JPH0776601B2 - Soda recovery boiler - Google Patents

Soda recovery boiler

Info

Publication number
JPH0776601B2
JPH0776601B2 JP60042691A JP4269185A JPH0776601B2 JP H0776601 B2 JPH0776601 B2 JP H0776601B2 JP 60042691 A JP60042691 A JP 60042691A JP 4269185 A JP4269185 A JP 4269185A JP H0776601 B2 JPH0776601 B2 JP H0776601B2
Authority
JP
Japan
Prior art keywords
pressure
recovery boiler
temperature
soda recovery
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60042691A
Other languages
Japanese (ja)
Other versions
JPS61202002A (en
Inventor
通正 八木
隆之 前田
貞夫 水島
和春 魚山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60042691A priority Critical patent/JPH0776601B2/en
Publication of JPS61202002A publication Critical patent/JPS61202002A/en
Publication of JPH0776601B2 publication Critical patent/JPH0776601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、ボイラの腐食を軽減しながら発電プラントの
出力を最大にし得るようにしたソーダ回収ボイラに係
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a soda recovery boiler which is capable of maximizing the output of a power plant while reducing boiler corrosion.

従来の技術 近年蒸気動力プラントでは省エネ、高効率化の傾向が顕
著であり、製紙パルプ工場の主動力源であるソーダ回収
ボイラにおいても、高圧高温化の傾向にあるが、ソーダ
回収ボイラ特有のスメルト腐食による火炉管、過熱管の
高湿腐食のために今一歩の高温高圧化が難しい状態にあ
るのが現状である。
2. Description of the Related Art In recent years, there has been a remarkable tendency toward energy saving and high efficiency in steam power plants, and even in the soda recovery boiler, which is the main power source of paper pulp mills, there is a tendency toward high pressure and high temperature. It is the current situation that it is difficult to raise the temperature and pressure to the next level due to the high humidity corrosion of furnace tubes and superheated tubes due to corrosion.

すなわち、従来のソーダ回収ボイラの過熱器出口蒸気条
件は圧力65Kg/cm2g、温度450℃以下が一般的であった
が、最近は圧力100Kg/cm2g、温度500℃が一般的になっ
て来ているのが時代の趨勢で、最近ではさらに一歩進ん
で、省エネ高効率化のために圧力120Kg/cm2g、温度540
℃の蒸気条件を希望する顧客のニーズが高まりつつあ
る。
In other words, the conventional steam condition for the superheater outlet of the soda recovery boiler was pressure 65 Kg / cm 2 g and temperature 450 ° C or less, but recently pressure 100 Kg / cm 2 g and temperature 500 ° C have become common. The trend of the times is coming, and recently, we have taken a step further, and in order to save energy and improve efficiency, pressure 120 Kg / cm 2 g, temperature 540
The needs of customers who desire steam conditions of ° C are increasing.

ところが、ソーダ回収ボイラにおいてはソーダ回収ボイ
ラ特有の原因(スメルト腐食)により、一般ボイラでは
540〜569℃の蒸気温度でも10年程度の寿命が期待できる
最高級材SUS鋼管でも、蒸気温度480℃で5年程度しかも
たない。また、圧力100Kg/cm2g、温度500℃という蒸気
条件までは対応できた材料(25Cr鋼管等特殊管)も、圧
力120Kg/cm2g、温度540℃という蒸気条件になると、そ
の耐用寿命に問題があり、今後新しい材料が開発されな
い限り実用化は難しいのが現状である。
However, in the soda recovery boiler, due to the peculiar cause (smelt corrosion) of the soda recovery boiler, in the general boiler
Even the highest grade SUS steel pipe, which can be expected to have a life of about 10 years even at a steam temperature of 540 to 569 ℃, has a steam temperature of 480 ℃ for only 5 years. In addition, even materials that could handle steam conditions up to a pressure of 100 Kg / cm 2 g and a temperature of 500 ° C (special pipes such as 25Cr steel pipes) will have a useful life under the steam conditions of a pressure of 120 Kg / cm 2 g and a temperature of 540 ° C. There is a problem, and it is the current situation that practical application is difficult unless new materials are developed in the future.

第3図及び第4図は従来の異なる二例を示し、第3図は
低圧タービン無しの従来例の系統図であり、また第4図
は低圧タービン有りの従来例の系統図である。
3 and 4 show two different conventional examples, FIG. 3 is a system diagram of a conventional example without a low-pressure turbine, and FIG. 4 is a system diagram of a conventional example with a low-pressure turbine.

これらの図において、ソーダ回収ボイラ01は過熱器02を
備えており、この過熱器で過熱された高温高圧の蒸気が
高圧タービン04に導かれ、この高圧タービンを出た低圧
低温の蒸気が第3図では工場での雑使用などのためのプ
ロセスへ供給され、また第4図では低圧タービン05へ導
入されるようになっている。なお、06は発電機である。
In these figures, the soda recovery boiler 01 is equipped with a superheater 02, the high-temperature and high-pressure steam superheated by this superheater is guided to a high-pressure turbine 04, and the low-pressure low-temperature steam exiting this high-pressure turbine is the third In the figure, it is supplied to the process for miscellaneous use in the factory, and in FIG. 4, it is introduced to the low pressure turbine 05. In addition, 06 is a generator.

上記のソーダ回収ボイラ01においては、火炉に投入され
た65〜70%濃度の黒液中の残存水分を先ず蒸発させ、固
形物を燃焼させる。そして、固形物に含まれる硫酸ソー
ダを硫化ソーダに還元させ、炉底より「スメルト」とし
て取り出し、薬品を回収するわけであるが、ガス中の硫
黄硫化物やダスト中に含まれるNa2SO4、NaCl、K等によ
り過熱器02に腐食が起る。
In the soda recovery boiler 01, the residual water in the black liquor having a concentration of 65 to 70% charged into the furnace is first evaporated to burn the solid matter. Then, sodium sulfate contained in the solid matter is reduced to sodium sulfide, taken out as "smelt" from the furnace bottom, and the chemicals are collected, but sulfur sulfide in the gas and Na 2 SO 4 contained in the dust are collected. , NaCl, K, etc. cause corrosion in the superheater 02.

NaCl、Kが存在すると、通常600℃〜700℃である灰の融
点が530℃〜550℃近くまで大きく低下し、腐食の進行が
顕著となる。従って、ソーダ回収ボイラにおいては、過
熱器出口蒸気条件を500℃以下に押さえることが腐食防
止の最善の方法である。
When NaCl and K are present, the melting point of ash, which is usually 600 ° C to 700 ° C, is greatly lowered to near 530 ° C to 550 ° C, and the progress of corrosion becomes remarkable. Therefore, in the soda recovery boiler, keeping the steam condition at the superheater outlet below 500 ° C is the best way to prevent corrosion.

第2図は、ソーダ回収ボイラにおける過熱器管のメタル
温度と腐食量との関係を示す。この第2図から、ソーダ
回収ボイラにおいては過熱器出口の蒸気温度が極めて重
要な要素であり、ソーダ回収ボイラ特有の問題として高
温化が如何に難しいかが伺い知れる。特に、過熱器管の
ソーダ温度が500℃の場合の腐食量と550℃の場合の腐食
量とを比較すると、500℃の場合の方が腐食量は1/5程度
となる。従って、ソーダ回収ボイラにおいては過熱器出
口蒸気温度をできるだけ低く押さえることが腐食防止の
最善の方法である。なお、第2図はSUS-321HTB鋼管での
試験結果を示している。
FIG. 2 shows the relationship between the metal temperature of the superheater tube and the corrosion amount in the soda recovery boiler. From FIG. 2, it can be understood that the steam temperature at the outlet of the superheater is a very important factor in the soda recovery boiler, and how difficult it is to raise the temperature as a problem peculiar to the soda recovery boiler. In particular, comparing the amount of corrosion when the soda temperature of the superheater pipe is 500 ° C. and the amount of corrosion when the soda temperature is 550 ° C., the amount of corrosion is about 1/5 at 500 ° C. Therefore, in the soda recovery boiler, keeping the steam temperature at the superheater outlet as low as possible is the best way to prevent corrosion. In addition, FIG. 2 shows the test results of the SUS-321HTB steel pipe.

発明が解決しようとする課題 ソーダ回収ボイラを含む動力プラントの高効率化をはか
る計画において、既設動力プラントに低圧低温(例えば
30〜70Kg/cm2g×350〜450℃)の蒸気タービンを有する
場合に、新しく高圧高温ソーダ回収ボイラ、高圧タービ
ンを設置して高温高圧発電プラント方式として高効率化
を計るとき、既設低圧低温タービンの蒸気条件に高圧タ
ービンの排気をマッチさせながら高発電出力を得ようと
すれば、新設ソーダ回収ボイラの蒸気条件はいきおい高
くせざるを得ず、その結果ソーダ回収ボイラの腐食問題
が発生する。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention In a plan to improve efficiency of a power plant including a soda recovery boiler, low pressure and low temperature (for example,
30-70Kg / cm 2 g × 350-450 ℃) If you have a steam turbine with a high pressure and high temperature soda recovery boiler and a high pressure turbine to increase the efficiency as a high temperature and high pressure power plant system, the existing low pressure and low temperature If we try to obtain high power generation output while matching the exhaust gas of the high-pressure turbine to the steam condition of the turbine, the steam condition of the new soda recovery boiler will have to be made extremely high, resulting in the corrosion problem of the soda recovery boiler. .

一方、腐食が発生しない程度にソーダ回収ボイラの蒸気
条件を低くすると、高圧タービンの出力は少くなり、高
温高圧発電プラント設置のメリットがなくなる。
On the other hand, if the steam condition of the soda recovery boiler is lowered to the extent that corrosion does not occur, the output of the high pressure turbine will be small, and the advantage of installing a high temperature and high pressure power plant will be lost.

本発明は、このような従来技術の課題を解決するために
なされたもので、ソーダ回収ボイラの腐食を軽減しなが
ら発電プラントの出力を最大にし得るようにすることを
目的とする。
The present invention has been made in order to solve the problems of the conventional art, and an object thereof is to reduce the corrosion of the soda recovery boiler and maximize the output of the power generation plant.

課題を解決するための手段 上記の課題を解決するために、本発明は、低圧低温の蒸
気タービンを有する動力プラントで高圧高温ソーダ回収
ボイラならびに高圧タービンを設置した装置に於て、ソ
ーダ回収ボイラに過熱器と再熱器を設け、過熱器を出た
高圧高温の蒸気を高圧タービンに導き、高圧タービンを
出た低圧蒸気を再び前記再熱器に戻し、再過熱した蒸気
を低圧タービンへ導入するようにしたものである。
Means for Solving the Problems In order to solve the above problems, the present invention is a power plant having a low-pressure low-temperature steam turbine, in a device equipped with a high-pressure high-temperature soda recovery boiler and a high-pressure turbine, in the soda recovery boiler A superheater and a reheater are provided, the high-pressure and high-temperature steam discharged from the superheater is guided to the high-pressure turbine, the low-pressure steam discharged from the high-pressure turbine is returned to the reheater, and the reheated steam is introduced to the low-pressure turbine. It was done like this.

作用 上記の手段によれば、既設ラインに低圧低温の蒸気ター
ビンを有する動力プラントにおいて、高圧高温ソーダ回
収ボイラならびに高圧タービンを設置して、プラントの
高効率化を計るためソーダ回収ボイラに従来型の過熱器
に加え再熱器を新たに設置したことにより、ソーダ回収
ボイラの蒸気条件を腐食に許容できる範囲に低く押さえ
腐食を軽減しながら、既設タービンを含む高温高圧発電
プラントの出力を最大にすることができる。
Operation According to the above means, in a power plant having a low-pressure low-temperature steam turbine in an existing line, a high-pressure high-temperature soda recovery boiler and a high-pressure turbine are installed, and a conventional soda recovery boiler is installed in the soda recovery boiler in order to improve the efficiency of the plant. By newly installing a reheater in addition to the superheater, the steam conditions of the soda recovery boiler are kept low within the allowable range for corrosion and corrosion is reduced, while maximizing the output of the high temperature and high pressure power plant including the existing turbine. be able to.

実施例 以下、第1図を参照して本発明の一実施例について詳細
に説明する。
Embodiment Hereinafter, one embodiment of the present invention will be described in detail with reference to FIG.

第1図において、1はソーダ回収ボイラ、2はその過熱
器、4は高圧タービン、5は低圧タービン、6は発電機
であって、これらはすべて既設のものであるが、本発明
によれば、ソーダ回収ボイラ1に従来型の過熱器2に加
え再熱器3が新たに設けられ、過熱器2を出た高圧高温
の蒸気が高圧タービン4に導かれ、高圧タービン4を出
た低圧蒸気が再び再熱器3に戻され、再過熱した蒸気が
低圧タービン5へ導入されるようになっている。
In FIG. 1, 1 is a soda recovery boiler, 2 is a superheater thereof, 4 is a high-pressure turbine, 5 is a low-pressure turbine, and 6 is a generator, all of which are existing ones. , A soda recovery boiler 1 is additionally provided with a reheater 3 in addition to the conventional superheater 2, and the high-pressure high-temperature steam that has exited the superheater 2 is guided to the high-pressure turbine 4 and the low-pressure steam that has exited the high-pressure turbine 4. Is again returned to the reheater 3, and the reheated steam is introduced into the low pressure turbine 5.

このようにソーダ回収ボイラ1に再熱器3を備えること
により、過熱器2の温度を過度に高くすることをなく
し、ソーダ回収ボイラ特有の問題である燃焼排ガスによ
る過熱器管の腐食を軽減しながら、発電プラントの総合
出力(高圧タービン出力+低圧タービン出力)を増加さ
せることができる。
By thus providing the soda recovery boiler 1 with the reheater 3, it is possible to prevent the temperature of the superheater 2 from becoming excessively high and reduce the corrosion of the superheater pipe due to the combustion exhaust gas, which is a problem peculiar to the soda recovery boiler. However, the total output of the power plant (high-pressure turbine output + low-pressure turbine output) can be increased.

一具体例として、第1図に示した本発明と第4図に示し
た従来例と比較すると、次のとおりである。
As one specific example, the present invention shown in FIG. 1 and the conventional example shown in FIG. 4 are compared as follows.

(i)過熱器出口蒸気温度 従来例:505℃(想定メタル温度530℃) 本発明:485℃(想定メタル温度510℃) この条件で第2図を参照して過熱器の腐食量を比較する
と、本発明は従来例に比し1/2程度となり、腐食低減に
対する効果大である。
(I) Superheater outlet steam temperature Conventional example: 505 ° C (assumed metal temperature 530 ° C) Present invention: 485 ° C (assumed metal temperature 510 ° C) Under these conditions, referring to Fig. 2, comparing the amounts of corrosion of the superheater The present invention is about 1/2 the size of the conventional example, and has a great effect on reducing corrosion.

(ii)タービン出力 従来例: 4290KW+16460KW=20750KW(100%) 本発明: 4460KW+16450KW=20910KW(101%) なお、タービン出力において、従来例として第4図に示
す114Kg/cm2g×505℃の蒸気条件を取り上げた理由は、
比較となるベースを合わせるために、低圧タービン入口
の蒸気条件を本発明の場合と揃えたためである。すなわ
ち、従来例の高圧タービン出口排気条件が本発明の低圧
タービン入口の再熱蒸気条件64Kg/cm2g×450℃とマッチ
するようにして高圧タービン入口蒸気条件を求め、これ
により114Kg/cm2g×505℃としたものである。
(Ii) Turbine Output conventional: 4290KW + 16460KW = 20750KW (100 %) the invention: 4460KW + 16450KW = 20910KW (101 %) It should be noted that, in the turbine output, shown in FIG. 4 as a conventional example 114Kg / cm 2 g × 505 ℃ steam conditions The reason for taking up is
This is because the steam conditions at the inlet of the low-pressure turbine are aligned with those of the present invention in order to match the base for comparison. That is, the high-pressure turbine outlet exhaust condition of the conventional example is to obtain the high-pressure turbine inlet steam condition so as to match the reheat steam condition of the low-pressure turbine inlet of the present invention 64 Kg / cm 2 g × 450 ° C, thereby 114 Kg / cm 2 It is g × 505 ° C.

このようにして低圧タービン入口蒸気条件を揃えた状態
にして、ソーダ回収ボイラの入熱及び熱効率を同じとし
て、ボイラ出口蒸気発生量を求め比較を行なうと次のと
おりとなる。
In this way, when the low-pressure turbine inlet steam conditions are aligned and the heat input and thermal efficiency of the soda recovery boiler are the same, the boiler outlet steam generation amount is calculated and compared.

発明の効果 以上述べたように、本発明によれば、既設ラインに低圧
低温の蒸気タービンを有する動力プラントにおいて、高
圧高温ソーダ回収ボイラならびに高圧タービンを設置し
て、プラントの高効率化を計るためソーダ回収ボイラに
従来型の過熱器に加え再熱器を新たに設置したことによ
り、ソーダ回収ボイラの蒸気条件を腐食に許容できる範
囲に低く押えて腐食を軽減しながら、既設タービンを含
む高温高圧発電プラントの出力を最大にすることができ
る。
As described above, according to the present invention, in a power plant having a low-pressure low-temperature steam turbine in an existing line, a high-pressure high-temperature soda recovery boiler and a high-pressure turbine are installed to improve the efficiency of the plant. By installing a reheater in addition to the conventional superheater in the soda recovery boiler, the steam conditions of the soda recovery boiler are kept low enough to allow corrosion, and corrosion is reduced, while high temperature and high pressure including existing turbines are used. The output of the power plant can be maximized.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す系統図、第2図はソー
ダ回収ボイラにおける過熱器等のメタル温度と腐食量と
の関係を示す図、第3図及び第4図は従来の異なる二例
を示す系統図である。 1……ソーダ回収ボイラ、2……過熱器、3……再熱
器、4……高圧タービン、5……低圧タービン、6……
発電機。
FIG. 1 is a system diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing a relationship between a metal temperature of a superheater or the like in a soda recovery boiler and a corrosion amount, and FIGS. 3 and 4 are different from conventional ones. It is a systematic diagram which shows two examples. 1 ... Soda recovery boiler, 2 ... Superheater, 3 ... Reheater, 4 ... High pressure turbine, 5 ... Low pressure turbine, 6 ...
Generator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 魚山 和春 神奈川県横浜市金沢区瀬戸5―1―408 (56)参考文献 特開 昭59−219603(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuharu Uoyama 5-1-408 Seto, Kanazawa-ku, Yokohama-shi, Kanagawa (56) References JP-A-59-219603 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】低圧低温の蒸気タービンを有する動力プラ
ントで高圧高温ソーダ回収ボイラならびに高圧タービン
を設置した装置に於て、ソーダ回収ボイラに過熱器と再
熱器を設け、過熱器を出た高圧高温の蒸気を高圧タービ
ンに導き、高圧タービンを出た低圧蒸気を再び前記再熱
器に戻し、再過熱した蒸気を低圧タービンへ導入するよ
うにしたことを特徴とするソーダ回収ボイラ。
Claim: What is claimed is: 1. In a power plant having a low-pressure low-temperature steam turbine, a device equipped with a high-pressure high-temperature soda recovery boiler and a high-pressure turbine, the soda recovery boiler is provided with a superheater and a reheater, and the high pressure discharged from the superheater is used. A soda recovery boiler, characterized in that high-temperature steam is guided to a high-pressure turbine, low-pressure steam discharged from the high-pressure turbine is returned to the reheater, and reheated steam is introduced to the low-pressure turbine.
JP60042691A 1985-03-06 1985-03-06 Soda recovery boiler Expired - Fee Related JPH0776601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60042691A JPH0776601B2 (en) 1985-03-06 1985-03-06 Soda recovery boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60042691A JPH0776601B2 (en) 1985-03-06 1985-03-06 Soda recovery boiler

Publications (2)

Publication Number Publication Date
JPS61202002A JPS61202002A (en) 1986-09-06
JPH0776601B2 true JPH0776601B2 (en) 1995-08-16

Family

ID=12643063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60042691A Expired - Fee Related JPH0776601B2 (en) 1985-03-06 1985-03-06 Soda recovery boiler

Country Status (1)

Country Link
JP (1) JPH0776601B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101163833B (en) * 2005-04-22 2010-12-15 安德里兹公司 Apparatus and method for producing energy at a pulp mill

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59219603A (en) * 1983-05-27 1984-12-11 三菱重工業株式会社 Reheating boiler for factory

Also Published As

Publication number Publication date
JPS61202002A (en) 1986-09-06

Similar Documents

Publication Publication Date Title
US7966977B2 (en) Method and device for the production of superheated steam
EP0129167B1 (en) Coal gasification composite power generating plant
JP3042394B2 (en) Power generation system utilizing waste incineration heat
JPH11218005A (en) Combined power generation system utilizing waster as fuel
US5706644A (en) Method of operating a gas and steam power plant
JPH0776601B2 (en) Soda recovery boiler
CN110608431A (en) Waste incineration power generation system with external independent superheater
JPH0445641B2 (en)
JPH0415364B2 (en)
CN211854932U (en) Waste heat and residual gas power generation device
CN108105784A (en) Burning power plant low temperature exhaust heat recovery system and method
Hackett et al. Modern mercury-unit power-plant design
CN210134979U (en) Garbage power generation system with external independent reheater
CN108487953B (en) Coal gas synergistic utilization system
JPH11173108A (en) Cogeneration plant
JPH11350921A (en) Exhaust heat recovery boiler
Clinch Some operating experiences with high-pressure steam power plant
JPH0726908A (en) Combined cycle power plant
JPH0988516A (en) Exhaust heat recovery boiler
JPS6312807A (en) Coal gasification complex power generation plant
JPH0682002A (en) Recovery boiler power plant using gas turbin exhaust gas
JPS6327601B2 (en)
CN114777098A (en) Boiler system of thermal power plant and steam turbine power generation system with same
JPS59101513A (en) Combined cycle generating plant
JPS6066001A (en) Electric power plant in paper-making plant

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees