JPH055902B2 - - Google Patents

Info

Publication number
JPH055902B2
JPH055902B2 JP61161697A JP16169786A JPH055902B2 JP H055902 B2 JPH055902 B2 JP H055902B2 JP 61161697 A JP61161697 A JP 61161697A JP 16169786 A JP16169786 A JP 16169786A JP H055902 B2 JPH055902 B2 JP H055902B2
Authority
JP
Japan
Prior art keywords
copper
electrolyte
bismuth
antimony
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61161697A
Other languages
Japanese (ja)
Other versions
JPS6318091A (en
Inventor
Akira Tanaka
Hiroyuki Takahashi
Hitoshi Masuda
Yoshihiko Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP61161697A priority Critical patent/JPS6318091A/en
Publication of JPS6318091A publication Critical patent/JPS6318091A/en
Publication of JPH055902B2 publication Critical patent/JPH055902B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Removal Of Specific Substances (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 技術分野 本発明は、銅電解工程において電気銅の品質を
向上させるため、銅電解液中のアンチモンやビス
マス、砒素等の不純物を簡単に除去することがで
きる銅電解液の浄液方法に関するものである。 (ロ) 従来技術 銅の電解精製においては、陽極となる原銅板中
に含有されている不純物であるアンチモン、ビス
マス、砒素等は電解の進行に伴なつてその一部が
銅電解液中に溶出し、電解液中のこれらの濃度が
大きくなれば電気銅の品質を低下させる。 従つて、電気銅の品質を向上させるためには、
銅電解液中のこれらの不純物を除去する浄液工程
が不可欠となる。 そこで、従来この銅電解液中のアンチモン、ビ
スマス、砒素等の不純物を除去する方法として
は、銅電解液を不溶性陽極により電解し、銅電解
液中の銅と共にこれらの不純物を電解採取する脱
銅電解法や、銅電解液中に硫化水素ガスを吹込
み、銅と共にこれらの不純物を硫化殿物として除
去する硫化物沈澱法が行なわれている。 しかしながら、これらの方法は銅電解液中のア
ンチモン、ビスマス、砒素等の不純物が銅と共に
除去されてしまうので、脱銅電解により電着した
金属やスライム、硫化殿物は銅の回収のために前
工程に繰返し回収処理することが必要となり、工
程が複雑となつてコスト高となる欠点がある。 また、銅電解液を活性炭と接触させて電解液中
の不純物を除去する活性炭法や、銅電解液と有機
溶媒を接触させ、アンチモンや、ビスマス、砒素
等の不純物を抽出除去する溶媒抽出法もあるが、
これらの方法は電気銅の品質や電解効率の向上を
図るために電解液中に添加しているニカワ等の有
機物を吸収してしまつたり、溶媒の一部が電解液
中に溶解して溶媒の損失となり、更に電解に悪影
響を及ぼす等の欠点がある。 (ハ) 発明の開示 本発明は、銅電解液から固液分離された不純分
を前工程に繰返して銅分を回収処理するような必
要がなく、また銅電解液中のニカワ等の有機添加
物をバランスを崩さず、しかも銅、硫酸等の成分
濃度に何等の影響も与えずに、アンチモン、ビス
マス、砒素等の不純物のみを選択的に分離除去す
ることができる方法を提供するものである。 即ち、本発明は銅電解液を冷却することによ
り、アンチモンやビスマス、砒素が優先的に分離
することを見出し、しかも銅電解液を酸化するこ
とによりその効果がさらに促進することを見出し
たものである。 通常、銅電解精製の操業は電解液組成として銅
農度40〜50g/、遊離硫酸農度150〜200g/
、電解液温は50〜60℃で管理されている。 この電解液を45℃以下、好ましくは20〜40℃に
冷却して固液分離する。例えば、24時間以上好ま
しくは48時間以上静置すると、電解液中のアンチ
モン、ビスマス、砒素は白色沈澱物として沈澱分
離される。 この場合、電解液中の銅濃度、硫酸濃度はほと
んど変化が見られない。 また、銅電解液中に過マンガン酸カリ、二酸化
マンガン、過酸化水素、空気、酸素ガスやオゾン
等の酸化剤を添加し、あるいはその他の酸化法に
より銅電解液を酸化し、電解液を45℃以下、好ま
しくは20〜40℃に冷却して固液分離する。例えば
24時間以上静置することにより、アンチモン、ビ
スマス、砒素は沈澱物として沈澱除去され、単に
冷却するよりは、より効果的に除去できる。この
場合も、電解液中の銅濃度、硫酸濃度はほとんど
変化が見られない。 この方法により銅電解液から分離除去された固
形分は、アンチモン品位が10〜40%、ビスマス品
位が5〜20%、銅品位が約0.5〜3.0%であり、銅
品位が低いため、自溶炉や転炉等の銅製錬中の前
工程に繰返すことなく銅電解系外に抜出すことが
でき、更にアンチモン、ビスマス品位が高いの
で、アンチモン、ビスマス製造の原料とすること
ができる。 (ニ) 実施例 実施例 1 60℃の銅電解液をガラスーカに分取し、30℃に
設定している恒温水槽中に静置して72時間保持し
た。24時間毎に電解液を採取して分析した結果を
第1表に示す。 実施例 2 60℃の銅電解液をガラスブビーカに分取し、20
℃に設定している恒温水槽中に静置して72時間保
持した。24時間毎に電解液を採取して分析した結
果を第2図に示す。
(a) Technical field The present invention provides a method for purifying a copper electrolyte that can easily remove impurities such as antimony, bismuth, and arsenic from the copper electrolyte in order to improve the quality of electrolytic copper in the copper electrolysis process. It is related to. (b) Prior art In the electrolytic refining of copper, impurities such as antimony, bismuth, arsenic, etc. contained in the raw copper plate that serves as the anode are partially eluted into the copper electrolyte as the electrolysis progresses. However, if their concentration in the electrolytic solution increases, the quality of electrolytic copper will deteriorate. Therefore, in order to improve the quality of electrolytic copper,
A liquid purification process to remove these impurities from the copper electrolyte is essential. Therefore, the conventional method for removing impurities such as antimony, bismuth, and arsenic from this copper electrolyte is decopper removal, in which the copper electrolyte is electrolyzed with an insoluble anode, and these impurities are electrolytically extracted together with the copper in the copper electrolyte. Electrolytic methods and sulfide precipitation methods are used in which hydrogen sulfide gas is blown into a copper electrolyte to remove these impurities along with copper as sulfide precipitates. However, these methods remove impurities such as antimony, bismuth, and arsenic in the copper electrolyte along with the copper, so metals, slime, and sulfide precipitates electrodeposited by copper removal electrolysis must be removed before copper recovery. There is a drawback that repeated recovery treatments are required in the process, which complicates the process and increases costs. In addition, there is also the activated carbon method, which brings a copper electrolyte into contact with activated carbon to remove impurities in the electrolyte, and the solvent extraction method, which brings a copper electrolyte into contact with an organic solvent to extract and remove impurities such as antimony, bismuth, and arsenic. Yes, but
These methods may absorb organic substances such as glue, which are added to the electrolytic solution to improve the quality of electrolytic copper and improve electrolytic efficiency, or some of the solvent may dissolve in the electrolytic solution and cause the solvent to dissolve. There are drawbacks such as a loss in the amount of water and a negative effect on electrolysis. (C) Disclosure of the Invention The present invention eliminates the need to repeat the solid-liquid separation of impurities from the copper electrolyte in the previous step to recover the copper content, and also eliminates the need for organic additives such as glue in the copper electrolyte. To provide a method that can selectively separate and remove only impurities such as antimony, bismuth, arsenic, etc., without disturbing the balance of substances and without affecting the concentration of components such as copper, sulfuric acid, etc. . That is, the present invention has discovered that antimony, bismuth, and arsenic are preferentially separated by cooling the copper electrolyte, and that this effect is further promoted by oxidizing the copper electrolyte. be. Normally, in the operation of copper electrolytic refining, the electrolyte composition is 40 to 50 g of copper content/150 to 200 g of free sulfuric acid content/
, the electrolyte temperature is controlled at 50-60℃. This electrolytic solution is cooled to 45° C. or lower, preferably 20 to 40° C., to perform solid-liquid separation. For example, if the electrolyte is allowed to stand for 24 hours or more, preferably 48 hours or more, antimony, bismuth, and arsenic in the electrolyte are separated as white precipitates. In this case, almost no change is observed in the copper concentration and sulfuric acid concentration in the electrolyte. In addition, the copper electrolyte can be oxidized by adding an oxidizing agent such as potassium permanganate, manganese dioxide, hydrogen peroxide, air, oxygen gas, or ozone to the copper electrolyte, or by other oxidation methods. ℃ or less, preferably 20 to 40℃, to perform solid-liquid separation. for example
By allowing the mixture to stand for 24 hours or more, antimony, bismuth, and arsenic are removed as precipitates, and can be removed more effectively than by simply cooling. In this case as well, there is almost no change in the copper concentration and sulfuric acid concentration in the electrolyte. The solid content separated and removed from the copper electrolyte by this method has an antimony grade of 10 to 40%, a bismuth grade of 5 to 20%, and a copper grade of about 0.5 to 3.0%. It can be extracted from the copper electrolytic system without repeating the previous steps during copper smelting, such as a furnace or converter, and furthermore, it has high antimony and bismuth grades, so it can be used as a raw material for the production of antimony and bismuth. (d) Examples Example 1 A copper electrolyte at 60°C was taken into a glass container, and left standing in a thermostatic water bath set at 30°C for 72 hours. Table 1 shows the results of sampling and analyzing the electrolyte solution every 24 hours. Example 2 Copper electrolyte at 60°C was dispensed into a glass container and heated to 20°C.
It was left standing in a thermostatic water bath set at ℃ for 72 hours. Figure 2 shows the results of sampling and analyzing the electrolyte solution every 24 hours.

【表】【table】

【表】 実施例 3 60℃の銅電解液をガラスビーカに分取し、これ
に過マンガン酸カリを0.5g/添加し、30℃に
設定している恒温水槽中に静置して72時間保持し
た。24時間毎に電解液を採取して分析した結果を
第3表に示す。 実施例 4 60℃の銅電解液をガラスビーカに分取し、これ
に過酸化水素を2ml/添加し、30℃に設定して
いる恒温水槽中に静置して72時間保持した。24時
間毎に電解液を採取して分析した結果を第4表に
示す。
[Table] Example 3 Copper electrolyte at 60°C was taken into a glass beaker, 0.5g/potassium permanganate was added thereto, and the mixture was left standing in a thermostatic water bath set at 30°C for 72 hours. held. Table 3 shows the results of sampling and analyzing the electrolyte solution every 24 hours. Example 4 A copper electrolyte at 60°C was taken into a glass beaker, 2 ml of hydrogen peroxide was added thereto, and the mixture was left standing in a thermostatic water bath set at 30°C for 72 hours. Table 4 shows the results of sampling and analyzing the electrolyte solution every 24 hours.

【表】【table】

【表】 本発明法により得られた殿物の一例は、Cu:
1.35%、As:0.95%、Sb:28.98%、Bi:12.40%
であり、銅品位が低いので、前工程に繰返す必要
がなかつた。 (ホ) 発明の効果 本発明法によれば、銅電解液を単に冷却し、あ
るいは酸化して冷却するという簡易かつ低コスト
な方法で、電解液中の銅、硫酸濃度に影響を与え
ることなくアンチモンやビスマス、砒素等の不純
物を効果的に除去することができ、また分離され
た殿物には銅をほとんど含有していないため、前
工程に繰返す必要がなく、アンチモンやビスマス
の回収原料として再利用することができる。
[Table] An example of the precipitate obtained by the method of the present invention is Cu:
1.35%, As: 0.95%, Sb: 28.98%, Bi: 12.40%
Since the copper quality was low, there was no need to repeat the previous process. (E) Effects of the Invention According to the method of the present invention, copper electrolyte can be cooled simply or by oxidation, which is a simple and low-cost method, without affecting the copper and sulfuric acid concentrations in the electrolyte. Impurities such as antimony, bismuth, and arsenic can be effectively removed, and the separated precipitate contains almost no copper, so there is no need to repeat the previous process, and it can be used as a recovered raw material for antimony and bismuth. Can be reused.

Claims (1)

【特許請求の範囲】[Claims] 1 不純物としてアンチモン、ビスマス及び砒素
を含む硫酸酸性の銅電解液に酸化剤を添加して酸
化すると共に、該電解液の温度を45℃以下好まし
くは20〜40℃に冷却した後、固液分離することに
より上記不純物を選択的に分離除去することを特
徴とする銅電解液の浄液法。
1 Add an oxidizing agent to a sulfuric acid acidic copper electrolyte containing antimony, bismuth, and arsenic as impurities to oxidize it, cool the electrolyte to a temperature of 45°C or less, preferably 20 to 40°C, and then perform solid-liquid separation. A method for purifying a copper electrolyte, comprising selectively separating and removing the impurities described above.
JP61161697A 1986-07-09 1986-07-09 Method for purifying copper electrolytic solution Granted JPS6318091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61161697A JPS6318091A (en) 1986-07-09 1986-07-09 Method for purifying copper electrolytic solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61161697A JPS6318091A (en) 1986-07-09 1986-07-09 Method for purifying copper electrolytic solution

Publications (2)

Publication Number Publication Date
JPS6318091A JPS6318091A (en) 1988-01-25
JPH055902B2 true JPH055902B2 (en) 1993-01-25

Family

ID=15740143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61161697A Granted JPS6318091A (en) 1986-07-09 1986-07-09 Method for purifying copper electrolytic solution

Country Status (1)

Country Link
JP (1) JPS6318091A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07217235A (en) * 1994-02-04 1995-08-15 Takubo Kogyosho:Kk Installation of balcony to be commonly used for roof and floor in prefabricated storage

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4862191B2 (en) * 2005-06-01 2012-01-25 Dowaメタルマイン株式会社 Method for treating selenium-containing water

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244721A (en) * 1975-10-07 1977-04-08 Hachinohe Seiren Kk Method of purifying extract of cu raw material
JPS5435892A (en) * 1977-08-25 1979-03-16 Sumitomo Metal Mining Co Process for removing arsenic* antimony and bismuth in sulfuric acid solution
JPS58146490A (en) * 1982-02-26 1983-09-01 Mitsubishi Metal Corp Removing method of antimony in acidic solution of sulfuric acid
JPS5956590A (en) * 1982-09-22 1984-04-02 Sumitomo Metal Mining Co Ltd Method for recovering nickel sulfate from waste liquid of copper electrolysis
JPS59226187A (en) * 1983-05-21 1984-12-19 Mitsubishi Metal Corp Method and device for cleaning of copper electrolyte

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244721A (en) * 1975-10-07 1977-04-08 Hachinohe Seiren Kk Method of purifying extract of cu raw material
JPS5435892A (en) * 1977-08-25 1979-03-16 Sumitomo Metal Mining Co Process for removing arsenic* antimony and bismuth in sulfuric acid solution
JPS58146490A (en) * 1982-02-26 1983-09-01 Mitsubishi Metal Corp Removing method of antimony in acidic solution of sulfuric acid
JPS5956590A (en) * 1982-09-22 1984-04-02 Sumitomo Metal Mining Co Ltd Method for recovering nickel sulfate from waste liquid of copper electrolysis
JPS59226187A (en) * 1983-05-21 1984-12-19 Mitsubishi Metal Corp Method and device for cleaning of copper electrolyte

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07217235A (en) * 1994-02-04 1995-08-15 Takubo Kogyosho:Kk Installation of balcony to be commonly used for roof and floor in prefabricated storage

Also Published As

Publication number Publication date
JPS6318091A (en) 1988-01-25

Similar Documents

Publication Publication Date Title
ES452614A1 (en) Two-stage pressure leaching process for zinc and iron bearing mineral sulphides
US3973949A (en) Zinc recovery by chlorination leach
AU2004274670B2 (en) Method for processing anode sludge
JP2007270243A (en) Dry type refining method for copper
JPH055902B2 (en)
US5939042A (en) Tellurium extraction from copper electrorefining slimes
US4038066A (en) Method of stripping base metals from fused salts
CN113846222A (en) Method for recovering valuable metals in copper anode slime
JP2013234356A (en) Pyrometallurgy process for lead using high impurity-containing lead slag as raw material
US1634497A (en) Metallurgical process
CA1061283A (en) Process for removing copper from copper anode slime
PT78858B (en) Hydrometallurgical method of extraction of cooper from sulphide-containing material
US1569137A (en) Refining of copper-nickel matte
JPS6035415B2 (en) Separation method for copper and arsenic
JPS6277431A (en) Method for selectively extracting copper and arsenic respectively from decopperizing slime
EP0059806B1 (en) Anode slime treatment process
JPH05311258A (en) Wet process treatment of copper electrolyzing anode slime
JPS58135128A (en) Recovery of indium
EP0459765B1 (en) Method for recovery of copper from copper-containing materials
SU908886A1 (en) Process for producing lead from sulphide raw material
US1377217A (en) Process of recovering metallic constituents from a mixture thereof
JP6948910B2 (en) How to collect selenium
KR950007786B1 (en) Method of slime treatment with copper & arsenic
Lin Simultaneous oxidation and stripping for separating Se and Te from sulfur
US2097560A (en) Lead and lead alloys

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term