JPS59226187A - Method and device for cleaning of copper electrolyte - Google Patents

Method and device for cleaning of copper electrolyte

Info

Publication number
JPS59226187A
JPS59226187A JP58089666A JP8966683A JPS59226187A JP S59226187 A JPS59226187 A JP S59226187A JP 58089666 A JP58089666 A JP 58089666A JP 8966683 A JP8966683 A JP 8966683A JP S59226187 A JPS59226187 A JP S59226187A
Authority
JP
Japan
Prior art keywords
liquid
solution
electrolyte
phase separation
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58089666A
Other languages
Japanese (ja)
Other versions
JPS6214617B2 (en
Inventor
Nobuo Kikumoto
菊本 伸夫
Mineo Hayashi
林 峰夫
Hideaki Tanaka
秀明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP58089666A priority Critical patent/JPS59226187A/en
Publication of JPS59226187A publication Critical patent/JPS59226187A/en
Publication of JPS6214617B2 publication Critical patent/JPS6214617B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

PURPOSE:To perform inexpensively and easily washing of an electrolyte and to recover nickel sulfate with high purity by adding a Ca salt to the copper electrolyte dividedly in two stages to neutralize the electrolyte then obtd. a refined aq. nickel sulfate soln. by a specific org. solvent extraction method while adjusting pH. CONSTITUTION:A Ca salt is added to a soln. to be cleaned to adjust the pH of the soln. to 1.5-2.5 in the stage of cleaning an electrolyte in a copper electrolytic refining stage. The precipitate formed in the primary neutralization stage is subjected to a solid-liquid sepn. and about the whole of Sb and Bi and about half of As are removed. The Ca salt is further added to the filtrate thereof to adjust the pH to 6.5-7.5. Cu, Fe and Zn are settled in this secondary neutralization stage and are subjected to a solid-liquid sepn. While the filtrate is adjusted to 2-3pH, Ca is removed by the liquid-liquid extraction involving contact thereof with a kerosene soln. of di-2-ethyl hexyl phosphoric acid or 2-ethyl hexyl phosphoric acid mono-2-ethyl hexyl ester, by which the refined aq. nickel sulfate soln. is obtd.

Description

【発明の詳細な説明】 本発明は銅電解精製工程における電解液の浄液方法、特
に詳しくは電解液中のSb、Bj、As等の不純物を除
去する方法とその装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for purifying an electrolyte in a copper electrolytic refining process, and more particularly to a method and apparatus for removing impurities such as Sb, Bj, and As from an electrolyte.

銅の電解精製工程における電解液中の不純物であるSb
、Bi、As等は陽極(アノード)から該電解液中VC
溶出したもの、あるいは陽極泥(アノードスライム)と
して該電解液中に懸濁しているものである。
Sb, an impurity in the electrolyte in the copper electrolytic refining process
, Bi, As, etc. from the anode to the VC in the electrolyte.
It is dissolved or suspended in the electrolyte as anode slime.

懸濁した該スライムはカンード表面に付着すると、その
付着点から突起状の電着を形成し、電極間に短絡を生ず
る原因となったり、スライムや電解液を電着銅中にまき
込み、カソードの品質低下を招(原因にもなる。一方、
電解液中に溶出しているSb、Bi、As等の不純物も
その濃度が上昇してくると、カソードに析出し、Sb、
Biの酸化物、砒酸塩等の浮遊スライムを形成し、上述
したような悪影響が起こるのである。
When the suspended slime adheres to the surface of the cand, it forms a protruding electrodeposition from the point of attachment, causing a short circuit between the electrodes, or the slime and electrolyte are mixed into the electrodeposited copper, causing the cathode This may lead to (or even cause) a decline in the quality of the product.On the other hand,
As the concentration of impurities such as Sb, Bi, and As dissolved in the electrolyte increases, they precipitate on the cathode, causing Sb,
Floating slime of Bi oxide, arsenate, etc. is formed, and the above-mentioned adverse effects occur.

@電解液中の8b、Bi、As等の不純物を除去するた
めに、広〈実施されている方法として、不溶性陽極を用
いて電解液中のCUを電解採取する、いわゆる脱調電解
の際に生じる脱銅スライムを系外に抜き出す方法がある
。しかし、該スライムのCu品位は高く、そのまま棄却
するのは経済的に不利であるため、該スライムは乾式1
程へ繰り返されるのが普通であり、従ってSb、Bi、
As等の不純物は溶錬工程でスラグあるいは排ガスとし
て棄却される以外は再び陽極(アノード)に入り、電解
工程へ戻り、完全な不純物の糸外除去はなされていない
@In order to remove impurities such as 8b, Bi, and As in the electrolyte, a widely practiced method is to electrolytically win CU in the electrolyte using an insoluble anode, during so-called step-out electrolysis. There is a method to extract the copper-free slime that is produced from the system. However, the slime has a high Cu grade and it is economically disadvantageous to discard it as is.
It is normal that Sb, Bi,
Impurities such as As, other than being discarded as slag or exhaust gas in the smelting process, enter the anode again and return to the electrolytic process, and impurities are not completely removed from the thread.

このため、不純物の完全な系外除去を求めて、電解液中
に難溶性硫酸塩の沈澱を生じさせるような陽イオンを添
加して不純物を共沈させる方法が提案されている(特開
昭52−54615号公報:c、aイオン、%開昭54
−119327号公報5BaeSr、 Pi)イオン)
。しかし、これらの方法には、沈澱除去後の電解液がC
aイオン等で飽和されて循環系の導管内に難溶性沈澱を
生ずる欠点があり、実用に供し得ない。
For this reason, in order to completely remove impurities from the system, a method has been proposed in which cations that cause the precipitation of poorly soluble sulfates are added to the electrolytic solution to coprecipitate impurities (Japanese Patent Application Laid-Open No. Publication No. 52-54615: c, a ion, %
-119327 Publication 5BaeSr, Pi) ion)
. However, in these methods, the electrolyte after removing the precipitate is
It has the disadvantage that it becomes saturated with a ions and the like and forms a poorly soluble precipitate in the conduit of the circulation system, so it cannot be put to practical use.

本発明者等は上記の残存Caイオンの除去法について検
討した結果、有機溶媒抽出法の適用が有望であることを
見出し、前段階である中和工程の新規な処理条件ととも
に有機溶媒抽出の最適実施条件を確認することによって
、本発明を完成するに至った。
As a result of studying the above-mentioned method for removing residual Ca ions, the present inventors found that the application of organic solvent extraction method was promising, and found that the organic solvent extraction method was optimized along with new processing conditions for the previous neutralization step. By confirming the implementation conditions, the present invention was completed.

すなわち、本発明の方法及びその装置については次の如
きものである。
That is, the method and apparatus of the present invention are as follows.

(1)銅電解8M工程における電解液の浄液工程におい
て、 (イj 浄液対象溶液にカルシウム塩を加えて該溶液の
pHを1,5〜2.5に調整する1次中和工程と、 (ロ) 1次中和工程で生成した沈澱を固液分離して得
られる溶液にさらにカルシウム塩を加えて該溶液のpH
を6.5〜7.5とする2次中和工程と、 e→ 2次中和工程で生成した沈澱を固液分離して得ら
れる溶液をpl(2〜3に調整しつつジ2エチルへキシ
ルリン酸又は2エチルへキシルホスホン酸モノ2エチル
ヘキシルエステルのケロシン溶液と接触させ、該溶液中
のニッケルイオン以外の金属イオンを除去して精製硫酸
ニッケルを得る液−液抽出工程と、 よりなることを特徴とする銅電解液の浄液方法。
(1) In the electrolytic solution purification process in the copper electrolysis 8M process, (b) A calcium salt is further added to the solution obtained by solid-liquid separation of the precipitate generated in the primary neutralization step to adjust the pH of the solution.
A second neutralization step in which the precipitate produced in the second neutralization step is separated into solid and liquid, and the solution obtained is mixed with diethyl while adjusting the pl (2 to 3). A liquid-liquid extraction step of contacting hexyl phosphoric acid or mono-2-ethylhexyl 2-ethylhexylphosphonic acid ester with a kerosene solution to remove metal ions other than nickel ions from the solution to obtain purified nickel sulfate. A copper electrolyte purification method characterized by:

(2)液−液混合槽と該混合槽から抜き出される混合液
を循環させる循環ポンプと該循環ポンプから送られた該
混合液を分相させる分相ボックスと該分相ボックスの分
相が完了する位置に下好液のみを抜き出せる通孔な設け
、該通孔から移送される該上澄液を受入れるpH電極設
置ボックスとを具備し、かつ該分相ボックスと該pH電
極設置ボックスの溢流液が該混合槽に戻されるよう配管
したことを特徴とする銅電解液の浄液装置。
(2) A liquid-liquid mixing tank, a circulation pump that circulates the mixed liquid extracted from the mixing tank, a phase separation box that separates the phases of the mixed liquid sent from the circulation pump, and a phase separation of the phase separation box. At the completion position, a through hole is provided through which only the inferior fluid can be extracted, and a pH electrode installation box is provided to receive the supernatant liquid transferred from the through hole, and the phase separation box and the pH electrode installation box are provided. A copper electrolyte purification device, characterized in that piping is provided so that overflow liquid is returned to the mixing tank.

次に、本発明をさらに詳述する。Next, the present invention will be explained in further detail.

1次中和工程においては、カルシウムの塩基性塩、たと
えば炭酸カルシウム、水酸化カルシウム、酸化カルシウ
ムの1種ま几は2種を水又は硫酸ニッケルの水溶液を用
いてスラリー化し、スラリー状のまま浄液対象液に添加
しつつpi(計でpHの変化を観測して、pHが少な(
とも1,5〜2,5の範囲になるまで、添加を続ける。
In the primary neutralization step, one or two basic salts of calcium, such as calcium carbonate, calcium hydroxide, and calcium oxide, are slurried with water or an aqueous solution of nickel sulfate, and the slurry is purified. While adding the liquid to the target liquid, observe the change in pH with a pi meter and check if the pH is low (
Continue adding until both are in the range of 1.5 to 2.5.

この際pHが1.5未満では不純物の除去が十分でな(
2,5を越えるとCuの沈澱による損失が生じ始める。
At this time, if the pH is less than 1.5, the removal of impurities will not be sufficient (
When the value exceeds 2.5, losses due to Cu precipitation begin to occur.

中和した後、濾過してf液とf滓(石こう)に分離する
After neutralization, it is filtered and separated into f-liquid and f-slag (gypsum).

f液中には電解液中の(:u、Ni、Fe、Znの大部
分とCa約0.51/lが残留し、次の2次中和工程(
Cu、Ni回収工程)に送られる。
Most of (: u, Ni, Fe, Zn and about 0.51/l of Ca in the electrolyte remain in the f solution, which is used for the next secondary neutralization step (
Cu, Ni recovery process).

一方、P滓(石こう)には1lEyW液中に存在したS
b、Biのほぼ全量とAsの約早分が含まれ、水洗浄後
、石こう工場に送られるので電解液中より系外に除去さ
れる。
On the other hand, in the P slag (gypsum), the S present in the 1lEyW solution
b. Contains almost the entire amount of Bi and a small amount of As, and after being washed with water, it is sent to a gypsum factory and removed from the electrolyte to the outside of the system.

前記の処理条件によれば、銅電解液中のCu。According to the processing conditions described above, Cu in the copper electrolyte.

Niの損失をできるだけ少なくすることができ、該電解
液中の不純物であるSt)、 Biをほぼ完全に除去し
、Asは約半分に除去することができる。
The loss of Ni can be minimized, the impurities St) and Bi in the electrolyte can be almost completely removed, and As can be removed to about half.

従来の方法に比して、方法自体が141単であり、しか
も除去率はきわめて高い。
Compared to conventional methods, the method itself requires only 141 molecules, and the removal rate is extremely high.

2次中和工程は1次中和工程でt滓と分離されたP液中
のCu v F e e Z nを除去することを目的
とする工程で、この工程は前記if5液に1次中和工程
におけると同様のカルシウムの塩基性塩を含むスラリー
を添加して同様の方法でI)Hな6.5〜7.5に調整
することによって行われる。J)Hが6.5未満では、
CUおよびZnの除去が十分でな(、pHが高いほど得
られる硫酸ニッケル溶液中のCu。
The secondary neutralization process is a process whose purpose is to remove Cu v Fe e Z n from the P liquid that was separated from the t-slag in the primary neutralization process. This is carried out by adding a slurry containing the same basic salt of calcium as in the Japanese process and adjusting the I)H value to 6.5 to 7.5 in the same manner. J) If H is less than 6.5,
The removal of CU and Zn is insufficient (Cu in the nickel sulfate solution obtained at higher pH).

ZHの含有量が低(なるが、l)Hが785を越えると
、Niの損失も増大する。なお、この際、Feが2価の
状態にあると、Feの除去が不十分となるので、3価の
状態に酸化しておくとよい。pH調整後、濾過して2次
中和f液と鋼鉄澱物とに分離し、鋼鉄澱物は溶錬工程に
繰り返す。この澱物中にはSb、Biがほとんど含まれ
ず、溶錬工程に繰り返しても、不純物の循環が起こらな
い。一方、2次中和P液中にはNiの大部分とCaがな
お0.4〜0.79−/を程度残留しているが、この液
よりCaを除去するとNiのみを含んだ液とすることが
できる。この残留Caの除去にはジ2エチルヘキシルり
ん酸または2エチルへキシルホスホン酸モノエチルヘキ
シルエステルのケロシンig液による溶媒抽出法が有効
で、Niを水溶液中に残してCaのみを除去するKid
pH2,o〜3.0に% ttnしつつ抽出する必要が
あり、pHが3.0′に近い程、Caの除去が完全にな
るが、同時に抽出されるNi量も増大し損失となる。な
お、I)Hの調整には水相−有機相を攪拌混合して抽出
操作を行なっている最中のpHを測定しつつ酸普たはア
ルカリ液を加えてやる必要があるため、特殊なpH測定
装置を備えた溶媒抽出装置を工夫して製作し、これを使
用した。第1図はこの本発明装置の概念図を示す。
When the ZH content is low (l)H exceeds 785, the loss of Ni also increases. Note that at this time, if Fe is in a divalent state, removal of Fe will be insufficient, so it is preferable to oxidize it to a trivalent state. After pH adjustment, it is filtered and separated into secondary neutralized liquid and steel sludge, and the steel sludge is repeated in the smelting process. This precipitate contains almost no Sb or Bi, and even if the smelting process is repeated, no circulation of impurities occurs. On the other hand, in the secondary neutralized P solution, most of the Ni and Ca still remain in the range of 0.4 to 0.79 -, but when Ca is removed from this solution, it becomes a solution containing only Ni. can do. To remove this residual Ca, a solvent extraction method using di-2-ethylhexyl phosphoric acid or 2-ethylhexylphosphonic acid monoethylhexyl ester using a kerosene ig solution is effective.
It is necessary to perform extraction at a pH of 2.0 to 3.0. The closer the pH is to 3.0', the more complete Ca is removed, but at the same time the amount of Ni extracted also increases, resulting in loss. In addition, to adjust I)H, it is necessary to add an acid or alkali solution while stirring and mixing the aqueous phase and the organic phase and measuring the pH during the extraction operation. A solvent extraction device equipped with a pH measuring device was devised and manufactured and used. FIG. 1 shows a conceptual diagram of the apparatus of the present invention.

本発明装置は第1図が示すように、両相を攪拌混合する
混合槽1と混合槽1の下部から抜き出された混合液を循
環させる循環ポンプ2とポンプ2によシ移送された混合
液を受入れて分相する分相ボックス3と分相ボックス3
で分相された上澄液(水相)のみを受入れてpH測定を
するI)H電極設置ボックス4とよりなるものである。
As shown in FIG. 1, the apparatus of the present invention includes a mixing tank 1 that stirs and mixes both phases, a circulation pump 2 that circulates the mixed liquid extracted from the lower part of the mixing tank 1, and a mixing tank that is transferred by the pump 2. Phase separation box 3 and phase separation box 3 that receive liquid and separate the phases
1) H electrode installation box 4 for receiving only the phase-separated supernatant liquid (aqueous phase) and measuring pH thereof.

分相ボックス3は細長い構造の容器で循環ポンプ2によ
り移送された混合液が受入口から離れる程、相分nmが
進み、受入れ口の反対の端で完全に二層に分離している
ので、この位置の上澄液(水相)のみを抜出し得る部分
に通孔3aを設けて、上澄液をpH電極設置ボックス4
に流入させる。
The phase separation box 3 is a container with an elongated structure, and the further the mixed liquid transferred by the circulation pump 2 is away from the receiving port, the more the phase separation nm progresses, and it is completely separated into two layers at the opposite end of the receiving port. A through hole 3a is provided in a part where only the supernatant liquid (aqueous phase) can be extracted, and the supernatant liquid is transferred to the pH electrode installation box 4.
to flow into.

また、分相ボックス3の上澄液(有機相)は溶媒オーバ
ーフロー落ち口3bから混合槽lに戻され、pH電極設
置ボックス4の受入れ液は上澄液落ち口4bおよびオー
バーフロー4aを経て混合槽1に戻される。本装置によ
り、混合攪拌中の水相のpHを連続的に測定することが
可能となり、測定値に応じて混合槽1中に酸またはアル
カリを加えて所定のpH値に調整することが可能となっ
た。
In addition, the supernatant liquid (organic phase) of the phase separation box 3 is returned to the mixing tank l from the solvent overflow outlet 3b, and the liquid received in the pH electrode installation box 4 passes through the supernatant liquid outlet 4b and overflow 4a to the mixing tank l. It is returned to 1. With this device, it is possible to continuously measure the pH of the aqueous phase during mixing and stirring, and according to the measured value, it is possible to add acid or alkali into the mixing tank 1 to adjust the pH to a predetermined value. became.

抽出終了後、攪拌をとめて静置し、混合槽1内で分相さ
せた後、三方コック5を操作して両相を分液することに
より、N110〜l 5 P/lを含有する精製硫酸ニ
ッケル水溶液か潜られ、そのまま濃縮して精製ニッケル
結晶が得られる。一方、有機相は塩酸で逆抽出して再生
され、液々抽出工程に繰り返えされる。
After the extraction is completed, stirring is stopped and the mixture is allowed to stand still, the phases are separated in the mixing tank 1, and the two phases are separated by operating the three-way cock 5, thereby producing a purified product containing N110~15P/l. A nickel sulfate aqueous solution is submerged and concentrated directly to obtain purified nickel crystals. On the other hand, the organic phase is regenerated by back extraction with hydrochloric acid and repeated in the liquid-liquid extraction process.

本発明によって、安価なCa塩を用いてlff1−1な
操作で@電解液中の不純物の完全系外除去かり能となり
、M何物であるCuの工程に繰り返えしが容易となった
だけでなく、Niが高度に精製され7(状態で得られる
銅電解液浄液法°及びその装置が確立されるに至った。
According to the present invention, impurities in the electrolyte can be completely removed outside the system by a lff1-1 operation using an inexpensive Ca salt, and it is easy to repeat the process for Cu, which is a M substance. In addition, a method for purifying a copper electrolyte and an apparatus for the same have been established, in which Ni is highly purified.

次に、本発明を実施例によってさらに具体的に説明する
が、本発明はその要旨を越えない限り以下の実施例によ
って制限されるものでない。
Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples unless the gist thereof is exceeded.

実施例1 第1表に示す組成の銅電解液3pに、炭酸カルシウム6
001に水1.65..eを加えてスラリー状にしたも
のを攪拌しながら添加し、液のI)Hな1.9に調整し
た。pu調整後、濾過してP液とr滓に分離した。この
1次中和後のP液とP滓の分析値を第2表に示す。
Example 1 6 parts of calcium carbonate were added to 3 parts of copper electrolyte having the composition shown in Table 1.
001 and water 1.65. .. A slurry made by adding e was added while stirring, and the I)H of the liquid was adjusted to 1.9. After adjusting PU, it was filtered and separated into P solution and R slag. Table 2 shows the analytical values of the P solution and P slag after this primary neutralization.

第1表 銅電解液の分析値(P/l) 第2表 pH調整後の1液と1滓の分析値第2表に示す
1次中和戸液3J3に、Feを酸化するためH2O2を
少量添加し、さらにCa(OH)t2051−に水i 
o o alを加えてなるスラリーを添加し、液のpH
を7に調整した。 pi−を調整後、濾過し、2次中和
F液と銅・鉄の水酸化物を含むF滓とに分離した。
Table 1: Analytical values of copper electrolyte (P/l) Table 2: Analytical values of 1st solution and 1st slag after pH adjustment Add a small amount of water to Ca(OH)t2051-
Add the slurry made by adding o o al, and adjust the pH of the liquid.
was adjusted to 7. After adjusting pi-, it was filtered and separated into a secondary neutralized F solution and an F slag containing copper and iron hydroxides.

さらに、この2次中和P液に、20%係DZEHPA十
ケロシン溶媒なO//A此まで接触させて液J)Hを2
.8とし、Ca7’、iどの不要金繻゛イ′オンを除去
し、精製硫酸ニッケル液とした。その結果、1次中和P
液、2次中和P液および液−液抽出後の水相の金属イオ
ン濃度を第3表に示す。
Furthermore, this secondary neutralized solution P was brought into contact with 20% DZEHPA and kerosene solvent O//A until 2 hours of solution J)H was added.
.. 8, and unnecessary gold ions such as Ca7' and i were removed to obtain a purified nickel sulfate solution. As a result, the primary neutralization P
Table 3 shows the metal ion concentrations of the liquid, the secondary neutralized P liquid, and the aqueous phase after liquid-liquid extraction.

第3表 中和p液と抽出後液の分析値 実施例2 第4表に示した銅電解液に、炭酸カルシウム、硫酸ニッ
ケル及び水を重量比で3:1:12に混合したスラリー
を添加し、phを2に調整後、濾過し、F液とP滓に分
離し1次中和P液を得た。
Table 3 Analytical values of neutralized p solution and post-extraction solution Example 2 A slurry of calcium carbonate, nickel sulfate, and water mixed in a weight ratio of 3:1:12 was added to the copper electrolyte shown in Table 4. After adjusting the pH to 2, it was filtered and separated into F solution and P slag to obtain a primary neutralized P solution.

この1次中和P液にFeを酸化するためにH2O2を少
量添加し、水酸化カルシウムと水のスラリー(Ca (
oH)2: 500 P/!−)を添力uし、pHを6
,5に調整後、濾過しf液とP滓に分離し、2次中和F
液をイ4た。1次中和P液及び2次中和P液の分析値は
ともに第4表に示す。
A small amount of H2O2 was added to this primary neutralized P solution to oxidize Fe, and a slurry of calcium hydroxide and water (Ca (
oH) 2: 500 P/! -) and adjust the pH to 6.
After adjusting to
I drained the liquid. The analytical values for both the primary neutralized P solution and the secondary neutralized P solution are shown in Table 4.

次に、2次中本INF液に20 v/v % D 2 
EHP A +80v/v 係ケロシン溶媒を蝿比工で
接触させて、さらに液p■が2.0〜3.0の所定のp
Hになるように調整して、有機相と水相とを分離し、抽
出後液(水相)中成外濃度を分析した。その結果を第2
図に示す。横軸はpH値、縦軸は液中の成分濃度である
。tた点線は2次中和f液中成分濃度、実線は抽出後液
中成分濃度である。
Next, add 20 v/v% D2 to the secondary Nakamoto INF solution.
EHP A +80v/v The kerosene solvent is brought into contact with the kerosene solvent, and the liquid p■ is further adjusted to a predetermined p of 2.0 to 3.0.
The organic phase and aqueous phase were separated, and the organic concentration in the extracted solution (aqueous phase) was analyzed. The result is the second
As shown in the figure. The horizontal axis is the pH value, and the vertical axis is the component concentration in the liquid. The dotted line indicates the concentration of the component in the secondary neutralization solution, and the solid line indicates the concentration of the component in the solution after extraction.

実施例 銅電解液(Cu 28.I P/1%Ni 18.2P
/l、 As2.93 f−/1.、  Sb O,4
5fP/1%Bi O,10P/l。
Example copper electrolyte (Cu 28.I P/1%Ni 18.2P
/l, As2.93 f-/1. , SbO,4
5fP/1% BiO, 10P/l.

フリー硫酸19By−/1)Itに500ψ/lの水酸
化カルシウムスラリーを添加し、pHを変化させつつ、
各pI(におけるf液中の成分濃度を求めた。
Adding 500ψ/l calcium hydroxide slurry to free sulfuric acid 19By-/1)It, while changing the pH,
The component concentration in the f solution at each pI was determined.

結果を第3図に示す。The results are shown in Figure 3.

第3図よりpH1,5未満では不純物の除去が十分でな
く、2.5を越えるとC0の沈澱が生じはじめることが
わかる。またpHが68度ではCuは相当量沈澱するが
、Niはほぼ全量溶液中に留まることがわかる。
It can be seen from FIG. 3 that if the pH is less than 1.5, the removal of impurities is not sufficient, and if it exceeds 2.5, precipitation of CO begins to occur. Further, it can be seen that at a pH of 68 degrees, a considerable amount of Cu precipitates, but almost all of Ni remains in the solution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al/il/間装置の1実施例の概念図、同じ
((bl 、 ((:lはいずれも(alのI)H電極
設置ボックスの概略図、第2図tag、 fb)、 (
C1,(dlidpHと粗Ni液抽出後濃度との関係を
示すグラフ図、第3図は1次中和f液中の不純物のpH
依存性を示すグラフ図である。 第1図において、 1・・l混合槽 2IIII11・循環ポンプ 3@会・・分相ボックス 3a・・・・下面液通孔 3b、…溶媒゛オーバーフロー落ち口 4・・・・ pH電極設置ボックス 4a−・Φ・オーバーフロー (上澄液混入溶媒オーバーフロー) 4b・・Φ・上澄液溶ち口 5・・・O三方コツク ロ・・・・上澄液(水相) 7・・・・上澄液(有機相) 特許出願人三菱金属株式会社 代理人白 川 義 直
Figure 1 (conceptual diagram of one embodiment of the device between al/il/ , (
C1, (Graphic diagram showing the relationship between dlid pH and the concentration after crude Ni solution extraction, Figure 3 shows the pH of impurities in the primary neutralization f solution.
It is a graph diagram showing dependence. In Fig. 1, 1...l mixing tank 2III11, circulation pump 3, phase separation box 3a, bottom liquid passage hole 3b, solvent overflow outlet 4, pH electrode installation box 4a. -・Φ・Overflow (supernatant mixed solvent overflow) 4b・・Φ・Supernatant liquid melting mouth 5・O three-way droplets・・Supernatant liquid (aqueous phase) 7・・Supernatant liquid (Organic phase) Patent applicant Mitsubishi Metals Co., Ltd. Agent Yoshinao Shirakawa

Claims (3)

【特許請求の範囲】[Claims] (1)  銅電解精製工程陀おける電解液の浄液工程に
おいて、 (イ) 浄液対象1容液にカルシウム塩を加えて該溶液
のpHを1.5〜2.5に調整する1次中和工程と、 (ロ) 1次中和工程で生成した沈澱を固液分離して得
られる溶液にさらにカルシウム塩を加えて該溶液のpH
を6.5〜7,5とする2次中和工程と、 い12次中和工程で生成した沈澱を固液分離して得られ
る溶液をI)H2〜3に調整しっつジ2エチルへキシル
リン酸又は2エチルへキシルホスホン酸モノ2エチルヘ
キシルエステルのケロシン溶液と接触させ、該@液中の
ニッケルイオン以外の金属イオンを除去して精製硫酸ニ
ッケルを得る液−液抽出工程と、 よりなることを特徴とする@電解液の浄液方法。
(1) In the electrolytic solution purification process in the copper electrolytic refining process, (a) A primary step in which calcium salt is added to one volume of the solution to be purified to adjust the pH of the solution to 1.5 to 2.5. and (b) further adding calcium salt to the solution obtained by solid-liquid separation of the precipitate generated in the primary neutralization step to adjust the pH of the solution.
A second neutralization step in which the precipitate produced in the twelfth neutralization step is separated into solid and liquid, and the solution obtained is adjusted to I) H2 to 3. A liquid-liquid extraction step in which purified nickel sulfate is obtained by contacting hexyl phosphoric acid or 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester with a kerosene solution to remove metal ions other than nickel ions in the @ liquid. @ Electrolyte purification method characterized by:
(2)前記カルシウム塩は炭酸カルシウム、水酸化カル
シウム、および酸化カルシウムの中の1種また#′i2
種である特許請求の範囲第1項に記載の方法。
(2) The calcium salt is one of calcium carbonate, calcium hydroxide, and calcium oxide, or #'i2
The method according to claim 1, wherein the method is a species.
(3)液−液混合槽と該混合槽から抜き出される混合液
を循環させる循環ポンプと該循環ポンプから送られfc
該混合液を分相させる分相ボックスと該分相ボックスの
分相が完了する位置に下漬液のみを抜き出せる通孔な設
け、該通孔から移送される該上澄液な受入れるpH電極
設置ボックスとを具備し、かつ該分相ボックスと該pH
電極設置ボックスの溢流液が該混合槽に戻されるよう配
管したことを特徴とする銅電解液の浄液装置。
(3) A liquid-liquid mixing tank, a circulation pump that circulates the mixed liquid extracted from the mixing tank, and an fc sent from the circulation pump.
A phase separation box for separating the mixed liquid into phases, a hole in the phase separation box from which only the submerged liquid can be extracted at a position where the phase separation is completed, and a pH electrode installed to receive the supernatant liquid transferred from the hole. box, and the phase separation box and the pH
1. A copper electrolyte purification device, characterized in that the overflowing liquid from the electrode installation box is piped to be returned to the mixing tank.
JP58089666A 1983-05-21 1983-05-21 Method and device for cleaning of copper electrolyte Granted JPS59226187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58089666A JPS59226187A (en) 1983-05-21 1983-05-21 Method and device for cleaning of copper electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58089666A JPS59226187A (en) 1983-05-21 1983-05-21 Method and device for cleaning of copper electrolyte

Publications (2)

Publication Number Publication Date
JPS59226187A true JPS59226187A (en) 1984-12-19
JPS6214617B2 JPS6214617B2 (en) 1987-04-03

Family

ID=13977064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58089666A Granted JPS59226187A (en) 1983-05-21 1983-05-21 Method and device for cleaning of copper electrolyte

Country Status (1)

Country Link
JP (1) JPS59226187A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284025A (en) * 1986-06-03 1987-12-09 Mitsubishi Metal Corp Method for recovering refined nickel sulfate from copper electrolyte
JPS6318091A (en) * 1986-07-09 1988-01-25 Dowa Mining Co Ltd Method for purifying copper electrolytic solution
JP2008248376A (en) * 2007-03-06 2008-10-16 National Institute Of Advanced Industrial & Technology Method for recovering high-purity copper from copper-containing waste, and solution or electrolytic solution to be used therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284025A (en) * 1986-06-03 1987-12-09 Mitsubishi Metal Corp Method for recovering refined nickel sulfate from copper electrolyte
JPS6318091A (en) * 1986-07-09 1988-01-25 Dowa Mining Co Ltd Method for purifying copper electrolytic solution
JPH055902B2 (en) * 1986-07-09 1993-01-25 Dowa Mining Co
JP2008248376A (en) * 2007-03-06 2008-10-16 National Institute Of Advanced Industrial & Technology Method for recovering high-purity copper from copper-containing waste, and solution or electrolytic solution to be used therefor

Also Published As

Publication number Publication date
JPS6214617B2 (en) 1987-04-03

Similar Documents

Publication Publication Date Title
CN104995321B (en) Scandium recovery method
KR101809883B1 (en) Scandium recovery method
CN107002176A (en) The recovery method of high-purity scandium
KR100866824B1 (en) Method for processing electro-precipitation copper
CA2666229C (en) Method for production of metallic cobalt from the nickel solvent extraction raffinate
WO2016069263A1 (en) Method for removing iron in the manufacture of phosphoric acid
CN104928469A (en) Method for removing magnesium in sulfuric acid leaching process of rhodochrosite
CN102732722A (en) Zinc hydrometallurgy method for removing fluorine and chlorine by extraction
EP1020537B1 (en) Separation and concentration method for recovering gallium and indium from solutions by jarosite precipitation
CN105274352B (en) A kind of method that copper cobalt manganese is separated in the manganese cobalt calcium zinc mixture from copper carbonate
FR2766842A1 (en) PROCESS FOR SELECTIVE PRECIPITATION OF NICKEL AND COBALT
WO2007113926A1 (en) Method of purifying copper salt solution, purification apparatus and copper salt solution
US4030989A (en) Electrowinning process
CN112853101B (en) Electroplating sludge recycling treatment method
AU2017213212B2 (en) Method for recovering scandium
JPS59226187A (en) Method and device for cleaning of copper electrolyte
RU2339713C1 (en) Method for copper extraction from sulfuric solution
WO2011120093A1 (en) Recovering metals from pickle liquor
RU2336346C1 (en) Method of extracting of metals out of containing iron suplhate solutions
KR930007139B1 (en) Process for the recovery of gallium from basic solution
US4151257A (en) Processing nonferrous metal hydroxide sludge wastes
AU2004319088A1 (en) Method of recovering gallium
US1533741A (en) Metallurgical process
JPS6345130A (en) Removal of zinc from aqueous solution acidified with sulfuric acid
JP6340980B2 (en) Purification method of cobalt chloride solution