JPH05311258A - Wet process treatment of copper electrolyzing anode slime - Google Patents

Wet process treatment of copper electrolyzing anode slime

Info

Publication number
JPH05311258A
JPH05311258A JP9020292A JP9020292A JPH05311258A JP H05311258 A JPH05311258 A JP H05311258A JP 9020292 A JP9020292 A JP 9020292A JP 9020292 A JP9020292 A JP 9020292A JP H05311258 A JPH05311258 A JP H05311258A
Authority
JP
Japan
Prior art keywords
leaching
anode slime
slime
oxygen
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9020292A
Other languages
Japanese (ja)
Inventor
Shuichi Oto
修一 大戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikko Kinzoku KK
Original Assignee
Nikko Kinzoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Kinzoku KK filed Critical Nikko Kinzoku KK
Priority to JP9020292A priority Critical patent/JPH05311258A/en
Publication of JPH05311258A publication Critical patent/JPH05311258A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To efficiently recover the valuable matter, such as Ag, and to return the soln. after the treatment directly to an electrolysis stage by using an oxygen- enriched gas and specifying a leaching temp., oxygen partial pressure, free sulfuric acid concn. and slurry concn. CONSTITUTION:Valuable matter is recovered by a wet process from the anode slime produced from a copper electrolytic refining stage. The anode slime is put into an autoclave and is subjected to the leaching treatment under the conditions of >=180 deg.C liquid temp., <=200g/l slurry concn. and pressurization with the oxygen-enriched gas of >=5kg/cm<2> oxygen partial pressure in a sulfuric acid soln. of 100 to 200g/l free sulfuric acid concn. Since the decopperized slime after the leaching contains unleached Ag at a high level, the Ag is recovered by treating the slime with an ordinary method. Se, Te, etc., are recovered at a high yield from the inside of the liquid after the desilvering. The copper sulfate soln. after the treatment is returned directly to the electrolyzing stage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、銅電解精製工程より産
出するアノードスライムの湿式処理方法に関するもので
あり、さらに詳しく述べるならば湿式法により有価物で
ある銀、セレン及びテルルを回収する方法に関するもの
である。このアノードスライムは有価物としてAg,S
e,Te,Au,Ptなどを含むが、これらの有価物を
回収するために一般に乾式法が行われている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wet treatment method for anode slime produced in a copper electrolytic refining process. More specifically, it is a method for recovering valuable metals such as silver, selenium and tellurium by a wet method. It is about. This anode slime is a valuable material such as Ag, S
Although it contains e, Te, Au, Pt, etc., a dry method is generally used to recover these valuable materials.

【0002】[0002]

【従来の技術】従来、上記有価物を含むアノードスライ
ムからSe,Teを分離する精製法として、アノードス
ライムを硫酸化焙焼もしくは酸化焙焼しSeをSeO2
として昇華分離して、得られた焙焼殿物を還元溶解後ソ
ーダ処理し、Teをソーダからみ(Na2 TeO3 )と
して分離する方法が行われていた。しかしながら、この
方法では有価物の回収率が50wt%程度と低く、しか
もSeO2 ,SO2 などの有害ガスの発生が避けられな
い。
2. Description of the Related Art Conventionally, as a purification method for separating Se and Te from an anode slime containing the above-mentioned valuables, the anode slime is sulphated or oxidatively roasted and Se is SeO 2
Sublimation separation was performed, and the resulting roasted product was reduced and dissolved, treated with soda, and Te was separated from the soda (Na 2 TeO 3 ). However, with this method, the recovery rate of valuable materials is as low as about 50 wt%, and the generation of harmful gases such as SeO 2 and SO 2 cannot be avoided.

【0003】一方、アノードスライムから有価物を湿式
法で回収する方法も公知であり、それによると、アノー
ドスライムをH2 SO4 ,FeSO4 などを添加した溶
液中でオートクレーブにより浸出する(日本鉱業会誌、
Vol.84,No.963(1968.7)、第84
6〜851頁、参照)。ここで硫酸鉄は、硫酸に対して
不溶性のNiをアノードスライムからCuとともに溶解
させるための酸化剤であり、不溶性Niが分銀工程で多
量のAu,Agを含んだ半製品となることを避けるもの
である。また、オートクレーブ浸出液からHCl添加に
より分離したAgClをHCl酸性溶液中でFe置換し
Agメタルとする。
On the other hand, a method of recovering valuable substances from the anode slime by a wet method is also known. According to this method, the anode slime is leached by an autoclave in a solution to which H 2 SO 4 , FeSO 4 and the like are added (Nippon Mining Industry). Magazine,
Vol. 84, No. 963 (19688.7), No. 84
See pages 6-851). Here, iron sulfate is an oxidizing agent for dissolving Ni that is insoluble in sulfuric acid together with Cu from the anode slime, and avoids that the insoluble Ni becomes a semi-finished product containing a large amount of Au and Ag in the silver separating step. It is a thing. Further, AgCl separated from the autoclave leachate by adding HCl is replaced with Fe in an acidic HCl solution to form Ag metal.

【0004】さらに上記方法ではオートクレーブ浸出液
には塩酸を添加して塩化銀を沈殿せしめ、溶解している
SeはSO2 ガスを吹き込んで還元し粗セレンとして回
収する。
Further, in the above method, hydrochloric acid is added to the autoclave leachate to precipitate silver chloride, and dissolved Se is blown with SO 2 gas to be reduced and recovered as crude selenium.

【発明が解決しようとする課題】しかしながら、上記の
公知の有価物湿式回収方法では鉄イオンをアノードスラ
イムの溶解液に添加することにより、Ag,Se,Te
などの有価物を固形分として回収後の濾液(例えば、C
u50g/L,As7g/L,遊離H2 SO4 100g
/Lを含有する)がFe2+,Na等を含むことになり、
濾液を電解工程にそのまま戻すことができず、鉄などの
除去工程が必要になるために、工程が複雑になり経済性
が低い。
However, in the above-described known wet recovery method for valuables, by adding iron ions to the solution of the anode slime, Ag, Se and Te are added.
Filtrate after recovery of valuable materials such as solids (for example, C
u50g / L, As7g / L, free H 2 SO 4 100g
(Including / L) will contain Fe 2+ , Na, etc.,
Since the filtrate cannot be directly returned to the electrolysis step and a step of removing iron or the like is required, the process becomes complicated and the economy is low.

【0005】またこの公知の方法では、オートクレーブ
浸出液から分離したAgClをHCl酸性溶液中でFe
置換するための反応槽の材質が問題になり、そのための
コストが問題となる。さらに、公知の方法では、Seの
浸出効率が80〜89wt%と低いという問題がある。
Teの浸出率は70〜80wt%と低く、やはり同様の
問題がある。
Also, in this known method, AgCl separated from the autoclave leachate is treated with Fe in an acidic HCl solution.
The material of the reaction tank for the replacement becomes a problem, and the cost therefor becomes a problem. Furthermore, the known method has a problem that the Se leaching efficiency is as low as 80 to 89 wt%.
The leaching rate of Te is as low as 70 to 80 wt%, and there is a similar problem.

【0006】したがって、本発明は有価物回収後の濾液
をそのまま電解工程にもどすことができ、かつSe,T
eなどの浸出率が高く、槽の材質の耐食性の要求が高く
ないとの特徴をもつオートクレーブによる銅電解アノー
ドスライム処理法を提供することを目的とする。
Therefore, according to the present invention, the filtrate after recovery of valuable materials can be directly returned to the electrolysis step, and Se, T
It is an object of the present invention to provide a copper electrolytic anode slime treatment method using an autoclave, which is characterized by a high leaching rate of e and the like and that the requirement for corrosion resistance of the material of the tank is not high.

【0007】[0007]

【課題を解決するための手段】本発明者らは、アノード
スライムからの有価物回収方法を種々検討を重ねた結
果、Ag,Se,Teの回収方法としては、アノードス
ライムを、硫酸酸性溶液中で液温が180℃以上、遊離
硫酸濃度が100〜200g/L,スラリー濃度が20
0g/L以下、かつ酸素分圧5kg/cm2 以上の酸素
富化ガスによる加圧条件下で浸出処理することを特徴と
する方法の発明を完成した。
As a result of various studies on the method of recovering valuable substances from anode slime, the present inventors have found that as a method of recovering Ag, Se, Te, the anode slime is in a sulfuric acid acid solution. At a liquid temperature of 180 ° C or higher, a free sulfuric acid concentration of 100 to 200 g / L, and a slurry concentration of 20.
The invention of a method characterized by carrying out a leaching treatment under a pressurized condition with an oxygen-enriched gas having an oxygen partial pressure of 0 g / L or less and an oxygen partial pressure of 5 kg / cm 2 or more has been completed.

【0008】アノードスライムは銅電解工程から産出す
るものであって、その組成は一般にCu:20〜30w
t%、As:2〜5wt%、Te:1〜5wt%、S
e:5〜15wt%、Ag:10〜20wt%、Au:
0.5〜2wt%、Pb:5〜10wt%である。
Anode slime is produced from a copper electrolysis process, and its composition is generally Cu: 20 to 30 w.
t%, As: 2 to 5 wt%, Te: 1 to 5 wt%, S
e: 5 to 15 wt%, Ag: 10 to 20 wt%, Au:
0.5-2 wt% and Pb: 5-10 wt%.

【0009】上記組成範囲内のアノードスライムを下記
条件でオートクレーブ浸出した結果を図2を参照して説
明する。 スラリー濃度:50g/L H2 SO4 濃度:200g/L 酸素分圧:5kg/cm2 回転数:800rpm 加熱温度(加圧酸素浸出温度):80〜250℃
The results of autoclave leaching of anode slime in the above composition range under the following conditions will be described with reference to FIG. Slurry concentration: 50 g / L H 2 SO 4 concentration: 200 g / L Oxygen partial pressure: 5 kg / cm 2 Rotation speed: 800 rpm Heating temperature (pressurized oxygen leaching temperature): 80 to 250 ° C.

【0010】図2には、加圧酸素浸出温度に対する各有
価成分の浸出率が示されている。同図より加圧浸出温度
が180℃となると、有価成分、特にSe,Agの浸出
率が急激に高くなることがわかる。この結果より本発明
においては加圧浸出温度を180℃以上に限定した。
FIG. 2 shows the leaching rate of each valuable component with respect to the pressurized oxygen leaching temperature. From the figure, it can be seen that when the pressure leaching temperature is 180 ° C., the leaching rate of valuable components, especially Se and Ag, rapidly increases. From this result, in the present invention, the pressure leaching temperature was limited to 180 ° C or higher.

【0011】また、オートクレーブの加圧ガスを空気と
すると圧力が高くなるとともに、浸出率が高くなる傾向
はあるものの、Se,Te,Agの浸出率が低い。これ
に対して加圧ガスとして酸素富化ガスを使用し、酸素分
圧を5kg/cm2 とすることにより、浸出率をCu:
99wt%以上、Ag:85wt%以上、Se:95w
t%以上、Te:85wt%以上として浸出することが
可能になる。酸素富化率は25体積%以上が好ましい。
When the pressurized gas in the autoclave is air, the pressure increases and the leaching rate tends to increase, but the leaching rates of Se, Te and Ag are low. On the other hand, by using an oxygen-enriched gas as the pressurized gas and setting the oxygen partial pressure to 5 kg / cm 2 , the leaching rate is Cu:
99wt% or more, Ag: 85wt% or more, Se: 95w
Leaching is possible with t% or more and Te: 85 wt% or more. The oxygen enrichment rate is preferably 25% by volume or more.

【0012】オートクレーブ浸出に使用される硫酸酸性
溶液の濃度が100g/L未満であると、浸出されたS
+4,Te+4,Ag+ ,Cu+2,As+5などが加水分解
してCuSeO3 ,CuTeO3 ,Cu(OH)2 ,T
eO2 ,Cu(AsO32などを生成し、これらの加
水分解生成物が有価物の浸出を妨害する。一方濃度が2
00g/Lを超えるとアノードスライム中のFe,C
u,Asなどの有価物の浸出率が共通イオン効果により
低下する。硫酸としては銅電解浄液段階からの脱Ni後
液を使用することができるが、そのNi濃度は20g/
L以下であることが好ましい。Ni濃度は20g/Lよ
り高くなると、共通イオン(SO4 -2 ,H+ )の効果に
より、有価物の浸出率が低下するためである。
If the concentration of the sulfuric acid acidic solution used for autoclave leaching is less than 100 g / L, the leached S
e +4 , Te +4 , Ag + , Cu +2 , As +5 are hydrolyzed to form CuSeO 3 , CuTeO 3 , Cu (OH) 2 , T
eO 2 , Cu (AsO 3 ) 2 and the like are produced, and these hydrolysis products hinder the leaching of valuables. On the other hand, the concentration is 2
If it exceeds 00 g / L, Fe and C in the anode slime
The leaching rate of valuable materials such as u and As decreases due to the common ion effect. As the sulfuric acid, a solution after removal of Ni from the copper electrolytic cleaning step can be used, but the Ni concentration is 20 g /
It is preferably L or less. This is because when the Ni concentration is higher than 20 g / L, the leaching rate of valuables decreases due to the effect of common ions (SO 4 -2 , H + ).

【0013】さらにオートクレーブ中のスラリー濃度が
200g/Lより高くなると、Ag,Cu,Asなどの
浸出率が溶解度の面から低下し、浸出後液からの有価物
回収が困難になる。
Further, when the slurry concentration in the autoclave is higher than 200 g / L, the leaching rate of Ag, Cu, As, etc. decreases from the aspect of solubility, and it becomes difficult to recover valuable substances from the liquid after leaching.

【0014】以上の浸出後のスライム(「脱銅スライ
ム」と言われる)は未浸出のAuを高濃度に含有するの
で、通常の精金銀工程にて処理し、これらの有価物を回
収する。
Since the above-mentioned leached slime (referred to as "copper-free slime") contains a high concentration of unleached Au, it is processed in a usual fine gold and silver step to recover these valuables.

【0015】オートクレーブ浸出により得られた脱銅後
液にHClを添加する脱銀工程では塩化銀が得られる。
浸出液に塩素イオンを好ましくは化学当量の1.05倍
以上添加してAg1+をAgClとして固定し脱銀する。
塩素イオンとの接触はHCl水溶液を付加する。あるい
はCl2 とSO2 を同時に吹込むことにより行う。これ
は還元後直ちに塩化したいためである。塩素イオンの添
加量はAgの1kg当たり0.34〜0.36kgが、
チオ硫酸ナトリウム溶液は10〜20wt%の濃度が、
それぞれ好ましい。Agの電解採取条件は通常のもので
ある。
Silver chloride is obtained in the desilvering step in which HCl is added to the post-copper removal solution obtained by autoclave leaching.
Chloride ions are preferably added to the leachate at 1.05 times or more the chemical equivalent to fix Ag 1+ as AgCl for desilvering.
Contact with chloride ions adds aqueous HCl. Alternatively, it is performed by simultaneously blowing Cl 2 and SO 2 . This is because it is desired to salify immediately after reduction. The amount of chlorine ions added is 0.34 to 0.36 kg per 1 kg of Ag,
The sodium thiosulfate solution has a concentration of 10 to 20 wt%,
Each is preferred. Electrolytic extraction conditions for Ag are usual.

【0016】上記の方法により脱銀後液中のCl- 濃度
は30mg/l以下に抑制することができる。その後の
固液分離後得られる固形分(塩化銀)をチオ硫酸ナトリ
ウム溶液で溶解し、得られる溶液から銀を電解採取す
る。塩化銀70gを200g/L−Na223 溶液
1Lにリパルブし、約60分間常温下で攪拌した結果、
塩化銀がほぼ完全に溶解し、次の組成を示す銀溶解液が
得られる。 Ag:51.6 g/L Sb: 0.10g/L As: 0.01g/L
By the above method, the Cl concentration in the desilvered solution can be suppressed to 30 mg / l or less. The solid content (silver chloride) obtained after the subsequent solid-liquid separation is dissolved in a sodium thiosulfate solution, and silver is electrolytically collected from the obtained solution. 70 g of silver chloride was repulsed in 200 g / L-Na 2 S 2 O 3 solution 1 L and stirred at room temperature for about 60 minutes,
Silver chloride is almost completely dissolved, and a silver solution having the following composition is obtained. Ag: 51.6 g / L Sb: 0.10 g / L As: 0.01 g / L

【0017】銀−チオ硫酸ナトリウム溶液から通常の銀
電解採取により効率よく電着銀を回収することができ
る。電解条件及び電解成績は例えば以下のとおりであ
る。電解条件 陰極:ステンレス(SUS316) 電流密度:100A/m2 極間(電極面間)距離:50mm 電解液温度:25〜28℃ 液循環量:200cc/min(電解液量−4L)電解成績 電流効率:85% 電解電圧:2−3V(平均) 電着銀品位:99wt%以上
Electrodeposited silver can be efficiently recovered from a silver-sodium thiosulfate solution by ordinary silver electrowinning. The electrolysis conditions and electrolysis results are as follows, for example. Electrolysis conditions Cathode: Stainless steel (SUS316) Current density: 100 A / m 2 Between electrodes (between electrode surfaces) Distance: 50 mm Electrolyte temperature: 25-28 ° C. Liquid circulation rate: 200 cc / min (electrolyte rate-4 L) Electrolysis result current Efficiency: 85% Electrolysis voltage: 2-3V (average) Electrodeposited silver grade: 99 wt% or more

【0018】あるいは固形分とソーダ灰と混合して炭酸
化し、炭酸銀を加熱分解し、銀メタルとしてその他の有
価分から分離・回収することができる。ソーダ灰と混合
による炭酸化は700〜1100℃で行うことが好まし
い。精金銀工程にて銀を分離・精製する。
Alternatively, the solid content and soda ash can be mixed to be carbonized, the silver carbonate can be thermally decomposed, and the silver metal can be separated and recovered from other valuable components. Carbonation by mixing with soda ash is preferably carried out at 700 to 1100 ° C. Separation and purification of silver in the fine gold and silver process.

【0019】[0019]

【作用】以上説明したように、オートクレーブ浸出温度
の特定、酸素富化ガスの使用、ならびに酸素分圧、遊離
酸素濃度及びスラリー濃度の特定により有価分を高い浸
出率でオートクレーブ浸出することができる。また、A
gの回収はAgClを経て電解あるいはソーダ処理によ
るので、処理溶液のpHを過度に低くすることがなく効
率よく回収できる。
As described above, the valuable component can be leached in the autoclave at a high leaching rate by specifying the autoclave leaching temperature, using the oxygen-enriched gas, and specifying the oxygen partial pressure, free oxygen concentration and slurry concentration. Also, A
Since g is recovered by electrolysis or soda treatment through AgCl, the pH of the treatment solution can be efficiently recovered without excessively lowering the pH.

【0020】[0020]

【実施例】以下本発明の実施例を図1のフローシートに
より説明する。
Embodiments of the present invention will be described below with reference to the flow sheet of FIG.

【0021】銅電解のアノードスライム(銅殿物)は組
成がCu:25.4wt%,As:4.3wt%、T
e:3.1wt%,Se:11.6wt%,Ag:1
8.4wt%,Au:1.54wt%,Pb:6.3w
t%であり、以下これが1kgであることを前提として
処理液等の物量を説明する。SUS316製オートクレ
ーブ内に、前記銅殿物1kgとともに銅電解浄液工程か
らの脱Ni後液(遊離H2 SO4 :200g/L,N
i:8.5g/L含有)10Lを入れ、190℃に加熱
しまた10kg/cm2 に酸素分圧を設定し加圧して浸
出を行った。この結果を表1に示す。
The composition of the copper electrolysis anode slime (copper oxide) is Cu: 25.4 wt%, As: 4.3 wt%, T
e: 3.1 wt%, Se: 11.6 wt%, Ag: 1
8.4wt%, Au: 1.54wt%, Pb: 6.3w
The amount of the processing liquid and the like will be described below on the premise that it is 1%. In a SUS316 autoclave, 1 kg of the copper precipitate and the solution after Ni removal from the copper electrolytic purification step (free H 2 SO 4 : 200 g / L, N
10 g of i: 8.5 g / L) was added, heated to 190 ° C., oxygen partial pressure was set to 10 kg / cm 2, and pressure was applied to perform leaching. The results are shown in Table 1.

【0022】 (表1) 条 件 浸出 浸 出 率(wt%) 実 験 遊離スラリー 液量 Se Te Ag Cu As Pb 内 容 酸 濃度 g /L wt % L 比 1 50 50 10.6 70 80 85 80 90 0.3 較 2 50 100 10.5 50 65 66 70 75 0.2 例 3 50 200 10.4 42 35 41 62 53 0.1 4 100 50 10.6 93 92 93 95 95 0.2 本 5 100 100 10.5 80 87 60 85 90 0.1 発 6 100 200 10.4 60 80 50 80 85 0.1 7 200 50 10.6 99 90 91 99 98 0.2 明 8 200 100 10.5 95 85 85 97 95 0.1 9 200 200 10.4 90 77 75 95 93 0.1 比 10 300 50 10.6 95 75 80 99 97 0.1 較 11 300 100 10.5 90 60 70 95 93 0.0 例 12 300 200 10.4 85 30 50 90 90 0.0 [0022] (Table 1) Article matter leaching immersion ejection fraction (wt%) Experimental free slurry liquid amount Se Te Ag Cu As Pb Description acid concentration g / L wt% L ratio 1 50 50 10.6 70 80 85 80 90 0.3 Comparison 2 50 100 10.5 50 65 66 70 75 0.2 Example 3 50 200 10.4 42 35 41 62 53 0.1 4 100 50 10.6 93 92 93 95 95 0.2 5 5 100 100 10.5 80 87 60 85 90 0.1 Departure 6 100 200 10.4 60 80 50 80 85 0.1 7 200 50 10.6 99 90 91 99 98 0.2 Might 8 200 100 10.5 95 85 85 97 95 0.1 9 200 200 10.4 90 77 75 95 93 0.1 Ratio 10 300 50 10.6 95 75 80 99 97 0.1 Comparison 11 300 100 10.5 90 60 70 95 93 0.0 Example 12 300 200 10.4 85 30 50 90 90 0.0

【0023】[0023]

【発明の効果】以上説明したように、本発明によりアノ
ードスライムからの銀の回収が湿式法で可能になり、ま
た以下のような利点がもたらされた。 (イ)Ag,Se,Teを除去した後の硫酸銅溶液を直
接銅電解工程に戻すことができるので、処理効率が高く
なりかつ使用原料を削減することができる。 (ロ)また、オートクレーブ浸出液にSe,Teが高収
率で回収される。 (ハ)処理の連続化・自動化が容易であるため、金銀が
分離・精製工程に停滞する日数が大幅に短縮され、しか
も省力化が可能になる。
As described above, according to the present invention, silver can be recovered from the anode slime by the wet method, and the following advantages are brought about. (A) Since the copper sulfate solution after removing Ag, Se, and Te can be directly returned to the copper electrolysis step, the treatment efficiency is increased and the raw materials used can be reduced. (B) Further, Se and Te are recovered in the autoclave leachate in high yield. (C) Since it is easy to make the process continuous and automated, the number of days that gold and silver are stalled in the separation and purification process is greatly reduced, and labor can be saved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法の一実施例を示すフローチャートであ
る。
FIG. 1 is a flowchart showing an embodiment of the method of the present invention.

【図2】加圧酸化浸出温度と浸出率の関係を示すグラフ
である。
FIG. 2 is a graph showing the relationship between the pressure oxidation leaching temperature and the leaching rate.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 銅電解アノードスライムの湿式処理によ
る有価物回収方法において、アノードスライムを、遊離
硫酸濃度が100〜200g/Lの硫酸酸性溶液中で液
温が180℃以上、スラリー濃度が200g/L以下で
かつ酸素分圧5kg/cm2 以上の酸素富化ガス加圧条
件下で浸出処理することを特徴とする銅電解アノードス
ライムの湿式処理方法。
1. A method for recovering valuables by wet treatment of a copper electrolytic anode slime, wherein the anode slime is in a sulfuric acid acidic solution having a free sulfuric acid concentration of 100 to 200 g / L at a liquid temperature of 180 ° C. or higher and a slurry concentration of 200 g / L. A wet treatment method for a copper electrolytic anode slime, which comprises leaching under an oxygen-enriched gas pressure condition of L or less and an oxygen partial pressure of 5 kg / cm 2 or more.
JP9020292A 1992-03-16 1992-03-16 Wet process treatment of copper electrolyzing anode slime Pending JPH05311258A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9020292A JPH05311258A (en) 1992-03-16 1992-03-16 Wet process treatment of copper electrolyzing anode slime

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9020292A JPH05311258A (en) 1992-03-16 1992-03-16 Wet process treatment of copper electrolyzing anode slime

Publications (1)

Publication Number Publication Date
JPH05311258A true JPH05311258A (en) 1993-11-22

Family

ID=13991908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9020292A Pending JPH05311258A (en) 1992-03-16 1992-03-16 Wet process treatment of copper electrolyzing anode slime

Country Status (1)

Country Link
JP (1) JPH05311258A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1301338C (en) * 2005-09-20 2007-02-21 云南冶金集团总公司 Novel copper recovery method by copper anode mud pressurization and pickling
JP2007505999A (en) * 2003-09-23 2007-03-15 オウトクンプ テクノロジー オサケ ユキチュア Anode sludge treatment method
US7479262B2 (en) 2002-03-15 2009-01-20 Mitsubishi Materials Corporation Method for separating platinum group element
CN102828029A (en) * 2012-07-27 2012-12-19 紫金矿业集团股份有限公司 Method for preliminarily separating valuable metals from copper anode slime
WO2013145849A1 (en) * 2012-03-30 2013-10-03 Jx日鉱日石金属株式会社 Method for eluting silver and metal adsorbed by activated carbon, and method for recovering metal and silver employing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7479262B2 (en) 2002-03-15 2009-01-20 Mitsubishi Materials Corporation Method for separating platinum group element
JP2007505999A (en) * 2003-09-23 2007-03-15 オウトクンプ テクノロジー オサケ ユキチュア Anode sludge treatment method
JP4866732B2 (en) * 2003-09-23 2012-02-01 オウトテック オサケイティオ ユルキネン Anode sludge treatment method
CN1301338C (en) * 2005-09-20 2007-02-21 云南冶金集团总公司 Novel copper recovery method by copper anode mud pressurization and pickling
WO2013145849A1 (en) * 2012-03-30 2013-10-03 Jx日鉱日石金属株式会社 Method for eluting silver and metal adsorbed by activated carbon, and method for recovering metal and silver employing same
JPWO2013145849A1 (en) * 2012-03-30 2015-12-10 Jx日鉱日石金属株式会社 Method for eluting gold and silver adsorbed on activated carbon and method for recovering gold and silver using the same
CN102828029A (en) * 2012-07-27 2012-12-19 紫金矿业集团股份有限公司 Method for preliminarily separating valuable metals from copper anode slime

Similar Documents

Publication Publication Date Title
US5487819A (en) Production of metals from minerals
JP3879126B2 (en) Precious metal smelting method
JPS622616B2 (en)
US9630844B2 (en) Hydrometallurgical process for the recovery of tellurium from high lead bearing copper refinery anode slime
AU738376B2 (en) Method for producing copper in hydrometallurgical process
JP3087758B1 (en) Method for recovering valuable metals from copper electrolytic slime
US4389248A (en) Method of recovering gold from anode slimes
ZA200501592B (en) Method for the recovery of metals using chloride leaching and extraction
AU2004274670A1 (en) Method for processing anode sludge
EP1497473A1 (en) Method for the recovery of gold
JPH05311264A (en) Method for recovering valuable matter by wet process treatment of copper electrolyzing slime
WO2018138917A1 (en) Bismuth purification method
JPH05311258A (en) Wet process treatment of copper electrolyzing anode slime
US5939042A (en) Tellurium extraction from copper electrorefining slimes
JP2009209421A (en) Method for producing high purity silver
US3737381A (en) Apparatus for treating copper ores
US4374098A (en) Method of concentrating silver from anode slime
EP3155135A1 (en) Process of extracting gold and silver from ores and mining by-products
EP0061468B1 (en) Recovery of silver from ores and concentrates
JPH05247552A (en) Decopperizing method of lead electrolysis anode slime by wet process treatment
KR100415448B1 (en) Method of recovering silver
EP0161224B1 (en) Process for copper chloride aqueous electrolysis
JP2007231397A (en) Method for refining silver chloride
US4634507A (en) Process for the production of lead from sulphide ores
JPS62500388A (en) Production of zinc from ores and concentrates