JPH0778262B2 - Purified nickel sulfate recovery method from copper electrolyte - Google Patents

Purified nickel sulfate recovery method from copper electrolyte

Info

Publication number
JPH0778262B2
JPH0778262B2 JP61127171A JP12717186A JPH0778262B2 JP H0778262 B2 JPH0778262 B2 JP H0778262B2 JP 61127171 A JP61127171 A JP 61127171A JP 12717186 A JP12717186 A JP 12717186A JP H0778262 B2 JPH0778262 B2 JP H0778262B2
Authority
JP
Japan
Prior art keywords
nickel
solvent
extraction
solution
filtrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61127171A
Other languages
Japanese (ja)
Other versions
JPS62284025A (en
Inventor
正治 石渡
悦治 木村
英紀 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP61127171A priority Critical patent/JPH0778262B2/en
Publication of JPS62284025A publication Critical patent/JPS62284025A/en
Publication of JPH0778262B2 publication Critical patent/JPH0778262B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Extraction Or Liquid Replacement (AREA)

Description

【発明の詳細な説明】 〔従来分野〕 本発明は銅電解液から純度の高い硫酸ニッケルを回収す
る方法に関する。
TECHNICAL FIELD The present invention relates to a method for recovering highly pure nickel sulfate from a copper electrolytic solution.

〔従来技術と問題点〕[Conventional technology and problems]

銅電解精製において、アノード中に含まれるニッケル、
ヒ素、アンチモン、ビスマス、鉄等の不純物が電解液中
に溶出し、カソードに析出する電解銅の純度を低下させ
るので、これら不純物の濃度が上がらないように電解液
の一部を系外に抜出して不純物の除去、回収を行なって
いる。
In copper electrorefining, nickel contained in the anode,
Impurities such as arsenic, antimony, bismuth, and iron elute in the electrolytic solution, reducing the purity of electrolytic copper deposited on the cathode.Therefore, remove a part of the electrolytic solution from the system to prevent the concentration of these impurities from increasing. To remove and collect impurities.

系外に抜出された銅電解液を処理する場合、従来は、先
ず銅分の一部を硫酸銅結晶とし或は脱銅電解法等により
回収した後に、更に脱銅電解を行なって殆どの銅分を除
去回収し、同時にヒ素、ビスマス、アンチモン等を除去
した後に脱銅電解液を蒸発濃縮し、冷却して硫酸ニッケ
ル結晶を回収しており、また母液を銅電解工程の遊離酸
補給用として電解液中に戻し、循環使用している。
In the case of treating the copper electrolytic solution extracted to the outside of the system, conventionally, most of the copper content is first converted to copper sulfate crystals or recovered by a decoppering electrolytic method or the like, and then decopperizing electrolysis is performed to obtain most of the copper electrolytic solution. The copper content is removed and recovered, and at the same time, arsenic, bismuth, antimony, etc. are removed, and then the decoppered electrolytic solution is concentrated by evaporation and cooled to recover nickel sulfate crystals. As a result, it is returned to the electrolytic solution and is recycled.

上記従来法は、ニッケル含有量が10〜15g/l程度の低濃
度の硫酸ニッケル液からニッケルを回収しており、蒸発
濃縮を行なうために多大のエネルギーを必要とする欠点
がある。
The above-mentioned conventional method recovers nickel from a nickel sulfate solution having a low nickel content of about 10 to 15 g / l, and has a drawback that a large amount of energy is required to perform evaporation and concentration.

更に、銅電解液中には電解精製工程で使用された有機添
加剤に起因する有機物、カルシウム、ナトリウム、マグ
ネシウム、アンモニア等が残存しており、従来の方法で
はこれら不純物が充分には除去されず回収した硫酸ニッ
ケル結晶中に混在する問題もある。
Furthermore, in the copper electrolytic solution, organic substances, calcium, sodium, magnesium, ammonia, etc. due to the organic additive used in the electrolytic refining step remain, and these impurities are not sufficiently removed by the conventional method. There is also a problem of being mixed in the recovered nickel sulfate crystals.

〔問題解決の手段〕[Means for solving problems]

本発明者は、銅電解液を予め処理して溶媒抽出法を適用
すれば硫酸ニッケルを効果的に回収しうることを見出し
た。本発明は該知見に基づき銅電解液から硫酸ニッケル
を低エネルギーで、かつ高純度で回収できるようにした
ものである。
The present inventor has found that nickel sulfate can be effectively recovered by pre-treating a copper electrolyte and applying a solvent extraction method. The present invention is based on the above findings and enables nickel sulfate to be recovered from a copper electrolytic solution with low energy and high purity.

〔発明の構成〕[Structure of Invention]

本発明によれば、以下の構成からなる銅電解液からの精
製硫酸ニッケル回収方法が提供される。
According to the present invention, there is provided a method for recovering purified nickel sulfate from a copper electrolytic solution having the following constitution.

(1)銅電解液を脱銅処理した後に遊離硫酸を除去する
1次中和工程と、1次中和工程の濾液からニッケル以外
の金属不純物を水酸化物として沈殿分離する2次中和工
程と、2次中和工程の濾液に抽出溶媒と共にアルカリを
塩化しpH2.5〜4に調整してニッケル以外の金属不純物
を溶媒に抽出しニッケル液から分離する不純物抽出工程
を経て精製ニッケル液を得る方法において、上記不純物
抽出工程の後に、さらにニッケル液に抽出溶媒を加える
と共にアルカリを添加しpHを5〜7に調整してニッケル
を溶媒に抽出するニッケル抽出工程を経た後に、溶媒中
のニッケルを硫酸により逆抽出してニッケル濃度を高め
る濃縮工程を経て精製ニッケルを得ることを特徴とする
銅電解液からの精製硫酸ニッケル回収方法。
(1) A primary neutralization step of removing free sulfuric acid after decopperizing a copper electrolyte solution and a secondary neutralization step of separating and separating metal impurities other than nickel as hydroxides from the filtrate of the primary neutralization step Then, the filtrate of the secondary neutralization step is chlorinated with an extraction solvent to adjust the pH to pH 2.5 to 4, and metallic impurities other than nickel are extracted into the solvent and separated from the nickel solution. In the method for obtaining, after the above-mentioned impurity extraction step, nickel in the solvent is further added after the nickel extraction step in which the extraction solvent is added to the nickel solution and the alkali is added to adjust the pH to 5 to 7 to extract nickel in the solvent. A method for recovering purified nickel sulfate from a copper electrolytic solution, characterized in that purified nickel is obtained through a concentration step of back-extracting with nickel to increase the nickel concentration.

(2)(イ)1次中和工程において、脱銅後液に炭酸カ
ルシウムまたは水酸化カルシウムを添加し遊離の硫酸を
石膏に変えると共にアンチモン、ビスマスを沈殿分離
し、(ロ)2次工程においいて、1次中和後の濾液に酸
化剤と共にアルカリを添加してpHを5〜6.5に調整し、
銅と亜鉛の一部および鉄、鉛、ヒ素を水酸化物として沈
殿させ、(ハ)不純物抽出工程において、2次中和後の
濾液に抽出溶媒と共にアルカリを添加し、pH2.5〜4の
範囲で濾液に残留する銅、亜鉛およびカルシウムを溶媒
に抽出することによりニッケル液から分離し、(ニ)ニ
ッケル抽出工程において、ニッケル液に溶媒と共にアル
カリを添加し、pH5〜7の範囲にニッケルを溶媒に抽出
することによりナトリウム、マグネシウムおよびアンモ
ニアから分離する上記(1)の精製硫酸ニッケル回収方
法。
(2) (a) In the primary neutralization step, after removal of copper, calcium carbonate or calcium hydroxide is added to convert free sulfuric acid to gypsum, and antimony and bismuth are precipitated and separated. Then, an alkali is added to the filtrate after the primary neutralization together with an oxidizing agent to adjust the pH to 5 to 6.5,
Part of copper and zinc and iron, lead, and arsenic are precipitated as hydroxides, and in the impurity extraction step, alkali is added to the filtrate after secondary neutralization together with the extraction solvent to adjust the pH to 2.5 to 4. The copper, zinc and calcium remaining in the filtrate in the range are separated from the nickel solution by extracting into the solvent, and (d) in the nickel extraction step, an alkali is added to the nickel solution together with the solvent to add nickel in the range of pH 5 to 7. The method for recovering purified nickel sulfate according to (1) above, wherein the method is separated from sodium, magnesium and ammonia by extraction with a solvent.

(3)2次中和工程の濾液に亜鉛末を添加して濾液中の
銅濃度を低下させた後に不純物抽出工程を行う上記
(1)の精製硫酸ニッケル回収方法。
(3) The method for recovering purified nickel sulfate according to (1), wherein zinc powder is added to the filtrate of the secondary neutralization step to reduce the copper concentration in the filtrate, and then the impurity extraction step is performed.

以下に本発明を図面に示すフローシートを参照して、詳
細に説明する。
The present invention will be described in detail below with reference to the flow sheet shown in the drawings.

銅電解液の脱銅処理は公知の方法で行なう。例えば、銅
屑等を添加して遊離硫酸を中和後、中和液を蒸発濃縮し
て冷却し硫酸銅結晶を回収する。あるいは、硫酸銅結晶
として回収する代りに脱銅電解法を適用して電解銅とし
て回収してもよい。これらの処理後液中にCuはまだ15〜
20g/l程度残存するので、更に脱銅電解処理してCuを3
〜7g/l程度まで除去回収する。この脱銅電解工程では、
As,Sb,Biの一部が溶液中に残留する。
The copper removal treatment of the copper electrolytic solution is performed by a known method. For example, after adding copper scraps and the like to neutralize free sulfuric acid, the neutralized solution is evaporated and concentrated and cooled to recover copper sulfate crystals. Alternatively, instead of recovering as copper sulfate crystals, a copper removal electrolytic method may be applied to recover as electrolytic copper. Cu is still 15 to
About 20g / l remains, so decopperization electrolytic treatment is performed to remove Cu 3
Remove and collect up to about 7g / l. In this copper removal electrolytic process,
Part of As, Sb, and Bi remains in the solution.

脱銅電解後液の遊離硫酸濃度は280g/l程度となり、これ
に炭酸カルシウム又は水酸化カルシウムを添加しpHを0
〜3、好ましくはpH2程度まで一次中和を行い、遊離硫
酸を石膏として沈澱除去する。このとき同時にSb,Biの
大部分が沈澱除去され、液中のNiと分離される。該一次
中和工程に引き続き、二次中和を行う。まず上記一次中
和後液に更にアルカリを添加しpH5〜6.5に維持しつつ過
酸化水素を添加すると二価鉄イオンが三価鉄イオンに酸
化され水酸化物として沈澱する。この時点で一次中和後
液中に残留しているCu,Znの一部が水酸化物として沈澱
し、As,Pb等は水酸化第二鉄とともに全量共沈し、液中
のNiと分離される。該二次中和工程における過酸化水素
の添加量は液量に対して0.2〜0.3%(35%濃度として)
程度で良い。又、過酸化水素の代りに空気を供給して、
二価鉄イオンを三価鉄イオンに酸化しても良い。添加す
るアルカリの種類は特に限定されないが生成沈澱の濾過
性を高めるために水酸化カルシウムあるいは炭酸カルシ
ウムと水酸化カルシウムを併用することが好ましい 二次中和後液中にはNi以外の不純物元素として、Cu,Zn,
Ca,Mg,NaおよびNH3が残留する。そこで残留するCu、Z
n、Caを溶媒抽出法にり濾液(ニッケル液)から抽出分
離して除去する。
The concentration of free sulfuric acid in the solution after decopperization was about 280 g / l, and calcium carbonate or calcium hydroxide was added to adjust the pH to 0.
Primary neutralization is carried out up to pH 3, preferably about pH 2, and free sulfuric acid is precipitated and removed as gypsum. At this time, most of Sb and Bi are simultaneously removed by precipitation and separated from Ni in the liquid. Secondary neutralization is performed subsequent to the primary neutralization step. First, when an alkali is further added to the solution after the primary neutralization and hydrogen peroxide is added while maintaining the pH at 5 to 6.5, divalent iron ions are oxidized to trivalent iron ions and precipitated as hydroxides. At this point, some of the Cu and Zn remaining in the solution after primary neutralization precipitated as hydroxides, and all of As, Pb, etc. co-precipitated with ferric hydroxide and separated from Ni in the solution. To be done. The amount of hydrogen peroxide added in the secondary neutralization step is 0.2 to 0.3% (as a 35% concentration) with respect to the liquid amount.
The degree is good. Also, by supplying air instead of hydrogen peroxide,
You may oxidize ferric iron ion to ferric iron ion. The type of alkali to be added is not particularly limited, but it is preferable to use calcium hydroxide or calcium carbonate in combination with calcium hydroxide in order to enhance the filterability of the formed precipitate. As an impurity element other than Ni in the liquid after secondary neutralization. , Cu, Zn,
Ca, Mg, Na and NH 3 remain. Cu and Z remaining there
n and Ca are extracted and separated from the filtrate (nickel solution) by the solvent extraction method and removed.

上記Cu,Zn,Caの残留濃度は銅電解液中の初濃度により異
なるが、およそCu20〜200mg/l、Zn200〜1500mg/lであ
る。Caは溶解度により支配されており600gm/l程度であ
る。
The residual concentrations of Cu, Zn, and Ca vary depending on the initial concentrations in the copper electrolytic solution, but are approximately 20 to 200 mg / l Cu and 200 to 1500 mg / l Zn. Ca is dominated by solubility and is about 600 gm / l.

該不純物抽出工程および該工程に引き続くニッケル抽出
工程で用いる抽出溶媒として次式で示される溶媒が好適
に用いられる。
A solvent represented by the following formula is preferably used as an extraction solvent used in the impurity extraction step and the nickel extraction step subsequent to the step.

式中、R1,R2,R3,R4は炭素数8から10のアルキル基、
およびR5,R6,R7は合計炭素数が9、10、11である第3
級飽和脂肪酸、R1とR2、R3とR4は同一または異なっても
よい。
In the formula, R 1 , R 2 , R 3 and R 4 are alkyl groups having 8 to 10 carbon atoms,
And R 5 , R 6 and R 7 are the third with total carbon number of 9, 10 and 11
The primary saturated fatty acids, R 1 and R 2 , and R 3 and R 4 may be the same or different.

具体的には上記溶媒として、ジ−2−エチルヘキシルリ
ン酸、ジ−2−インデシルリン酸、ジ−2−エチルヘキ
シルリン酸モノ−2−エチルヘキシルエステル、バーサ
チック10(シェル科学商品名)、バーサチック911(シ
ェル科学商品名)、Lix63(ヘンケル社商品名;5,8−ジ
エチル−7−ヒドロキシ−6−ドデカノンオキシム)、
Lix64(ヘンケル社商品名;2−ヒドロキシ−5−ドデシ
ルベンゾフェノンオキシム)、Lix64N(ヘンケル社商品
名;Lix64にLix63を1容量%程度添加したもの)などが
用いられる。
Specifically, as the solvent, di-2-ethylhexyl phosphoric acid, di-2-indecyl phosphoric acid, di-2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester, Versatic 10 (shell scientific trade name), Versatic 911 (shell Scientific trade name), Lix63 (Henkel trade name; 5,8-diethyl-7-hydroxy-6-dodecanone oxime),
Lix64 (Henkel's trade name; 2-hydroxy-5-dodecylbenzophenone oxime), Lix64N (Henkel's trade name; Lix64 with about 1% by volume added) and the like are used.

不純物抽出工程で使用する溶媒としては、上記Cu,Zn,Ca
を一種類の溶媒で除去する場合には量的に多く含有され
るCa,Znに選択性のあるリン酸系溶媒を使用することが
好ましい。また、リン酸系溶媒はCuに対する選択性が劣
るため、不純物抽出工程に先だち、二次中和工程後にZn
によるセメンテーションでCu濃度を5〜10mg/l程度まで
低下させた後、リン酸系溶媒により抽出すれば抽出段数
を少なくすることができるので好ましい。
As the solvent used in the impurity extraction step, the above Cu, Zn, Ca
When one is removed with one kind of solvent, it is preferable to use a phosphoric acid-based solvent which is contained in a large amount in quantity and has selectivity for Ca and Zn. In addition, since the phosphoric acid-based solvent has poor selectivity for Cu, Zn is extracted after the secondary neutralization step before the impurity extraction step.
It is preferable to reduce the Cu concentration to about 5 to 10 mg / l by cementation and then extract with a phosphoric acid-based solvent because the number of extraction steps can be reduced.

使用する溶媒を一種とせずCa,Znに対しては前述のリン
酸系溶媒を用い、Cuに対しては選択性の優れているバー
サチック酸、あるいはLix63,Lix64N等のオキシム系溶媒
を用いることも可能である。
Without using one kind of solvent to use Ca, using the above-mentioned phosphoric acid-based solvent for Zn, Versatic acid having excellent selectivity for Cu, or it is also possible to use an oxime-based solvent such as Lix63, Lix64N It is possible.

不純物抽出工程における溶媒濃度および抽出pHは使用す
る溶媒の種類および水相中のCu,Zn,Ca濃度により異なる
ため一義液に定まらないが、リン酸系溶媒の場合は溶媒
濃度10〜30%、抽出pH2.5〜4程度が好ましく、抽出pH
が4.5以上になるとNiの抽出量が多くなり好ましくな
い。pH制御に使用するアルカリとしてはアンモニア水、
アンモニアガス、水酸化ナトリウム等いずれでも良い。
Solvent concentration and extraction pH in the impurity extraction step is not defined as a single liquid because it depends on the type of solvent used and Cu, Zn, Ca concentration in the aqueous phase, but in the case of phosphoric acid-based solvents the solvent concentration is 10-30%, Extraction pH of about 2.5-4 is preferable, extraction pH
When it is 4.5 or more, the amount of Ni extracted becomes large, which is not preferable. Ammonia water is used as alkali for pH control.
Either ammonia gas or sodium hydroxide may be used.

上記不純物抽出工程の後に、更に、溶媒抽出法によりNi
を抽出分離する。Ni抽出工程で使用する溶媒としては、
リン酸系溶媒、バーサチック酸のいずれの溶媒でも良い
が、多量のNiを抽出するため、抽出容量の大きいバーサ
チック酸が好ましい。抽出pHはpH5〜7が好ましい。pH5
未満ではNiが抽出されずまたpH7.5を越えると、pH制御
に使用するアンモニアあるいは水酸化ナトリウム等のア
ルカリと溶媒とが塩を形成し、あるいは水相へのバーサ
チック酸の溶解度が急激に上昇するため、好ましくな
い。
After the above-mentioned impurity extraction step, Ni was further extracted by a solvent extraction method.
Is extracted and separated. As the solvent used in the Ni extraction step,
Either a phosphoric acid solvent or a versatic acid may be used, but since a large amount of Ni is extracted, versatic acid having a large extraction capacity is preferable. The extraction pH is preferably pH 5-7. pH5
When the pH is less than Ni and the pH exceeds 7.5, ammonia and alkali used for pH control such as sodium hydroxide and a solvent form a salt, or the solubility of versatic acid in the aqueous phase increases rapidly. Therefore, it is not preferable.

またpH5〜7程度での抽出においても、pH調整に使用し
たアルカリが微量溶媒中に混入するが、水又は0.5g/l程
度の硫酸と接触させることで完全に除去できる。該Ni抽
出によりNiが液中のNa,Mg,NH3と分離される。
Also in the extraction at about pH 5 to 7, the alkali used for pH adjustment is mixed in the trace amount solvent, but it can be completely removed by contacting with water or sulfuric acid at about 0.5 g / l. By the Ni extraction, Ni is separated from Na, Mg and NH 3 in the liquid.

Ni抽出工程に引き続きNi濃縮を行う。該Ni濃縮工程では
上記溶媒に抽出されたNiを硫酸により逆抽出しつつ濃縮
する。この工程での硫酸濃度、有機相と水相との比率
は、有機相中のNi濃度および濃縮度合により適宜定めら
れる。濃縮度合いは、結晶化工程でのエネルギー使用量
を少なくするにはNi濃度が高いほど良いが他方、該濃縮
工程中に硫酸ニッケル結晶を生成させないことが必要で
あり、これらの関係から逆抽出水相中のNi濃度は100g/l
程度が好ましい。尚、該Ni濃縮工程において、残留する
Na,Mg,NH3が更に除去される。
Following the Ni extraction step, Ni concentration is performed. In the Ni concentration step, the Ni extracted in the solvent is concentrated while being back-extracted with sulfuric acid. The sulfuric acid concentration and the ratio of the organic phase and the aqueous phase in this step are appropriately determined depending on the Ni concentration and the concentration degree in the organic phase. The degree of concentration is better as the Ni concentration is higher in order to reduce the amount of energy used in the crystallization step, but on the other hand, it is necessary not to generate nickel sulfate crystals during the concentration step. Ni concentration in the phase is 100 g / l
A degree is preferable. Incidentally, it remains in the Ni concentration step.
Na, Mg, NH 3 are further removed.

Ni濃度工程に続く硫酸Niの結晶化工程は公知の方法によ
り行なわれる。この場合、上記濃縮工程を経ているので
逆抽出水相中のNi濃度は100g/l程度と高濃度であり、従
来法の結晶化工程で必要なエネルギーの1/7〜1/10程度
のエネルギーで結晶化することができる。
The crystallization process of Ni sulfate following the Ni concentration process is performed by a known method. In this case, the concentration of Ni in the back-extracted aqueous phase is as high as about 100 g / l because it has undergone the above-mentioned concentration step, and the energy is about 1/7 to 1/10 of the energy required in the crystallization step of the conventional method. It can be crystallized with.

〔実施例〕〔Example〕

以下、本発明の実施例を示す。 Examples of the present invention will be shown below.

実施例1 表−1に示す脱銅電解後液10lに炭酸カルシウム2.7kgを
水4lでスラリー状にしたものを添加し、pH2.0まで中和
し固液分離した。生成した沈澱を濾別後、該沈澱を水1.
2lで洗浄し、濾液と洗浄液を合せて12.8lの液を得た。
その液組成を表−2に示した。
Example 1 To 10 liters of the solution after electrolytic decoppering shown in Table 1 was added 2.7 kg of calcium carbonate in a slurry form with 4 liters of water, and the mixture was neutralized to pH 2.0 and solid-liquid separated. The precipitate formed was filtered off and the precipitate was washed with water 1.
It was washed with 2 l, and the filtrate and the washing solution were combined to obtain 12.8 l of liquid.
The liquid composition is shown in Table 2.

表−2に示す一次中和後液6.3lに、水酸化カルシウム69
gを水100mlでスラリー状にしたものを加えつつ過酸化水
素水(35%濃度)130mlを加え、pH6.0まで中和し、生成
した沈殿を濾別して表−3に示す二次中和後液6.4lを得
た。
Calcium hydroxide 69 was added to 6.3 l of the solution after primary neutralization shown in Table-2.
After adding a slurry of g to 100 ml of water, 130 ml of hydrogen peroxide solution (35% concentration) was added to neutralize to pH 6.0, and the formed precipitate was filtered off and after secondary neutralization shown in Table-3. 6.4 l of liquid was obtained.

表−3に示す二次中和後液に1N苛性ソーダを添加して各
槽中のpHが3.3となるように調整し、2−エチルヘキシ
ルホスホン酸−モノ−2−エチルヘキシルエステルをケ
ロシンで稀釈し30容量%とした有機相を、有機相/水相
比が3/2となるように供給してカウンターカレントで3
段の抽出を行い、表−4に示す組成の抽出後液を得た。
After the secondary neutralization shown in Table-3, 1N caustic soda was added to the solution to adjust the pH in each tank to 3.3, and 2-ethylhexylphosphonic acid-mono-2-ethylhexyl ester was diluted with kerosene. The organic phase adjusted to volume% is supplied so that the organic phase / aqueous phase ratio becomes 3/2, and the counter current is set to 3
Stage extraction was performed to obtain a liquid after extraction having the composition shown in Table-4.

次に、表−4に示す抽出液に2N苛性ソーダを添加してpH
6.5に調整しつつ、バーサチック10(シェル科学商品
名)をケロシンで30容量%に希釈した有機相を、周期相
/水相比が3/2となるように供給し、カウンターカレン
トで2段の抽出を行い表−5に示す組成のNi抽出後液を
得た。
Next, add 2N caustic soda to the extract shown in Table-4 and adjust the pH.
While adjusting to 6.5, an organic phase obtained by diluting Versatic 10 (trade name of Shell Science) to 30% by volume with kerosene was supplied so that the ratio of the cyclic phase / water phase was 3/2, and the counter current of 2 stages was used. Extraction was performed to obtain a solution after Ni extraction having the composition shown in Table-5.

表−5に示す組成のNi抽出液を0.5g/lの硫酸溶液によ
り、有機相/水相比3/1で洗浄した。洗浄後のNi抽出液
組成を表−6に示す。
The Ni extract having the composition shown in Table 5 was washed with a 0.5 g / l sulfuric acid solution at an organic phase / aqueous phase ratio of 3/1. The composition of the Ni extract after washing is shown in Table-6.

表−6に示す組成のNi抽出洗浄後液を硫酸水溶液で、有
機相/水相比12/1でpH2.0で逆抽出して濃縮した。Ni濃
縮液組成を表−7に示す。表−7に示すNi濃縮液を蒸発
後冷却して硫酸ニッケル結晶を得た。該硫酸ニッケル結
晶の品位を表−8に示す。
The solution after the Ni extraction cleaning having the composition shown in Table 6 was back-extracted with a sulfuric acid aqueous solution at an organic phase / aqueous phase ratio of 12/1 at pH 2.0 and concentrated. Table 7 shows the composition of the Ni concentrate. The Ni concentrate shown in Table 7 was evaporated and then cooled to obtain nickel sulfate crystals. Table 8 shows the quality of the nickel sulfate crystals.

実施例2 実施例1の表−2に示す一次中和後液6.3lに水酸化カル
シウム68gを水100mlでスラリー状にしたものを加えつつ
過酸化水素(35%濃度)130mlを加えpH5.6まで中和し表
−9に示す二次中和後液6.4lを得た。
Example 2 While adding 6.3 g of the solution after primary neutralization shown in Table 2 of Example 1 to 68 g of calcium hydroxide in a slurry form with 100 ml of water, 130 ml of hydrogen peroxide (35% concentration) was added to pH 5.6. To 6.4 l after secondary neutralization as shown in Table-9.

表−9に示す二次中和後液に亜鉛末3gを添加しCuをセメ
ンテーションで一部除去した。その液組成を表−10に示
す。
3 g of zinc powder was added to the solution after secondary neutralization shown in Table 9 to partially remove Cu by cementation. The liquid composition is shown in Table-10.

表−10に示すCuセメンテーション後液に1N苛性ソーダを
添加して浴槽中のpHが3.7となるように調整しつつ、ジ
−2−エチルヘキシルリン酸をケロシンで希釈し30容量
%とした有機相とを、有機相/水相比が3/2となるよう
に供給してカウンターカレントで3段の抽出を行い、表
−11に示す組成の抽出後液を得た。
While adjusting the pH in the bath to 3.7 by adding 1N caustic soda to the solution after Cu cementation shown in Table-10, di-2-ethylhexyl phosphate was diluted with kerosene to an organic phase of 30% by volume. And were supplied so that the organic phase / aqueous phase ratio was 3/2, and three-stage extraction was performed with a counter current to obtain a post-extraction liquid having the composition shown in Table-11.

以後実施例1と同様の操作を用い表−12に示す品位の硫
酸ニッケル結晶を得た。
Thereafter, the same operation as in Example 1 was carried out to obtain nickel sulfate crystals of the quality shown in Table-12.

〔発明の効果〕 本発明の回収方法によれば、従来法のような脱銅電解液
の蒸発濃縮を行う必要がなく、低エネルギーで硫酸ニッ
ケルを効果的に回収しうる。
[Effect of the Invention] According to the recovery method of the present invention, it is not necessary to evaporate and concentrate the decoppering electrolytic solution as in the conventional method, and nickel sulfate can be effectively recovered with low energy.

更に本発明の回収方法は、一次中和工程からニッケル抽
出工程に至る各工程で脱銅電解液から各不純物が順次除
去されるので、極めて高純度の硫酸ニッケルが回収でき
る。
Furthermore, in the recovery method of the present invention, each impurity is sequentially removed from the decoppered electrolytic solution in each step from the primary neutralization step to the nickel extraction step, so that nickel sulfate of extremely high purity can be recovered.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の回収方法の概略を示すフローシートであ
る。
The figure is a flow sheet showing the outline of the recovery method of the present invention.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】銅電解液を脱銅処理した後に遊離硫酸を除
去する1次中和工程と、1次中和工程の瀘液からニッケ
ル以外の金属不純物を水酸化物として沈殿分離する2次
中和工程と、2次中和工程の瀘液に抽出溶媒と共にアル
カリを添加しpH2.5〜4に調整してニッケル以外の金属
不純物を溶媒に抽出しニッケル液から分離する不純物抽
出工程を経て精製ニッケル液を得る方法において、上記
不純物抽出工程の後に、さらにニッケル液に抽出溶媒を
加えると共にアルカリを添加しpHを5〜7に調整してニ
ッケルを溶媒に抽出するニッケル抽出工程を経た後に、
溶媒中のニッケルを硫酸により逆抽出してニッケル濃度
を高める濃縮工程を経て精製ニッケルを得ることを特徴
とする銅電解液からの精製硫酸ニッケル回収方法。
1. A primary neutralization step of removing free sulfuric acid after decopperizing a copper electrolyte solution and a secondary step of precipitation and separation of metal impurities other than nickel as hydroxides from the filtrate of the primary neutralization step. After the neutralization step and the second neutralization step, an alkali is added to the filtrate together with an extraction solvent to adjust the pH to 2.5 to 4, and metallic impurities other than nickel are extracted into the solvent and separated from the nickel solution. In the method for obtaining a purified nickel solution, after the above-mentioned impurity extraction step, after the nickel extraction step of further adding an extraction solvent to the nickel solution and adding an alkali to adjust the pH to 5 to 7 and extracting nickel into the solvent,
A method for recovering purified nickel sulfate from a copper electrolyte, characterized in that purified nickel is obtained through a concentration step of back-extracting nickel in a solvent with sulfuric acid to increase the nickel concentration.
【請求項2】(イ)1次中和工程において、脱銅後液に
炭酸カルシウムまたは水酸化カルシウムを添加して遊離
の硫酸を石膏に変えると共にアンチモン、ビスマスを沈
殿分離し、(ロ)2次工程において、1次中和後の瀘液
に酸化剤と共にアルカリを添加してpHを5〜6.5に調整
し、銅と亜鉛の一部および鉄、鉛、ヒ素を水酸化物とし
て沈殿させ、(ハ)不純物抽出工程において、2次中和
後の瀘液に抽出溶媒と共にアルカリを添加し、pH2.5〜
4の範囲で瀘液に残留する銅、亜鉛およびカルシウムを
溶媒に抽出することによりニッケル液から分離し、
(ニ)ニッケル抽出工程において、ニッケル液に溶媒と
共にアルカリを添加し、pH5〜7の範囲でニッケルを溶
媒に抽出することによりナトリウム、マグネシウムおよ
びアンモニアから分離する特許請求の範囲第1項の方
法。
2. In the first neutralization step, calcium carbonate or calcium hydroxide is added to the solution after decoppering to convert free sulfuric acid into gypsum, and antimony and bismuth are precipitated and separated, and (b) 2 In the next step, the pH is adjusted to 5 to 6.5 by adding an alkali with an oxidizing agent to the filtrate after the primary neutralization, and a part of copper and zinc and iron, lead and arsenic are precipitated as hydroxides, (C) In the impurity extraction step, alkali is added to the filtrate after the secondary neutralization together with the extraction solvent to adjust the pH to 2.5
Copper, zinc and calcium remaining in the filtrate in the range of 4 are separated from the nickel liquid by extracting into a solvent,
(D) The method according to claim 1, wherein in the nickel extraction step, alkali is added to the nickel solution together with the solvent, and nickel is extracted from the solvent in the range of pH 5 to 7 to separate from sodium, magnesium and ammonia.
【請求項3】2次中和工程の瀘液に亜鉛末を添加して瀘
液中の銅濃度を低下させた後に不純物抽出工程を行う特
許請求の範囲第1項の方法。
3. The method according to claim 1, wherein zinc dust is added to the filtrate in the secondary neutralization step to reduce the copper concentration in the filtrate, and then the impurity extraction step is performed.
JP61127171A 1986-06-03 1986-06-03 Purified nickel sulfate recovery method from copper electrolyte Expired - Lifetime JPH0778262B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61127171A JPH0778262B2 (en) 1986-06-03 1986-06-03 Purified nickel sulfate recovery method from copper electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61127171A JPH0778262B2 (en) 1986-06-03 1986-06-03 Purified nickel sulfate recovery method from copper electrolyte

Publications (2)

Publication Number Publication Date
JPS62284025A JPS62284025A (en) 1987-12-09
JPH0778262B2 true JPH0778262B2 (en) 1995-08-23

Family

ID=14953419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61127171A Expired - Lifetime JPH0778262B2 (en) 1986-06-03 1986-06-03 Purified nickel sulfate recovery method from copper electrolyte

Country Status (1)

Country Link
JP (1) JPH0778262B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101411379B1 (en) * 2013-02-08 2014-06-25 최윤진 Method for recovering copper component and gypsum from acidic aqueous solution containing copper and sulphate ions using reducing agent

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5176493B2 (en) * 2007-11-08 2013-04-03 住友金属鉱山株式会社 Method and apparatus for nickel removal from copper removal electrolyte
CN103526230B (en) * 2013-10-08 2015-12-09 铜陵有色金属集团股份有限公司金昌冶炼厂 A kind of method of cleaning copper electrolyte processing efficient production high-quality cathode copper
KR102536541B1 (en) * 2022-12-09 2023-05-26 희성피엠텍 주식회사 Recovery method of nickel, positive material and secondary battery comprising the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4005173A (en) * 1975-03-03 1977-01-25 Kennecott Copper Corporation Steam stripping of ammoniacal solutions and simultaneous loading of metal values by organic acids
JPS59226187A (en) * 1983-05-21 1984-12-19 Mitsubishi Metal Corp Method and device for cleaning of copper electrolyte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101411379B1 (en) * 2013-02-08 2014-06-25 최윤진 Method for recovering copper component and gypsum from acidic aqueous solution containing copper and sulphate ions using reducing agent

Also Published As

Publication number Publication date
JPS62284025A (en) 1987-12-09

Similar Documents

Publication Publication Date Title
EP0297998B1 (en) Process for extracting and purifying gallium from bayer liquors
US3907966A (en) Nickel extraction and stripping using oximes and ammoniacal carbonate solutions
US20230332269A1 (en) Method for recycling nickel, cobalt and manganese from feed liquid containing nickel, cobalt and manganese
CN112981104A (en) Method for treating cadmium-containing waste residues and recovering metal cadmium
CN114457245B (en) Method for preparing nickel sulfate and cobalt sulfate from cobalt nickel hydroxide
US3989607A (en) Solvent extraction and electrowinning of zinc and copper from sulfate solution
CN105274352B (en) A kind of method that copper cobalt manganese is separated in the manganese cobalt calcium zinc mixture from copper carbonate
JP2024501853A (en) Recovery of mixed metal ions from aqueous solutions
AU756317B2 (en) Separation and concentration method
WO2022048308A1 (en) Method for separating copper and manganese from mixed solution containing copper, manganese, calcium and zinc
JP3369855B2 (en) Method for producing high purity nickel aqueous solution
JPH0778262B2 (en) Purified nickel sulfate recovery method from copper electrolyte
US4314976A (en) Purification of nickel sulfate
US20240213562A1 (en) Extraction of metals from lithium-ion battery material
US3573182A (en) Process for separating zinc and copper
CN115109943A (en) Method for extracting and recovering copper, zinc, cobalt and manganese metals from copper chloride manganese zinc cobalt solution step by step
JPH0770656A (en) Prevention of formation of double salt based on jarosite, ammonium and alkali
JP3810963B2 (en) Method for separating and concentrating Ga
KR930007139B1 (en) Process for the recovery of gallium from basic solution
JP7156491B1 (en) Method for producing cobalt sulfate
US20240228311A1 (en) Method for producing secondary battery material from black mass
RU2630988C1 (en) Method for processing sulfuric acid solution containing impurity elements
JPS6114133A (en) Method for recovering gellium from dust produced by electrolyzing aluminum
KR20240024618A (en) Method of preparing nickel sulfate
CN117305618A (en) Method for recovering valuable metals from copper smelting smoke dust