Ti1-o-p Zro
Nbp ) O2+p/2 で表され、x,o,pおよびmが、0
≦x≦0.20、0<o≦0.25、0≦p≦0.01
5、1.000≦m≦1.03の関係を満足する主成分
100モルに対して、副成分として、Mn,Fe,C
r,CoおよびNiの各酸化物をMnO2 ,Fe
2 3 ,Cr2 3 ,CoOおよびNiOと表したと
き、各酸化物の少なくとも一種類以上を0.02〜2.
0モル添加含有し、比表面積が8.0m2 /g以下であ
る、誘電体磁器組成物粉末である。
According to a first aspect of the present invention, the content of an alkali metal oxide contained as an impurity produced by utilizing a hydrothermal reaction is 0.03% by weight or less, and the content of halogen is 0. 0.03% by weight or less of the perovskite type oxide powder represented by the general formula ABO 3 (however, the group A element is Ba
Alternatively, it is Ca, and the B group element is Ti, Zr, or Nb. ) Of at least one of the following general formulas: {(Ba 1-x Ca x ) O} m (Ti 1-op Zr o
Nb p ) O 2 + p / 2 , where x, o, p and m are 0
≦ x ≦ 0.20, 0 <o ≦ 0.25, 0 ≦ p ≦ 0.01
5, Mn, Fe, C as auxiliary components with respect to 100 mol of the main component satisfying the relationship of 1.000 ≦ m ≦ 1.03
The oxides of r, Co and Ni were replaced by MnO 2 , Fe.
When expressed as 2 O 3 , Cr 2 O 3 , CoO and NiO, at least one kind of each oxide is 0.02 to 2.
It is a dielectric ceramic composition powder containing 0 mol added and having a specific surface area of 8.0 m 2 / g or less.

【0015】第2の発明は、複数の内部電極を介在させ
て積層された誘電体磁器焼結体と、誘電体磁器焼結体内
の内部電極に電気的に接続されるように設けられた外部
電極とを含む積層セラミックコンデンサにおいて、内部
電極がNiおよびNi合金のうちの1種類からなり、誘
電体磁器焼結体が前記誘電体磁器組成物粉末を用いて形
成された、積層セラミックコンデンサである。
A second aspect of the present invention is a dielectric ceramic sintered body laminated with a plurality of internal electrodes interposed therebetween, and an external body provided so as to be electrically connected to the internal electrodes in the dielectric ceramic sintered body. A multilayer ceramic capacitor including an electrode, wherein the internal electrode is made of one of Ni and a Ni alloy, and the dielectric ceramic sintered body is formed by using the dielectric ceramic composition powder. .

【0016】[0016]

【作用】積層セラミックコンデンサの原料粉末として
は、一般式ABO3 で表されるペロブスカイト型の酸化
物が良く用いられている。このペロブスカイト型の酸化
物の製造方法としては、従来A群元素(A=Ba,C
a)の炭酸塩とB群元素(B=Ti,Zr,Nb)の酸
化物との混合物を1000℃以上で仮焼し、そののち粉
砕して、原料粉末を得ている。磁器焼結体の結晶粒径を
小さくするために、これらの原料粉末の微細化が要望さ
れているが、従来の製造方法では、仮焼時に焼結が進
み、粗大粒子を多量に含むので、微細で均一な粒度を有
する粉末を得ることは困難であった。この問題点を解決
するための試みとして、共沈法,アルコキシド法,加水
分解法,水熱合成法などによる原料粉末の合成が行われ
ている。この中でも、水熱反応によって合成された粉末
は、粒子が微細であるだけではなく、組成が均一であ
り、従来の製造方法によって製造された原料粉末を用い
た誘電体磁器焼結体と比較して、結晶粒径が小さく、大
きな誘電率が得られるということが知られている。ただ
し、水熱反応によって合成された粉末は、粒子が微細で
あるために、比表面積が大きい。
The perovskite type oxide represented by the general formula ABO 3 is often used as the raw material powder of the laminated ceramic capacitor. As a method for producing this perovskite type oxide, a conventional group A element (A = Ba, C
A mixture of the carbonate of a) and the oxide of the group B element (B = Ti, Zr, Nb) is calcined at 1000 ° C. or higher, and then pulverized to obtain a raw material powder. In order to reduce the crystal grain size of the porcelain sintered body, it is desired to make these raw material powders finer, but in the conventional manufacturing method, sintering proceeds during calcination, and since a large amount of coarse particles is contained, It was difficult to obtain a powder having a fine and uniform particle size. As an attempt to solve this problem, raw material powders have been synthesized by a coprecipitation method, an alkoxide method, a hydrolysis method, a hydrothermal synthesis method, or the like. Among them, the powder synthesized by the hydrothermal reaction has not only fine particles but also a uniform composition, and is compared with a dielectric ceramic sintered body using a raw material powder manufactured by a conventional manufacturing method. It is known that the crystal grain size is small and a large dielectric constant can be obtained. However, the powder synthesized by the hydrothermal reaction has a large specific surface area because the particles are fine.

【0017】一方、水熱反応によって合成されたペロブ
スカイト型の酸化物粉末では、出発原料として、塩化物
が用いられることが多い。また、結晶化を促進するため
に、鉱化剤として、NaOH,KOHなどの各種のアル
カリ金属溶液を用いるのが一般的であった。そのため、
Na2 O,K2 Oなどのアルカリ金属酸化物とClなど
のハロゲンが不純物として取り込まれてしまう。
On the other hand, in perovskite type oxide powder synthesized by hydrothermal reaction, chloride is often used as a starting material. Further, in order to promote crystallization, it has been common to use various alkali metal solutions such as NaOH and KOH as a mineralizer. for that reason,
Alkali metal oxides such as Na 2 O and K 2 O and halogens such as Cl are taken in as impurities.

【0018】比表面積の大きい誘電体磁器組成物粉末を
用いて、積層セラミックコンデンサを作製すると、バイ
ンダとの混合時に、バインダとの分散状態が悪くなる。
そのため、グリーンシートにピンホールができて、焼成
後にポアが多く発生したり、グリーンシートの密度が低
下して、焼成時の収縮率が大きくなり、デラミネーショ
ンが発生するなど不良の原因となっていた。
When a monolithic ceramic capacitor is manufactured using a dielectric ceramic composition powder having a large specific surface area, the state of dispersion with the binder becomes poor when mixed with the binder.
As a result, pinholes are created in the green sheet, and many pores are generated after firing, or the density of the green sheet decreases, and the shrinkage rate during firing increases, causing delamination and other defects. It was

【0019】また、本発明者らは、NiまたはNi合金
からなる内部電極を有する積層セラミックコンデンサの
誘電体磁器焼結体の原料粉末として、水熱合成法で合成
されるペロブスカイト型の酸化物粉末を用いる場合に、
不純物として存在するNa2O,K2 Oなどのアルカリ
金属酸化物およびClなどのハロゲンの含有量が、誘電
体磁器の高温負荷,湿中負荷時の絶縁抵抗の寿命に大き
く影響することを見いだした。
The present inventors have also proposed that as a raw material powder for a dielectric ceramic sintered body of a laminated ceramic capacitor having an internal electrode made of Ni or Ni alloy, a perovskite type oxide powder synthesized by a hydrothermal synthesis method. When using
It found present as an impurity Na 2 O, the content of halogens, such as alkali metal oxides and Cl such as K 2 O, temperature load of the dielectric ceramic, that greatly affects the middle of the load of the insulation resistance lifetime humidity It was

【0020】すなわち、この発明にかかる誘電体磁器組
成物粉末は、還元雰囲気中においても、その特性を劣化
させることなく焼成することができ、内部電極として、
卑金属であるNiまたはNi合金を用いたポアやデラミ
ネーションのない高信頼性の積層セラミックコンデンサ
を得ることができる。
That is, the dielectric ceramic composition powder according to the present invention can be fired even in a reducing atmosphere without deteriorating its characteristics, and as an internal electrode,
It is possible to obtain a highly reliable laminated ceramic capacitor using Ni or a Ni alloy which is a base metal and having no pores or delamination.

【0021】また、この発明にかかる誘電体磁器組成物
粉末は、水熱反応によって合成された原料粉末を用いて
いることから、結晶粒径が小さくて、大きな誘電率が得
られる。そのため、1つの誘電体層中に存在する結晶粒
の数を増やすことができ、誘電体層の厚みを薄くして
も、信頼性の低下を防ぐことができるので、大きな容量
を有する積層セラミックコンデンサを得ることができ
る。
Further, since the dielectric ceramic composition powder according to the present invention uses the raw material powder synthesized by the hydrothermal reaction, the crystal grain size is small and a large dielectric constant can be obtained. Therefore, the number of crystal grains existing in one dielectric layer can be increased, and even if the thickness of the dielectric layer is reduced, deterioration of reliability can be prevented. Therefore, a monolithic ceramic capacitor having a large capacitance is provided. Can be obtained.

【0022】[0022]

【発明の効果】この発明によれば、還元性雰囲気中で焼
成しても還元されず、高温負荷,湿中負荷時に絶縁抵抗
が劣化しない誘電体磁器組成物粉末を得ることができ
る。したがって、この誘電体磁器組成物粉末を用いるこ
とによって、電極材料として卑金属を用いても、高信頼
性の積層セラミックコンデンサを得ることができる。さ
らに、この誘電体磁器組成物粉末は比較的低温で焼成可
能であるため、積層セラミックコンデンサのコストダウ
ンを図ることができる。
According to the present invention, it is possible to obtain a dielectric ceramic composition powder which is not reduced even if it is fired in a reducing atmosphere and whose insulation resistance does not deteriorate under high temperature load and wet load. Therefore, by using this dielectric ceramic composition powder, a highly reliable laminated ceramic capacitor can be obtained even if a base metal is used as the electrode material. Furthermore, since this dielectric ceramic composition powder can be fired at a relatively low temperature, it is possible to reduce the cost of the monolithic ceramic capacitor.

【0023】また、この誘電体磁器組成物を用いた積層
セラミックコンデンサでは、高誘電率であるにもかかわ
らず、結晶粒径が小さい。したがって、誘電体層を薄膜
化しても、従来の積層セラミックコンデンサのように層
中に存在する結晶粒の量が少なくならない。このため、
信頼性が高く、しかも小型で大容量の積層セラミックコ
ンデンサを得ることができる。
Further, in the monolithic ceramic capacitor using this dielectric ceramic composition, the crystal grain size is small despite the high dielectric constant. Therefore, even if the dielectric layer is thinned, the amount of crystal grains existing in the layer does not decrease unlike the conventional multilayer ceramic capacitor. For this reason,
It is possible to obtain a monolithic ceramic capacitor that has high reliability, is small, and has a large capacity.

【0024】この発明の上述の目的,その他の目的,特
徴および利点は、以下の実施例の詳細な説明から一層明
らかとなろう。
The above and other objects, features and advantages of the present invention will become more apparent from the detailed description of the embodiments below.

【0025】[0025]

【実施例】まず、チタンイソプロポキシド(Ti(OC
3 7 4 )とジルコニウムイソブトキシド(Zr(O
4 9 4 )とニオブイソブトキシド(Nb(OC4
9 5 )を総量で0.1モルになるように適量秤量
し、約300mlのイソプロピルアルコール(IPA)
に溶解させた溶液を数種類用意した。これらの溶液を十
分に攪拌したのち、それぞれに0.2モル〜0.6モル
のNaOHを含有する水溶液120ccを加えて加水分
解させた。
EXAMPLES First, titanium isopropoxide (Ti (OC
3 H 7 ) 4 ) and zirconium isobutoxide (Zr (O
C 4 H 9 ) 4 ) and niobium isobutoxide (Nb (OC 4
An appropriate amount of H 9 ) 5 ) is weighed so that the total amount becomes 0.1 mol, and about 300 ml of isopropyl alcohol (IPA) is added.
Several kinds of solutions dissolved in were prepared. After sufficiently stirring these solutions, 120 cc of an aqueous solution containing 0.2 mol to 0.6 mol of NaOH was added to each of them to cause hydrolysis.

【0026】次に、これらの加水分解させた溶液それぞ
れにBaCl2 ・2H2 OとCaCl2 ・2H2 Oとを
総量で0.1モルとなるようにN2 ガスを吹き込みなが
ら添加,混合し、混合溶液を得た。そののち、これらの
混合溶液を、それぞれ500mlのオートクレーブに入
れ、200℃で6時間〜10時間水熱処理した。そのの
ち、冷却して得られたスラリをろ別して、通常の方法に
よって、洗浄,ろ過を数回繰り返し行ったのち、110
℃で乾燥することによって、表1に示す8種類のペロブ
スカイト型の酸化物粉末を得た。
Next, BaCl 2 .2H 2 O and CaCl 2 .2H 2 O were added and mixed into each of these hydrolyzed solutions while blowing N 2 gas so that the total amount became 0.1 mol. , A mixed solution was obtained. After that, each of these mixed solutions was placed in an autoclave of 500 ml and hydrothermally treated at 200 ° C. for 6 hours to 10 hours. After that, the slurry obtained by cooling is filtered and washed and filtered several times by a usual method.
Eight kinds of perovskite type oxide powders shown in Table 1 were obtained by drying at 0 ° C.

【0027】[0027]

【表1】 [Table 1]

【0028】次いで、上記8種類のペロブスカイト型酸
化物と、純度99.8%以上のBaCO3 ,CaC
3 ,TiO2 ,ZrO2 ,Nb2 5 ,MnO2 ,F
2 3,Cr2 3 ,CoO,NiOとを準備した。
これらの原料を{ (Ba1-x Cax ) O}m ( Ti
1-o-p Zro Nbp ) O2+p/2 の組成式で表され、x,
o,p,mが表2に示す割合となるように配合して、配
合原料を得た。この配合原料をボールミルで湿式混合
し、粉砕したのち乾燥し、空気中において1000℃〜
1180℃で2時間仮焼して仮焼物を得た。この仮焼物
を乾式粉砕機によって粉砕し、表2に示す比表面積の原
料粉末を得た。
Next, the above eight types of perovskite type oxides and BaCO 3 , CaC having a purity of 99.8% or more are used.
O 3 , TiO 2 , ZrO 2 , Nb 2 O 5 , MnO 2 , F
e 2 O 3, Cr 2 O 3, CoO, were prepared and NiO.
Using these raw materials as {(Ba 1-x Ca x ) O} m (Ti
1-op Zr o Nb p ) O 2 + p / 2 is represented by the composition formula, x,
Blending was carried out so that o, p and m were in the ratios shown in Table 2 to obtain blended raw materials. The blended raw materials are wet mixed in a ball mill, pulverized, and then dried, and the mixture is dried in the air at 1000 ° C.
It was calcined at 1180 ° C. for 2 hours to obtain a calcined product. This calcined product was crushed by a dry crusher to obtain a raw material powder having a specific surface area shown in Table 2.

【0029】[0029]

【表2】 [Table 2]

【0030】この原料粉末にポリビニルブチラール系バ
インダおよびエタノールなどの有機溶剤を加えて、ボー
ルミルによって湿式混合し、セラミックスラリを調整し
た。そののち、セラミックスラリをドクターブレード法
によってシート成形し、厚み26μmの矩形のグリーン
シートを得た。次に、このセラミックグリーンシート上
に、Niを主体とする導電ペーストを印刷し、内部電極
を構成するための導電ペースト層を形成した。導電ペー
スト層が形成されたセラミックグリーンシートを、導電
ペーストの引き出されている側が互い違いとなるように
複数枚積層し、積層体を得た。得られた積層体をN2
囲気中において350℃の温度に加熱し、バインダを燃
焼させたのち、酸素分圧が10-9〜10-12 MPaのH
2 −N2−空気ガスからなる還元性雰囲気中において表
3に示す温度で2時間焼成し、セラミック焼結体を得
た。得られたセラミック焼結体の表面を、走査型電子顕
微鏡で倍率1500倍で観察し、グレインサイズを測定
した。
A polyvinyl butyral binder and an organic solvent such as ethanol were added to this raw material powder and wet-mixed by a ball mill to prepare a ceramic slurry. After that, the ceramic slurry was formed into a sheet by a doctor blade method to obtain a rectangular green sheet having a thickness of 26 μm. Next, a conductive paste containing Ni as a main component was printed on this ceramic green sheet to form a conductive paste layer for forming internal electrodes. A plurality of ceramic green sheets having a conductive paste layer formed thereon were laminated so that the sides from which the conductive paste was drawn out were staggered to obtain a laminate. The obtained laminated body was heated to a temperature of 350 ° C. in an N 2 atmosphere to burn the binder, and then the H 2 of which oxygen partial pressure was 10 −9 to 10 −12 MPa.
2 -N 2 - calcined for 2 hours at a temperature shown in Table 3 in a reducing atmosphere consisting of air gas, to obtain a ceramic sintered body. The surface of the obtained ceramic sintered body was observed with a scanning electron microscope at a magnification of 1500 times to measure the grain size.

【0031】[0031]

【表3】 [Table 3]

【0032】焼成後、得られた焼結体の両端面にAgペ
ーストを塗布し、N2 雰囲気中において600℃の温度
で焼き付け、内部電極と電気的に接続された外部電極を
形成した。このようにして得られた積層セラミックコン
デンサの外形寸法は、幅1.6mm,長さ3.2mm,
厚さ1.2mmであり、内部電極間に介在する誘電体セ
ラミック層の厚みは15μmである。また、有効誘電体
セラミック層の総数は19であり、一層当たりの対向電
極の面積は2.1mm2 である。
After firing, an Ag paste was applied to both end faces of the obtained sintered body and baked at a temperature of 600 ° C. in an N 2 atmosphere to form external electrodes electrically connected to the internal electrodes. The external dimensions of the thus-obtained monolithic ceramic capacitor are 1.6 mm in width, 3.2 mm in length,
The thickness is 1.2 mm, and the thickness of the dielectric ceramic layer interposed between the internal electrodes is 15 μm. The total number of effective dielectric ceramic layers is 19, and the area of the counter electrode per layer is 2.1 mm 2 .

【0033】静電容量(C)および誘電損失(tan
δ)は、自動ブリッジ式測定器を用いて、周波数1kH
z,1Vrms ,温度25℃にて測定し、静電容量から誘
電率(ε)を算出した。次に、絶縁抵抗(R)を測定す
るために、絶縁抵抗計を用い、25Vの直流電圧を2分
間印加して、25℃,85℃での絶縁抵抗(R)を測定
し、静電容量(C)と絶縁抵抗(R)との積、すなわち
CR積を求めた。また、温度変化に対する静電容量の変
化率を測定した。さらに、直流破壊電圧値(BDV)と
1kHz,1Vrms の電圧を印加した上に、直流電圧を
13V重畳したときの静電容量の変化率を測定した。な
お、温度変化に対する静電容量の変化率については、2
0℃での静電容量を基準とした−25℃と85℃での変
化率(ΔC/C20)を示した。高温負荷試験としては、
各試料を100個ずつ、温度85℃で直流電圧を50V
印加して、1000時間経過後の絶縁抵抗を測定した。
また、湿中負荷試験としては、各試料を100個ずつ、
湿度95%,温度70℃で直流電圧を25V印加して、
1000時間経過後の絶縁抵抗を測定した。なお、高温
負荷試験および湿中負荷試験では、1000時間経過後
の絶縁抵抗値(R)と静電容量(C)との積すなわちC
R積が50MΩ・μF以下の試料を不良として、その個
数を示した。
Capacitance (C) and dielectric loss (tan)
δ) is a frequency of 1 kHz using an automatic bridge type measuring instrument
The measurement was performed at z, 1 V rms , and temperature of 25 ° C., and the dielectric constant (ε) was calculated from the capacitance. Next, in order to measure the insulation resistance (R), a DC voltage of 25 V was applied for 2 minutes to measure the insulation resistance (R) at 25 ° C. and 85 ° C. using an insulation resistance meter, and the capacitance was measured. The product of (C) and insulation resistance (R), that is, the CR product was obtained. In addition, the rate of change of capacitance with respect to temperature change was measured. Furthermore, the DC breakdown voltage value (BDV) and a voltage of 1 kHz and 1 V rms were applied, and the rate of change in capacitance was measured when the DC voltage was superimposed at 13 V. The rate of change of capacitance with respect to temperature change is 2
The rate of change (ΔC / C 20 ) at −25 ° C. and 85 ° C. based on the capacitance at 0 ° C. is shown. As a high temperature load test,
100 samples of each sample, DC voltage of 50V at a temperature of 85 ℃
The voltage was applied and the insulation resistance after 1000 hours was measured.
In addition, as a wet and medium load test, 100 pieces of each sample,
Applying 25V DC voltage at humidity 95% and temperature 70 ℃,
The insulation resistance after 1000 hours was measured. In the high temperature load test and the humidity and medium load test, the product of the insulation resistance (R) and the capacitance (C) after 1000 hours, that is, C
The number of samples whose R product was 50 MΩ · μF or less was regarded as defective and the number thereof was shown.

【0034】また、試料番号8に対する比較例として、
純度99.8%以上のBaCO3 ,CaCO3 ,TiO
2 ,ZrO2 ,MnO2 を準備し、表2の試料番号8の
組成となるように配合して、配合原料を得た。この配合
原料をボールミルで湿式混合し、粉砕したのち乾燥し、
空気中において1100℃で2時間仮焼して仮焼物を得
た。この仮焼物を乾式粉砕機によって粉砕し、比表面積
が3.0m2 の原料粉末を得た。この原料粉末を用い
て、上述の方法によって、積層コンデンサを作製した。
そして、この比較例についても、上述の各特性を測定し
た。
Further, as a comparative example for sample No. 8,
BaCO 3 , CaCO 3 , TiO with a purity of 99.8% or more
2 , ZrO 2 , and MnO 2 were prepared and blended so as to have the composition of Sample No. 8 in Table 2 to obtain a blended raw material. This blended raw material is wet mixed in a ball mill, crushed and then dried,
It was calcined in air at 1100 ° C. for 2 hours to obtain a calcined product. This calcined product was pulverized by a dry pulverizer to obtain a raw material powder having a specific surface area of 3.0 m 2 . Using this raw material powder, a multilayer capacitor was produced by the method described above.
Then, also in this comparative example, the above-mentioned respective characteristics were measured.

【0035】以上の各試験の結果を表3に合わせて示
す。
The results of the above tests are also shown in Table 3.

【0036】次に、各組成の限定理由について説明す
る。
Next, the reasons for limiting each composition will be described.

【0037】{ (Ba1-x Cax ) O}m ( Ti1-o-p
Zro Nbp ) O2+p/2 で表される誘電体磁器組成物粉
末において、試料番号1のように、Zr量oが0の場
合、誘電率εが11000未満になり、誘電損失tan
δが5.0%を超えて好ましくない。一方、試料番号1
4のように、Zr量oが0.25を超えると、焼結性が
低下し、誘電率が低下し好ましくない。
{(Ba 1-x Ca x ) O} m (Ti 1-op
In the dielectric ceramic composition powder represented by Zr o Nb p ) O 2 + p / 2 , when the Zr amount o is 0 as in Sample No. 1, the dielectric constant ε becomes less than 11000 and the dielectric loss tan
δ exceeds 5.0%, which is not preferable. On the other hand, sample number 1
When the Zr amount o exceeds 0.25 as in No. 4, the sinterability is lowered and the dielectric constant is lowered, which is not preferable.

【0038】また、試料番号2のように、{ (Ba1-x
Cax ) O}m ( Ti1-o-p ZroNbp ) O2+p/2
モル比mが1.000未満では、還元性雰囲気中で焼成
したときに磁器が還元され、半導体化して絶縁抵抗が低
下してしまい好ましくない。一方、試料番号16のよう
に、モル比mが1.03を超えると、焼結性が極端に悪
くなり好ましくない。
In addition, as in sample number 2, {(Ba 1-x
When the molar ratio m of Ca x ) O} m (Ti 1-op Zr o Nb p ) O 2 + p / 2 is less than 1.000, the porcelain is reduced when fired in a reducing atmosphere to become a semiconductor. Insulation resistance decreases, which is not preferable. On the other hand, when the molar ratio m exceeds 1.03 as in Sample No. 16, the sinterability is extremely deteriorated, which is not preferable.

【0039】試料番号3のように、MnO2 ,Fe2
3 ,Cr2 3 ,CoO,NiOの含有量が0.02モ
ル未満の場合、85℃以上での絶縁抵抗が低下し、高温
負荷試験,湿中負荷試験での不良が発生し好ましくな
い。一方、試料番号20のように、MnO2 ,Fe2
3 ,Cr2 3 ,CoO,NiOの含有量が2.0モル
を超えても、85℃以上での絶縁抵抗が低下し、高温負
荷試験,湿中負荷試験での不良が発生し好ましくない。
As in sample No. 3, MnO 2 , Fe 2 O
When the content of 3 , Cr 2 O 3 , CoO, and NiO is less than 0.02 mol, the insulation resistance at 85 ° C. or higher is lowered, and defects in the high temperature load test and the humidity and medium load test occur, which is not preferable. On the other hand, like sample No. 20, MnO 2 , Fe 2 O
Even if the content of 3 , Cr 2 O 3 , CoO, and NiO exceeds 2.0 mol, the insulation resistance at 85 ° C. or higher will decrease, and defects will occur in the high temperature load test and the humidity and medium load test, which is not preferable. .

【0040】さらに、試料番号13のように、Ca量x
が0.20を超えると、焼結性が低下し、誘電率が低下
し好ましくない。
Further, as in Sample No. 13, the Ca amount x
Is more than 0.20, the sinterability is lowered and the dielectric constant is lowered, which is not preferable.

【0041】試料番号15のように、Nb量pが0.0
2を超えると、還元性雰囲気で焼成したときに磁器が還
元され、半導体化して絶縁抵抗が大幅に低下し好ましく
ない。
As in the sample No. 15, the Nb amount p is 0.0
When it exceeds 2, the porcelain is reduced when it is fired in a reducing atmosphere to become a semiconductor, and the insulation resistance is significantly reduced, which is not preferable.

【0042】また、試料番号17のように、水熱反応を
利用して製造したアルカリ金属の含有量が0.03重量
%を超えると、高温負荷試験での不良数が多くなり好ま
しくない。
When the content of the alkali metal produced by utilizing the hydrothermal reaction exceeds 0.03% by weight, as in sample No. 17, the number of defects in the high temperature load test increases, which is not preferable.

【0043】試料番号18のように、水熱反応を利用し
て製造したハロゲンの含有量が0.03重量%を超える
と、高温負荷試験,湿中負荷試験での不良数が多くなり
好ましくない。
When the content of halogen produced by utilizing the hydrothermal reaction exceeds 0.03% by weight like sample No. 18, the number of defects in the high temperature load test and the humidity and medium load test increases, which is not preferable. .

【0044】さらに、試料番号19のように、比表面積
が8.0m2 /gを超えると、デラミネーションが発生
し好ましくない。
Further, when the specific surface area exceeds 8.0 m 2 / g as in sample No. 19, delamination occurs, which is not preferable.

【0045】比較例のように、ペロブスカイト型酸化物
粉末を用いずに製造した誘電体磁器組成物粉末では、誘
電率および破壊電圧値が低下するとともに、結晶粒径が
大きくなり好ましくない。
As in the comparative example, the dielectric ceramic composition powder produced without using the perovskite type oxide powder is not preferable because the dielectric constant and the breakdown voltage value are lowered and the crystal grain size is increased.

【0046】それに対して、この発明にかかる積層セラ
ミックコンデンサは、誘電率が13000以上と高く、
誘電損失tanδが5.0%以下で、温度に対する静電
容量の変化率が、−25℃〜85℃の範囲でJIS規格
に規定するE特性あるいはF特性規格を満足する誘電体
磁器を得ることができる。しかも、この積層セラミック
コンデンサでは、25℃,85℃における絶縁抵抗が、
静電容量(C)と絶縁抵抗値(R)との積すなわちCR
積で表したときに、それぞれ5000MΩ・μF以上,
1000MΩ・μF以上と高い値を示す。また、高温負
荷時および湿中負荷時の絶縁抵抗の寿命が長く、優れた
信頼性を示す。さらに、ペロブスカイト型酸化物粉末を
用いずに製造した誘電体磁器組成物粉末を用いた従来の
積層セラミックコンデンサと比較して、誘電率および破
壊電圧値が高く、電圧依存性が小さい。また、この発明
にかかる誘電体磁器組成物粉末は、焼成温度も1250
℃以下と低温で焼結可能であり、焼結後の粒径について
も3μm以下と小さい。
On the other hand, the monolithic ceramic capacitor according to the present invention has a high dielectric constant of 13,000 or more,
To obtain a dielectric porcelain having a dielectric loss tan δ of 5.0% or less and a rate of change of capacitance with respect to temperature satisfying E characteristic or F characteristic standard defined in JIS standard in a range of -25 ° C to 85 ° C. You can Moreover, in this multilayer ceramic capacitor, the insulation resistance at 25 ° C and 85 ° C is
The product of capacitance (C) and insulation resistance (R), that is, CR
When expressed as a product, 5000 MΩ · μF or more,
It shows a high value of 1000 MΩ · μF or more. Further, the insulation resistance has a long life under a high temperature load and a wet and medium load, and exhibits excellent reliability. Further, the dielectric constant and the breakdown voltage value are high and the voltage dependence is small as compared with the conventional multilayer ceramic capacitor using the dielectric ceramic composition powder produced without using the perovskite type oxide powder. The dielectric ceramic composition powder according to the present invention also has a firing temperature of 1250.
It can be sintered at a low temperature of ℃ or less, and the particle size after sintering is as small as 3 µm or less.

【0047】なお、この発明にかかる誘電体磁器組成物
粉末において、微量のシリカおよび酸化物ガラスのよう
な焼結助材を添加することは、得られる積層セラミック
コンデンサの特性を何ら損なうものではない。
In the dielectric ceramic composition powder according to the present invention, the addition of a slight amount of a sintering aid such as silica and oxide glass does not impair the characteristics of the obtained monolithic ceramic capacitor. .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水熱反応を利用して製造した、不純物と
して含まれるアルカリ金属酸化物の含有量が0.03重
量%以下、ハロゲンの含有量が0.03重量%以下の一
般式ABO3 で表されるペロブスカイト型酸化物粉末
(ただし、A群元素はBaまたはCaであり、B群元素
はTi,ZrまたはNbである。)を少なくとも1種類
以上用いて得られ、次の一般式 { (Ba1-x Cax ) O}m ( Ti1-o-p Zro
p ) O2+p/2 で表され、x,o,pおよびmが、 0≦x≦0.20 0<o≦0.25 0≦p≦0.015 1.000≦m≦1.03 の関係を満足する主成分100モルに対して、副成分と
して、Mn,Fe,Cr,CoおよびNiの各酸化物を
MnO2 ,Fe2 3 ,Cr2 3 ,CoOおよびNi
Oと表したとき、各酸化物の少なくとも一種類以上を
0.02〜2.0モル添加含有し、比表面積が8.0m
2 /g以下である、誘電体磁器組成物粉末。
1. A general formula ABO 3 produced by utilizing a hydrothermal reaction, wherein the content of alkali metal oxides contained as impurities is 0.03% by weight or less and the content of halogen is 0.03% by weight or less. A perovskite oxide powder represented by the formula (wherein the group A element is Ba or Ca, and the group B element is Ti, Zr or Nb), and the following general formula: (Ba 1-x Ca x ) O} m (Ti 1-op Zr O N
b p ) O 2 + p / 2 , where x, o, p and m are 0 ≦ x ≦ 0.20 0 <o ≦ 0.25 0 ≦ p ≦ 0.015 1.000 ≦ m ≦ 1 With respect to 100 moles of the main component satisfying the relationship of 0.03, Mn, Fe, Cr, Co, and Ni oxides are added as sub-components to MnO 2 , Fe 2 O 3 , Cr 2 O 3 , CoO, and Ni.
When expressed as O, 0.02 to 2.0 mol of at least one kind of each oxide is added and contained, and the specific surface area is 8.0 m.
Dielectric ceramic composition powder having a content of 2 / g or less.
【請求項2】 複数の内部電極を介在させて積層された
誘電体磁器焼結体、および前記誘電体磁器焼結体内の内
部電極に電気的に接続されるように設けられた外部電極
を含む積層セラミックコンデンサにおいて、 前記内部電極がNiおよびNi合金のうちの1種類から
なり、前記誘電体磁器焼結体が請求項1の誘電体磁器組
成物粉末を用いて形成されたことを特徴とする、積層セ
ラミックコンデンサ。
2. A dielectric ceramic sintered body laminated with a plurality of internal electrodes interposed, and an external electrode provided so as to be electrically connected to the internal electrode in the dielectric ceramic sintered body. In the monolithic ceramic capacitor, the internal electrodes are made of one of Ni and a Ni alloy, and the dielectric ceramic sintered body is formed by using the dielectric ceramic composition powder according to claim 1. , Monolithic ceramic capacitors.
JP13139993A 1993-05-07 1993-05-07 Dielectric ceramic composition powder, multilayer ceramic capacitor using the same, and method for producing dielectric ceramic composition powder Expired - Lifetime JP3482654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13139993A JP3482654B2 (en) 1993-05-07 1993-05-07 Dielectric ceramic composition powder, multilayer ceramic capacitor using the same, and method for producing dielectric ceramic composition powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13139993A JP3482654B2 (en) 1993-05-07 1993-05-07 Dielectric ceramic composition powder, multilayer ceramic capacitor using the same, and method for producing dielectric ceramic composition powder

Publications (2)

Publication Number Publication Date
JPH06318404A true JPH06318404A (en) 1994-11-15
JP3482654B2 JP3482654B2 (en) 2003-12-22

Family

ID=15057070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13139993A Expired - Lifetime JP3482654B2 (en) 1993-05-07 1993-05-07 Dielectric ceramic composition powder, multilayer ceramic capacitor using the same, and method for producing dielectric ceramic composition powder

Country Status (1)

Country Link
JP (1) JP3482654B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004055557A (en) * 2002-07-17 2004-02-19 Ngk Spark Plug Co Ltd Copper paste, wiring board using the same and manufacturing method of wiring board
WO2004038743A1 (en) * 2002-10-28 2004-05-06 Matsushita Electric Industrial Co., Ltd. Process for producing laminated ceramic capacitor
JP2005162594A (en) * 2003-06-10 2005-06-23 Showa Denko Kk Perovskite type titanium-containing multiple oxide particle, method for manufacturing the same, and application
WO2005093763A1 (en) * 2004-03-29 2005-10-06 Nippon Chemical Industrial Co., Ltd. Inorganic dielectric powder for composite dielectric material and composite dielectric material
JP3709914B2 (en) * 1998-08-11 2005-10-26 株式会社村田製作所 Multilayer ceramic capacitor
JP2011213532A (en) * 2010-03-31 2011-10-27 Murata Mfg Co Ltd Dielectric ceramic and laminated ceramic capacitor
CN103373849A (en) * 2013-07-09 2013-10-30 贵州大学 Niobium oxide doped barium calcium zirconate titanate leadless piezoelectric ceramic powder material

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3709914B2 (en) * 1998-08-11 2005-10-26 株式会社村田製作所 Multilayer ceramic capacitor
JP2004055557A (en) * 2002-07-17 2004-02-19 Ngk Spark Plug Co Ltd Copper paste, wiring board using the same and manufacturing method of wiring board
WO2004038743A1 (en) * 2002-10-28 2004-05-06 Matsushita Electric Industrial Co., Ltd. Process for producing laminated ceramic capacitor
US6947276B2 (en) 2002-10-28 2005-09-20 Matsushita Electric Industrial Co., Ltd. Process for producing laminated ceramic capacitor
JPWO2004038743A1 (en) * 2002-10-28 2006-02-23 松下電器産業株式会社 Manufacturing method of multilayer ceramic capacitor
JP4622518B2 (en) * 2002-10-28 2011-02-02 株式会社村田製作所 Manufacturing method of multilayer ceramic capacitor
JP2005162594A (en) * 2003-06-10 2005-06-23 Showa Denko Kk Perovskite type titanium-containing multiple oxide particle, method for manufacturing the same, and application
WO2005093763A1 (en) * 2004-03-29 2005-10-06 Nippon Chemical Industrial Co., Ltd. Inorganic dielectric powder for composite dielectric material and composite dielectric material
JP4747091B2 (en) * 2004-03-29 2011-08-10 日本化学工業株式会社 Composite dielectric material
KR101136665B1 (en) * 2004-03-29 2012-04-18 니폰 가가쿠 고교 가부시키가이샤 Composite dielectric material
JP2011213532A (en) * 2010-03-31 2011-10-27 Murata Mfg Co Ltd Dielectric ceramic and laminated ceramic capacitor
CN103373849A (en) * 2013-07-09 2013-10-30 贵州大学 Niobium oxide doped barium calcium zirconate titanate leadless piezoelectric ceramic powder material

Also Published As

Publication number Publication date
JP3482654B2 (en) 2003-12-22

Similar Documents

Publication Publication Date Title
JP4110978B2 (en) Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
JP3503568B2 (en) Non-reducing dielectric ceramic and multilayer ceramic capacitor using the same
JP3180681B2 (en) Multilayer ceramic capacitors
JP2001351828A (en) Non-reducing dielectric ceramic and laminated ceramic capacitor using the same
JPH1083932A (en) Layered ceramic capacitor
JPH1074660A (en) Laminated ceramic capacitor
JPH09232180A (en) Laminated ceramic capacitor
EP0630032B1 (en) Non-reducible dielectric ceramic composition
JP7037945B2 (en) Ceramic capacitors and their manufacturing methods
JP3482654B2 (en) Dielectric ceramic composition powder, multilayer ceramic capacitor using the same, and method for producing dielectric ceramic composition powder
JP3796771B2 (en) Non-reducing dielectric ceramic composition and multilayer ceramic capacitor using the same
JP7262640B2 (en) ceramic capacitor
JP4729847B2 (en) Non-reducing dielectric ceramic and multilayer ceramic capacitors
JP3634930B2 (en) Dielectric porcelain composition
JP3470299B2 (en) Manufacturing method of multilayer ceramic capacitor
JP3316717B2 (en) Multilayer ceramic capacitors
JP3675076B2 (en) Multilayer ceramic capacitor
JP3557623B2 (en) Method for producing dielectric ceramic raw material powder
JP3438334B2 (en) Non-reducing dielectric porcelain composition
JPH0734326B2 (en) Non-reducing dielectric ceramic composition
JP3603842B2 (en) Non-reducing dielectric ceramic composition
JPH05334915A (en) Dielectric porcelain composition
JP2508373B2 (en) Dielectric ceramic composition and method for producing dielectric ceramic
JPH08191032A (en) Laminated ceramic capacitor
JPH10139539A (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081017

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 10

EXPY Cancellation because of completion of term