JPS6114133A - Method for recovering gellium from dust produced by electrolyzing aluminum - Google Patents

Method for recovering gellium from dust produced by electrolyzing aluminum

Info

Publication number
JPS6114133A
JPS6114133A JP13621784A JP13621784A JPS6114133A JP S6114133 A JPS6114133 A JP S6114133A JP 13621784 A JP13621784 A JP 13621784A JP 13621784 A JP13621784 A JP 13621784A JP S6114133 A JPS6114133 A JP S6114133A
Authority
JP
Japan
Prior art keywords
ions
extracted
hydrochloric acid
extractant
extract
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13621784A
Other languages
Japanese (ja)
Inventor
Shingo Matsui
松井 真悟
Akio Era
恵羅 彰男
Hidetsugu Ikeda
池田 秀継
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Aluminum Co Ltd
Original Assignee
Mitsui Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Aluminum Co Ltd filed Critical Mitsui Aluminum Co Ltd
Priority to JP13621784A priority Critical patent/JPS6114133A/en
Publication of JPS6114133A publication Critical patent/JPS6114133A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To recover Ga from dust produced by electrolyzing Al in a high yield by adding a specified oxidizing agent to the dust, carrying out oxidation leaching, and extracting Ga from the resulting leaching soln. CONSTITUTION:An oxidizing agent such as KMnO4, MnO2, H2O2, O3 or KCrO4 is added to dust produced in an Al electrolyzing furnace, and oxidation leaching with a mineral acid is carried out. An org, solvent A such as phenol contg. a cation exchange type extracting reagent such as di-2-ethylhexylphosphoric acid (DEHPA) is added to the resulting leaching soln. to extracted preferentially Ga ions, and this extraction soln. is washed with hydrochloric acid alpha to separate ions of Fe, Al, V, etc. The Ga ions are back-extracted by adding hydrochloric acid beta having a lower condn. than the hydrochloric acid alpha to the extraction soln., and an org. solvent B such as kerosene contg. a neutral or basic extracting reagent such as isopropyl ether as an ion pair extraction type extracting reagent is added to extracted preferentially the Ga ions. The Ga ions are further back- extracted by adding a dil. aqueous mineral acid soln. to the extraction soln.

Description

【発明の詳細な説明】 本発明はアルミニウム電解発生ダストからガリウムを回
収する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering gallium from electrolytically generated aluminum dust.

ガリウムは近年ガリウムーヒ素(GaAs)あるいはガ
リウム−リン(GaP)等の半導体材料として注目され
ている。
Gallium has recently attracted attention as a semiconductor material such as gallium-arsenide (GaAs) or gallium-phosphide (GaP).

ガリウムは地球上に広く存在する元素ではあるが、高品
位の鉱物としては産出しない為に従来はボーキサイトか
らアルミナを製造する際のバイヤー液や匪鉛精錬浸出残
渣等から回収されていた。
Gallium is an element that exists widely on earth, but because it is not produced as a high-grade mineral, it has traditionally been recovered from Bayer liquid when producing alumina from bauxite or from the leaching residue of lead smelting.

しかし、これらの方法ではガリウム回収用原料中に於る
ガリウム4含有率が非常に低い為に、回収するのに禎雑
な工程と高価な処理費用を必要としていた。
However, in these methods, the content of gallium 4 in the raw material for gallium recovery is very low, so that recovery requires complicated steps and expensive processing costs.

例えばバイヤー液からの回収法としくはライム法、炭酸
法、電解法があり、そのうち電解法が工業的に最も優れ
ている。この電#@とはバイヤー液を水銀陰極及びニッ
ケル陽極を使用して一次電解を行い、得られる粗ガリウ
ムをカセイソーダで処理し、その溶液を更に二次電解す
るものであるが、水銀を使用するので公害上の問題点が
ある。
For example, methods for recovering from Bayer's liquid include the lime method, the carbonation method, and the electrolytic method, of which the electrolytic method is industrially the most superior. This electrolyte #@ performs primary electrolysis of Bayer's solution using a mercury cathode and a nickel anode, treats the resulting crude gallium with caustic soda, and then subjects the solution to secondary electrolysis, but mercury is used. Therefore, there are problems regarding pollution.

ところで上記した様にバイヤー液中にばガリウムが含有
されており、このガリウムはバイヤー法工程に於てアル
ミニウムと同様の挙動を示し、はぼ全量がアルミナ中へ
移動する。そしてアルミナ中のガリウム濃度は原鉱ボー
キサイトのWwIによって異なるが数1(lp、ρ、牝
から100p、 l)、 #、I!度であり、とればア
ルミナの電解時にアルミニウムメタル中に混入するが一
部は電解時に発生するダスト中に移動する。このダスト
は電気集塵器をはじめとする各sin塵装flこより捕
#Iきれるが、該ダスト中のガリウム濃度ばO,OSS
重量%ら0.3重量%にも達しており、前記アルミナ中
の濃度に比して数10倍にも濃縮されているものである
。そめアルミニウム電解発生ダストの一般的な組成は、
Ga O、O3、KCrO8〜o、3o重量X SFe
 O,5〜2.0重量% 、 Af 10〜2020重
量% Na 10〜20重量:A1F15〜30重量X
、C10〜3010〜30重量%にSi、 Ni、Ti
、 Ca、 Cu。
By the way, as mentioned above, the Bayer liquid contains gallium, and this gallium exhibits the same behavior as aluminum in the Bayer process, and almost all of it moves into the alumina. And the gallium concentration in alumina varies depending on the WWI of the raw bauxite ore, but it is the number 1 (lp, ρ, 100p, l), #, I! If removed, it will be mixed into the aluminum metal during the electrolysis of alumina, but some of it will migrate into the dust generated during the electrolysis. This dust can be collected by various sinus dust devices including electrostatic precipitators, but if the gallium concentration in the dust is O, OSS.
It reaches 0.3% by weight, which is several tens of times more concentrated than the concentration in the alumina. The general composition of some aluminum electrolytically generated dust is:
Ga O, O3, KCrO8~o, 3o weight x SFe
O, 5-2.0% by weight, Af 10-2020% by weight, Na 10-20% by weight: A1F15-30% by weight
, C10-30 10-30% by weight of Si, Ni, Ti
, Ca, Cu.

Nf、Co等が各々1重量%以下含有されており、残部
は水である。
Each of Nf, Co, etc. is contained in an amount of 1% by weight or less, and the remainder is water.

このアルミニウム電解発生ダ”ストからガリウムを回収
する方法としては、英国特許第1527981号がある
。この方法は最高062重量2までのガリウムを含むダ
ストに過剰のアルカリ融剤を添加した後、500〜SO
O℃で焙焼浸水で浸出し、溶解したガリウムにアルミニ
ウム、マグネシウム等の金属粉を添加して固定し、金属
ガリウムを製造する方        〜・法であるが
、この方法は高価なアルカリ融剤をダスト量の数倍も添
加して焙焼しなければならないのでその分コスト高とな
り実用的では無い。
A method for recovering gallium from this aluminum electrolytically generated dust is disclosed in British Patent No. 1,527,981. This method involves adding an excess of alkaline flux to a dust containing up to 0.62% gallium, and then S.O.
This method produces metallic gallium by adding metal powder such as aluminum or magnesium to dissolved gallium that is leached by roasting and immersion at 0°C and fixing it. However, this method does not require the use of an expensive alkaline flux. Since it is necessary to add several times the amount of dust and roast it, the cost increases accordingly and is not practical.

本発明は上述の諸問題を解消し、高い収率でガリウムを
回収する方法を提供せんとするものであり、本発明の基
本的な技術的思想は、アルミニウム電解発生ダストの浸
出の際に酸化剤を添加することにより、浸出の前にダス
トの焙焼等の高温操作をすることなく、ガリウム浸出率
の大幅かつ選択的な向上が得られる事、又、その後の溶
媒抽出工程でダストの浸出液に高濃度で含まれているア
ルミニウムイオンや鉄イオン、低い濃度であっても、後
の(水溶液電解等の)工程に対して有害なバナジウムイ
オンから、沈殿物等を生成する乙となく、連続的に、そ
して有効かつ容易に低濃度のGaを分離精製し、高い収
率で回収濃縮できる所にあり、更に詳しくは、アルミニ
ウム電解炉にて発生するダストを鉱酸処理するに際し、
にMn0g 、MnOユ、H2O1、O3、KCrO,
slにCragその他の酸化剤を添加して酸化浸出処理
をし、その浸出液からカチオン交換型抽出剤を含有する
有機溶媒AでGaイオンを優先的に抽出し、該逆抽出液
を塩酸水溶液aで洗浄しFa、^L及びV等各イオンを
分離した後の抽出液を上記αよりは低濃度の塩酸水溶液
βでGaイオンを逆抽出し、該逆抽出液からイオン対抽
出型抽出剤である中性抽出剤あるいは塩基性抽出剤を含
む有機溶媒BによりG8イオンを優先的に抽出し、その
Gaイオンが濃縮された抽出液から希鉱酸水溶液でGa
イオンを逆抽出することを特徴とするアルミニウム電解
発生ダストからガリウムを回収する方法であり、場合に
よ1ては塩酸水溶w!Raと、塩酸水溶液βとの用いる
順序を入れ替えることもある。
The present invention aims to solve the above-mentioned problems and provide a method for recovering gallium with high yield. By adding the agent, it is possible to significantly and selectively improve the gallium leaching rate without performing high-temperature operations such as roasting the dust before leaching. aluminum ions and iron ions contained in high concentrations, and even at low concentrations, vanadium ions that are harmful to subsequent processes (such as aqueous electrolysis). It is a place where Ga can be effectively and easily separated and purified at a low concentration and recovered and concentrated with high yield.More specifically, when dust generated in an aluminum electrolytic furnace is treated with mineral acid,
Mn0g, MnO, H2O1, O3, KCrO,
Crag and other oxidizing agents are added to sl to perform oxidative leaching treatment, Ga ions are preferentially extracted from the leachate with organic solvent A containing a cation exchange extractant, and the back extract is extracted with aqueous hydrochloric acid solution A. After washing and separating each ion such as Fa, ^L, and V, Ga ions are back-extracted from the extract with a hydrochloric acid aqueous solution β having a lower concentration than the above α, and from the back-extract, Ga ions are extracted using an ion pair extraction type extractant. G8 ions are preferentially extracted with an organic solvent B containing a neutral extractant or a basic extractant, and the Ga ion-concentrated extract is extracted with a dilute mineral acid aqueous solution.
This is a method for recovering gallium from aluminum electrolytically generated dust, which is characterized by back extraction of ions, and in some cases, a hydrochloric acid aqueous solution lol! The order in which Ra and the aqueous hydrochloric acid solution β are used may be changed.

ここで上記方法で採用するアルカリ融剤はNa。Here, the alkaline flux employed in the above method is Na.

CO2、NaOH,に−COa 、にOH等である。These include CO2, NaOH, -COa, and OH.

次に有機溶媒A、Bについて述べる。Next, organic solvents A and B will be described.

前記有機溶媒Aは、抽出剤と希釈剤からなるものであり
、該抽出剤としては以下に示すカチオン交換型抽出剤が
好ましく用いられる。
The organic solvent A is composed of an extractant and a diluent, and the following cation exchange type extractant is preferably used as the extractant.

(イ)酸性有機リン化合物、特に炭素数8〜20個の酸
性リン酸エステル、例えば2−エチルへキシル・リン酸
モノ−2−エチルヘキシルエステルまたはジー2−エチ
ルへキシルリン酸(DEHP^)。
(a) Acidic organic phosphorus compounds, especially acidic phosphoric esters having 8 to 20 carbon atoms, such as 2-ethylhexyl phosphate mono-2-ethylhexyl ester or di-2-ethylhexyl phosphoric acid (DEHP^).

(ロ)カルボン酸、特に炭素数6〜20個のもの、例え
ば式 で示されるナフテン酸または式 で示されるカルボン酸。
(b) Carboxylic acids, especially those having 6 to 20 carbon atoms, such as naphthenic acid represented by the formula or carboxylic acid represented by the formula.

(ハ)スルフォン酸、特にアルキルベンゼンスルフォン
酸またはジアルキルナフタレンスルフォン組 また有機溶媒Aのための希釈剤としては前記抽出剤を溶
解し、かつ水に不溶及至難溶のものであればその種類を
問わないが、例えばパラフィン糸引り芳香族系溶媒、ナ
フテン系溶媒、ハロゲン化炭化水素系溶媒、高級アルコ
ール、フェノール、ケトンなどが挙げられる、。
(c) As a diluent for sulfonic acid, especially alkylbenzenesulfonic acid or dialkylnaphthalene sulfone group, or organic solvent A, any diluent may be used as long as it dissolves the extractant and is insoluble or very sparingly soluble in water. Examples include paraffin-threaded aromatic solvents, naphthenic solvents, halogenated hydrocarbon solvents, higher alcohols, phenols, ketones, and the like.

また有機溶媒Bも抽出剤と希釈剤とからなるものであり
、該抽出剤としてはイオン対抽出型の中性抽出剤、例え
ばイソプロピルエーテル、トリブチルフオスブエー) 
(TBP) 、メチルイソブチルケトン(阿IBK)、
トリオクチルフォスフインオキサイド(TOPO)ある
いは塩基性抽出剤、例えば第1級、第2級および第3級
アミン、そして第4級アンモニウム塩などが用いられる
The organic solvent B also consists of an extractant and a diluent, and the extractant is a neutral extractant of ion pair extraction type, such as isopropyl ether, tributyl phosphatide, etc.
(TBP), methyl isobutyl ketone (AIBK),
Trioctylphosphine oxide (TOPO) or basic extractants such as primary, secondary and tertiary amines, and quaternary ammonium salts are used.

有機溶媒Bのための希釈としては、前記した有機溶媒A
のための希釈剤が適宜選択使用される。
As the dilution for organic solvent B, the organic solvent A described above is used.
An appropriate diluent is selected and used.

以下本発明の操作手順を示す流れ図にそって説明し、実
施例並びに比較例を挙げ乍ら詳述する。
The operating procedure of the present invention will be explained below along with a flowchart, and will be described in detail with reference to Examples and Comparative Examples.

〈実施例1〉 ガリウム含有率0.13重1X(^L22.2重量X、
F置型、8重量% SFe 0.72重量りのフルt=
+7ム電解槽に取り付けた電気集裏響に捕集されたダス
ト”°゛2′′′−′″0°00a7zlC1″12′
′′−′″0°00a7zlC1″1パ2°G(純度9
8x)を加え95℃で2時間浸出を行った。
<Example 1> Gallium content 0.13 weight 1X (^L22.2 weight
F-type, 8wt% SFe 0.72wt full t=
Dust collected by the electric collector installed in the +7-mu electrolytic cell
''-'''0°00a7zlC1''1pa2°G (purity 9
8x) was added and leaching was carried out at 95°C for 2 hours.

浸出液を濾過後、該ろ液の分析を行ったところ、元ダス
ト中に含まれていたガリウムの78スが液中に溶解して
いた。この時の浸出液組成を下記第1表に示す。
After filtering the leachate, analysis of the filtrate revealed that 78 s of gallium originally contained in the dust had been dissolved in the liquid. The composition of the leachate at this time is shown in Table 1 below.

第1表 (単位gll ) (比較例1) 上記実施例1と同じダストを用い、KMnO4を添加し
ないで他の条件は全く同じとした場合には、Ga浸出率
は54にであった。この時の浸出液組成を下記第2表に
示す。
Table 1 (Unit: gll) (Comparative Example 1) When the same dust as in Example 1 was used, KMnO4 was not added, and all other conditions were the same, the Ga leaching rate was 54. The composition of the leachate at this time is shown in Table 2 below.

第2表 (単位Q/1) LpHGa  Aj!  Fs  V  F次にダスト
の酸化浸出液を抽出操作の流れ図によって説明する。
Table 2 (Unit Q/1) LpHGa Aj! Fs V F Next, the oxidized leachate of dust will be explained using a flowchart of the extraction operation.

30vojスジ−2−エチルへキシルリン酸(DEHP
^)のケロシン溶液である有機溶媒Aと、ダスト硫酸浸
出液を操作1で0/^=171で反応させた。
30voj di-2-ethylhexyl phosphate (DEHP
The organic solvent A, which is the kerosene solution in step ^), and the dust sulfuric acid leachate were reacted in operation 1 at a ratio of 0/^ = 171.

操作2で、7v+oll/l の塩酸水溶液の洗浄液と
0/^=271で反応させてFe、^1及び、Vを有機
溶媒により洗浄除去し操作3で2IIot/i 塩酸水
溶液の逆抽出液を用い、0/^=10/1でGaを逆抽
出した。
In step 2, react with a washing solution of 7v+oll/l aqueous hydrochloric acid solution at 0/^=271 to remove Fe, ^1, and V by washing with an organic solvent, and in step 3, use a back-extracted solution of 2IIot/i aqueous hydrochloric acid solution. , 0/^=10/1 to back-extract Ga.

操作4で濃塩酸を加えて4鎖Oa/ノの塩酸水溶液とし
た。操作5で、20voJLX )リプチルフォスフニ
ー ) (TOP)のケロシン溶液である有機溶媒Bと
0/^=1/4で反応させ、操作6で、0.1mo7/
JL塩酸水溶液で有機溶媒Bから0/^=3/1でGa
を逆抽出をした。
In step 4, concentrated hydrochloric acid was added to obtain a 4-chain Oa/no hydrochloric acid aqueous solution. In Operation 5, 20voJLX ) Liptylphosphiny ) (TOP) is reacted with organic solvent B, which is a kerosene solution, at a ratio of 0/^ = 1/4, and in Operation 6, 0.1mo7/
Ga from organic solvent B with JL hydrochloric acid aqueous solution at 0/^=3/1
I did a back extraction.

その結果を第3表に示す。The results are shown in Table 3.

第3表 (単位glI!> *Gaの総合収率は74にであった。Table 3 (Unit glI!> *The overall yield of Ga was 74%.

〈実施例2〉 ガリウム含有率0,20重量7g (A719.8重j
lX 5F23.9重量% 、 Fe 1.1重量2)
のアルミニウム電解槽に取り付けた電気集塵器に捕集さ
れたダスト1509をスラリー濃度300s々に*aし
、その後Ha S 0z1909とMn02159(純
度90x)を加え、95℃で2時間浸出を行った。
<Example 2> Gallium content 0.20 weight 7g (A719.8 weight
lX 5F 23.9% by weight, Fe 1.1% by weight 2)
The dust 1509 collected in an electrostatic precipitator attached to an aluminum electrolytic tank was reduced to a slurry concentration of 300 seconds, and then HaS 0z1909 and Mn02159 (purity 90x) were added and leached at 95°C for 2 hours. .

浸出液を濾過後、ろ液の分析を行ったところ、元ダスト
中に含まれていたガリウムの78Xが液中に溶解してい
た。この時の浸出液組成を下記第4表に示す。
After filtering the leachate, the filtrate was analyzed, and it was found that 78X of gallium, which was originally contained in the dust, had been dissolved in the liquid. The composition of the leachate at this time is shown in Table 4 below.

第4表 (単位a/I!> (比較例2〉 上記実施例2と同じダストを用い、MnO,を添加しな
いで他の条件は同じとした場合には、Ga浸出率は41
Xであった。この時の浸出液組成を下記第5表に示す。
Table 4 (Unit a/I!> (Comparative Example 2) When using the same dust as in Example 2 above, without adding MnO, and keeping other conditions the same, the Ga leaching rate was 41
It was X. The composition of the leachate at this time is shown in Table 5 below.

第5表 (単位91り 次に実施例1と同様の方法で行つtコ結果を第6表に示
す。
Table 5 (Unit: 91) Table 6 shows the results obtained using the same method as in Example 1.

第6表 (単位g/l〜) *その結果Gaの総合収率は57にであった。Table 6 (Unit: g/l~) *As a result, the overall yield of Ga was 57.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明の操作手順を示す流れ図である。 The figure is a flowchart showing the operating procedure of the present invention.

Claims (1)

【特許請求の範囲】 1、アルミニウム電解炉にて発生するダストを鉱酸処理
するに際し、KMnO_4、MnO_2、H_2O_2
、O_3、KCrO_4その他の酸化剤を添加して酸化
浸出処理をし、その浸出液からカチオン交換型抽出剤を
含有する有機溶媒AでGaイオンを優先的に抽出し、該
抽出液を塩酸水溶液aで洗浄しFe、Al及びV等各イ
オンを分離した後の抽出液を上記αよりは低濃度の塩酸
水溶液βでGaイオンを逆抽出し、該逆抽出液からイオ
ン対抽出型抽出剤である中性抽出剤あるいは塩基性抽出
剤を含む有機溶媒BによりGaイオンを優先的に抽出し
、そのGaイオンが濃縮された抽出液から希鉱酸水溶液
でGaイオンを逆抽出することを特徴とするアルミニウ
ム電解発生ダストからのガリウムを回収する方法。 2、アルミニウム電解炉にて発生するダストを鉱酸処理
するに際し、KM_nO_4、MnO_2、H_2O_
2、O_3、KCrO_4その他の酸化剤を添加して酸
化浸出処理をし、その浸出液からカチオン交換型抽出剤
を含有する有機溶媒AでGaイオンを優先的に抽出し、
該抽出液から塩酸水溶液βによりGaイオンを優先的に
逆抽出した後の同抽出液を上記βよりも高濃度の塩酸水
溶液aで洗浄しFe、Al及び、V等の各イオンを分離
した後Gaを含む逆抽出液βよりイオン対抽出型抽出剤
である中性抽出剤あるいは塩基性抽出剤を含む有機溶媒
BによりGaイオンを優先的に抽出し、そのGaイオン
が濃縮された抽出液から希鉱酸水溶液でGaイオンを逆
抽出することを特徴とするアルミニウム電解発生ダスト
からのガリウムを回収する方法。
[Claims] 1. When treating dust generated in an aluminum electrolytic furnace with mineral acid, KMnO_4, MnO_2, H_2O_2
, O_3, KCrO_4 and other oxidizing agents are added to carry out oxidative leaching treatment, Ga ions are preferentially extracted from the leachate with organic solvent A containing a cation exchange type extractant, and the extract is extracted with aqueous hydrochloric acid solution A. After washing and separating each ion such as Fe, Al, and V, Ga ions are back-extracted from the extract with a hydrochloric acid aqueous solution β having a lower concentration than α above, and from the back-extract, Ga ions are extracted using an ion-pair extraction type extractant. Aluminum characterized by preferentially extracting Ga ions with an organic solvent B containing a basic extractant or a basic extractant, and then back-extracting the Ga ions from the concentrated extract with a dilute mineral acid aqueous solution. A method for recovering gallium from electrolytically generated dust. 2. When treating dust generated in an aluminum electrolytic furnace with mineral acid, KM_nO_4, MnO_2, H_2O_
2. Oxidative leaching treatment is performed by adding O_3, KCrO_4 and other oxidizing agents, and Ga ions are preferentially extracted from the leachate with organic solvent A containing a cation exchange type extractant.
After preferentially back-extracting Ga ions from the extract using an aqueous hydrochloric acid solution β, the same extract was washed with an aqueous hydrochloric acid solution a having a higher concentration than the above β to separate Fe, Al, V, and other ions. Ga ions are preferentially extracted from the back extraction solution β containing Ga using an organic solvent B containing a neutral extractant or a basic extractant, which is an ion pair extraction type extractant, and the Ga ions are extracted from the concentrated extract. A method for recovering gallium from aluminum electrolytically generated dust, which comprises back-extracting Ga ions with a dilute mineral acid aqueous solution.
JP13621784A 1984-06-29 1984-06-29 Method for recovering gellium from dust produced by electrolyzing aluminum Pending JPS6114133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13621784A JPS6114133A (en) 1984-06-29 1984-06-29 Method for recovering gellium from dust produced by electrolyzing aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13621784A JPS6114133A (en) 1984-06-29 1984-06-29 Method for recovering gellium from dust produced by electrolyzing aluminum

Publications (1)

Publication Number Publication Date
JPS6114133A true JPS6114133A (en) 1986-01-22

Family

ID=15170037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13621784A Pending JPS6114133A (en) 1984-06-29 1984-06-29 Method for recovering gellium from dust produced by electrolyzing aluminum

Country Status (1)

Country Link
JP (1) JPS6114133A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2613095A1 (en) 1975-03-26 1976-10-14 Nippon Sheet Glass Co Ltd POLYCARBONATE RESIN MOLDED ARTICLE, METHOD OF MANUFACTURING THEREOF, AND PRIMER COMPOUNDS USED THEREOF
JPS62141108U (en) * 1986-02-28 1987-09-05
FR2616157A1 (en) * 1987-06-02 1988-12-09 Pechiney Aluminium PROCESS FOR EXTRACTING AND PURIFYING GALLIUM FROM BAYER LIQUEURS
CN109967079A (en) * 2019-03-04 2019-07-05 浙江大学 A method of preparing the metal oxide for eliminating organic pollutants

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2613095A1 (en) 1975-03-26 1976-10-14 Nippon Sheet Glass Co Ltd POLYCARBONATE RESIN MOLDED ARTICLE, METHOD OF MANUFACTURING THEREOF, AND PRIMER COMPOUNDS USED THEREOF
DE2660651C2 (en) 1975-03-26 1983-06-01 Nippon Sheet Glass Co. Ltd., Osaka BASE COATING SIZE
DE2613095C2 (en) 1975-03-26 1984-07-26 Nippon Sheet Glass Co. Ltd., Osaka Polycarbonate resin molded article and method for producing the same
JPS62141108U (en) * 1986-02-28 1987-09-05
FR2616157A1 (en) * 1987-06-02 1988-12-09 Pechiney Aluminium PROCESS FOR EXTRACTING AND PURIFYING GALLIUM FROM BAYER LIQUEURS
CN109967079A (en) * 2019-03-04 2019-07-05 浙江大学 A method of preparing the metal oxide for eliminating organic pollutants

Similar Documents

Publication Publication Date Title
CN103160689B (en) Method of iron extraction and removal with solvent extraction agent
FI93972C (en) Method for separating interfering substances from precious metal electrolyte solutions
KR101021180B1 (en) Method for producing high purity cobalt surfate
US7338589B2 (en) Process for recovery of gallium
US4241027A (en) Reductive stripping process for the recovery of either or both uranium and vanadium
JPS6114133A (en) Method for recovering gellium from dust produced by electrolyzing aluminum
EP0090119B1 (en) Selectively stripping iron ions from an organic solvent
US4639355A (en) Process for recovering gallium from aluminum smelting dust
US3573182A (en) Process for separating zinc and copper
CA1083830A (en) Ion exchange treatment of zinc values
KR930007139B1 (en) Process for the recovery of gallium from basic solution
CN108754142B (en) Method for separating bismuth and iron and producing pure bismuth hydroxide by extraction-ammonia decomposition in bismuth and iron mixed solution
JPH1150167A (en) Production of high purity cobalt solution
RU2336346C1 (en) Method of extracting of metals out of containing iron suplhate solutions
JPS6114129A (en) Method for recovering gallium from dust produced by electrolyzing aluminum
JP2019196528A (en) Manufacturing method of cobalt chloride solution
Riveros et al. The recovery of iron from zinc sulphate-sulphuric acid processing solutions by solvent extraction or ion exchange
JPS6114128A (en) Method for recovering gallium from dust generated by electrolyzing aluminum
JPS6114130A (en) Method for recovering gallium from dust produced by electrolyzing aluminum
CN108977657A (en) A method of the recovery indium from the methanesulfonic acid solution containing indium
GB2122593A (en) Solvent extraction of cuprous ions from aqueous solutions
JPS6114131A (en) Method for recovering gallium from dusts produced by electrolyzing aluminum
JPH0778262B2 (en) Purified nickel sulfate recovery method from copper electrolyte
US5277883A (en) Recovery of metal values from aqueous solutions
JPS621570B2 (en)