JPH0445641B2 - - Google Patents

Info

Publication number
JPH0445641B2
JPH0445641B2 JP12318183A JP12318183A JPH0445641B2 JP H0445641 B2 JPH0445641 B2 JP H0445641B2 JP 12318183 A JP12318183 A JP 12318183A JP 12318183 A JP12318183 A JP 12318183A JP H0445641 B2 JPH0445641 B2 JP H0445641B2
Authority
JP
Japan
Prior art keywords
steam
heat recovery
recovery boiler
combined cycle
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12318183A
Other languages
Japanese (ja)
Other versions
JPS6017210A (en
Inventor
Yasuaki Nakamura
Shinichi Suzuki
Masaru Kurosawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP12318183A priority Critical patent/JPS6017210A/en
Publication of JPS6017210A publication Critical patent/JPS6017210A/en
Publication of JPH0445641B2 publication Critical patent/JPH0445641B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、ガスタービン装置と、このガスター
ビンの排ガスを熱源として流体を加熱する排熱回
収ボイラ装置と、この加熱された流体により作動
される蒸気タービン装置とからなる複合サイクル
発電プラントに関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a gas turbine device, an exhaust heat recovery boiler device that heats a fluid using the exhaust gas of the gas turbine as a heat source, and a heat recovery boiler device that is operated by the heated fluid. The present invention relates to a combined cycle power plant comprising a steam turbine device.

〔発明の背景〕[Background of the invention]

この種のプラントは、ガスタービンの排ガスを
熱源として排熱回収ボイラで蒸気を発生させる関
係上、ガスタービン駆動用の燃料によつてはその
燃料排ガスに含まれる物質の影響を大きく受ける
ことがある。典型的には、イオウ分の多い燃料で
あると排ガスに酸腐食性成分が多く含まれること
になり、排熱回収ボイラがこれにより腐食される
という問題が出て来る。この問題は、排ガスの熱
を回収利用する複合サイクル発電プラントにおい
ては、多かれ少なかれ避けられないことである。
This type of plant uses the exhaust gas of the gas turbine as a heat source to generate steam in the exhaust heat recovery boiler, so depending on the fuel used to drive the gas turbine, it may be significantly affected by the substances contained in the fuel exhaust gas. . Typically, if the fuel has a high sulfur content, the exhaust gas will contain a large amount of acid corrosive components, leading to the problem that the exhaust heat recovery boiler will be corroded by this. This problem is more or less unavoidable in combined cycle power plants that recover and utilize heat from exhaust gas.

更に、従来、複合サイクル発電プラントは、そ
の排熱回収ボイラが排熱のみを熱源として他に補
助燃料などを用いない非助燃のものが主体であつ
たが、最近プラントによつては出力アツプを要求
される場合があり、非助燃のもの以上に出力能力
のある助燃方式のもの、つまり排熱の他に補助燃
料などを用いる型を採用する必要性が出て来た。
助燃の場合、上記のことは一層大きな問題にな
る。つまり助燃の燃料としてイオウ分等の酸腐食
性成分を含まないものを使用する燃料焚が好まし
いのは勿論であるが、近年はコストや石油事情の
問題などから、イオウ分の多い残さ油等の粗悪な
燃料を使用せざるを得ないことが多い。このよう
な粗悪な燃料を用いると、排熱回収ボイラでの助
燃ではそのバーナーチツプ詰り等トラブルの要因
が多く、結局使用不可能となる場合がある。かつ
この基本的な問題に加えて、更に、酸腐食性成分
を含む燃料を用いると、或る温度以下では腐食が
生じるため、排熱回収ボイラの熱源の温度を余り
下げられないという問題がある。このため、効率
を上げるための温度を或る程度下げようとしても
それができず、よつて効率と酸腐食の問題とが相
背反する問題となつている。このことは、助燃方
式を採用する際顕著に問題になるが、前記の如く
排ガスを発生するガスタービン自体の燃料もイオ
ウ等を含むものを用いざるを得ない事が多く、従
つて複合サイクルプラントにとつて、共通する問
題となつている。
Furthermore, in the past, combined cycle power generation plants were mainly non-auxiliary combustion types in which the exhaust heat recovery boiler used only exhaust heat as a heat source and did not use any other auxiliary fuel, but recently some plants have been increasing their output. There are cases where this is required, and it has become necessary to adopt an auxiliary combustion type that has a higher output capacity than a non-auxiliary combustion type, that is, a type that uses auxiliary fuel in addition to exhaust heat.
In the case of auxiliary combustion, the above becomes an even bigger problem. In other words, it is of course preferable to use a fuel that does not contain acid-corrosive components such as sulfur as an auxiliary fuel, but in recent years, due to cost and petroleum issues, it has become necessary to use residual oil with a high sulfur content. In many cases, poor quality fuel must be used. If such inferior fuel is used, there are many causes of trouble such as clogging of the burner chip during auxiliary combustion in the exhaust heat recovery boiler, and the fuel may eventually become unusable. In addition to this basic problem, there is also the problem that if fuel containing acid-corrosive components is used, corrosion will occur below a certain temperature, so the temperature of the heat source of the waste heat recovery boiler cannot be lowered very much. . For this reason, even if an attempt is made to lower the temperature to a certain extent in order to increase efficiency, it is not possible to do so, and thus efficiency and acid corrosion become contradictory problems. This becomes a significant problem when adopting the auxiliary combustion method, but as mentioned above, the gas turbine itself that generates exhaust gas often has to use fuel containing sulfur, etc., and therefore, combined cycle plants This is a common problem for many people.

この問題について、図面を参照して更に詳しく
説明すると次の通りである。
This problem will be explained in more detail with reference to the drawings as follows.

従来の助燃方式複合サイクル発電プラントを第
1図に示す。これは蒸気タービンが1か所の蒸気
入口をもつ単圧型の従来例である。
Figure 1 shows a conventional auxiliary combustion combined cycle power plant. This is a conventional example of a single pressure type steam turbine having one steam inlet.

ガスタービン装置110は、圧縮機11と燃焼
器12とガスタービン13により構成されてい
て、発電機14を駆動する。
The gas turbine device 110 includes a compressor 11, a combustor 12, and a gas turbine 13, and drives a generator 14.

排熱回収ボイラ20は、ガスの上流側より、過
熱器22、蒸発器22、節炭器23、ドラム2
4、および助燃装置26により構成される。
The exhaust heat recovery boiler 20 includes, from the upstream side of the gas, a superheater 22, an evaporator 22, a economizer 23, and a drum 2.
4, and an auxiliary combustion device 26.

また蒸気タービン装置30は、蒸気タービン3
1、発電機35、復水器32、復水ポンプ33、
脱気器36によつて構成される。
Further, the steam turbine device 30 includes a steam turbine 3
1, generator 35, condenser 32, condensate pump 33,
It is constituted by a deaerator 36.

上記排熱回収ボイラ20の過熱器21と上記蒸
気タービン装置30は、高圧高温蒸気管4で連結
されている。前記蒸気タービン31、復水器3
2、脱気器36、排熱回収ボイラ20の節炭器2
3は、復水管5および給水管6で連結され、給水
管6の上流側に給水ポンプ34が設置されてい
る。
The superheater 21 of the exhaust heat recovery boiler 20 and the steam turbine device 30 are connected by a high-pressure and high-temperature steam pipe 4. The steam turbine 31 and the condenser 3
2. Deaerator 36, energy saver 2 of exhaust heat recovery boiler 20
3 are connected by a condensate pipe 5 and a water supply pipe 6, and a water supply pump 34 is installed on the upstream side of the water supply pipe 6.

空気1は上記圧縮機11によつて圧縮され燃焼
器12において燃料7を燃焼させ、高温ガス2を
発生し上記ガスタービン13に注入、上記発電機
14を駆動する。該タービン13から排出された
排ガス3は、排熱回収ボイラ20に流入する。
Air 1 is compressed by the compressor 11 and burns fuel 7 in the combustor 12 to generate high temperature gas 2, which is injected into the gas turbine 13 and drives the generator 14. The exhaust gas 3 discharged from the turbine 13 flows into the exhaust heat recovery boiler 20.

排熱回収ボイラ20では、給水6が給水され、
上記節炭器23、蒸発器22、過熱器21を通過
するうちに、上記排ガス3の熱を回収し、さらに
助燃装置26により高温の蒸気4となり、蒸気タ
ービン31へ注入され発電機35を駆動する。
In the exhaust heat recovery boiler 20, the feed water 6 is supplied,
As it passes through the economizer 23, evaporator 22, and superheater 21, the heat of the exhaust gas 3 is recovered, and the auxiliary combustion device 26 turns it into high-temperature steam 4, which is injected into the steam turbine 31 and drives the generator 35. do.

また、上記蒸気タービン31の中間より抽気管
8を通じ、蒸気の一部が抽気され上記脱気器36
の熱源となつている。
Further, a part of the steam is extracted from the middle of the steam turbine 31 through the bleed pipe 8, and the steam is extracted from the deaerator 36.
It is a heat source for

このような複合サイクル発電プラントの全体と
しての効率は、給水温度が低いほど高い。即ち、
以上説明した従来の複合サイクル発電プラントに
おける、排熱回収ボイラに供給される給水の温度
と複合サイクル発電プラント全体の効率との関係
は第2図に示す通りである。
The overall efficiency of such a combined cycle power plant is higher as the feed water temperature is lower. That is,
In the conventional combined cycle power plant described above, the relationship between the temperature of the feed water supplied to the waste heat recovery boiler and the efficiency of the entire combined cycle power plant is as shown in FIG.

第2図において、蒸気タービンプラントサイク
ルとしては、グラフに示す如く給水温度が高い
ほど効率が高くなるが、排熱回収ボイラ効率とし
ては、グラフの通り給水温度が低いほど効率は
高くなる。全体の複合サイクル発電プラントとし
ては、グラフでその効率を示すように、給水温
度が低いほど効率が高い。
In FIG. 2, as for the steam turbine plant cycle, the higher the feed water temperature is as shown in the graph, the higher the efficiency is, but as for the exhaust heat recovery boiler efficiency, as shown in the graph, the lower the feed water temperature is, the higher the efficiency is. As shown in the graph, the lower the feed water temperature, the higher the efficiency of the overall combined cycle power plant.

ところが、給水が供給される排熱回収ボイラ
は、前記した問題から、或る温度(「酸露点」と
称する)を下回ると酸腐食が起こるため、余り温
度を下げることはできない。即ち、ガスタービン
の排ガス中に含まれる腐食成分の量にもよるが、
一般に低温におけるイオウ分等の酸露点による腐
食速度と給水温度との一般的な関係は第3図に示
す通りである。この第3図から明らかなように、
排ガス中のイオウ分等の酸は約120℃〜140℃にお
いて露点以下となり、腐食速度が急激に上昇する
ことがわかる。
However, due to the above-mentioned problem, the temperature of the exhaust heat recovery boiler to which feed water is supplied cannot be lowered much because acid corrosion occurs when the temperature falls below a certain temperature (referred to as the "acid dew point"). In other words, depending on the amount of corrosive components contained in the gas turbine exhaust gas,
In general, the general relationship between the corrosion rate due to the acid dew point of sulfur content and the feed water temperature at low temperatures is as shown in FIG. As is clear from this figure 3,
It can be seen that acids such as sulfur in the exhaust gas become below the dew point at approximately 120°C to 140°C, and the corrosion rate increases rapidly.

従つて、従来においては、前記第2図により説
明した全体の複合サイクル発電プラント効率の低
下にもかかわらず、排熱回収ボイラに備えられた
ドラム出口水を節炭器入口へ循環させたり、ある
いは、脱気器、給水加熱器を設置し蒸気タービン
からの抽気を熱源にして、給水温度を酸露点以上
の温度に上昇させていた。
Therefore, in the past, despite the reduction in overall combined cycle power plant efficiency as explained in FIG. , a deaerator, and a feedwater heater were installed to raise the temperature of the feedwater to above the acid dew point using the extracted air from the steam turbine as a heat source.

さらに、前記第1図に示される複合サイクル発
電プラントにおいて、排熱回収ボイラで出気され
る能力以上の蒸気タービン出力が要求された場
合、従来の排熱回収ボイラに前述した如き燃料焚
装置を設けた助燃方式により蒸気タービン出力向
上を図ることも可能であるが、この場合既述の通
りイオウ分等の酸分の多い燃料を使用すると、前
述した酸露点防止装置を具備する必要がでて来
る。また上記のような粗悪な燃料を使用する場
合、前述した如くダクトボイラとしての設計上の
ボイラ特性の難しさと、バーナーチツプの詰まり
等の非信頼性の問題点があつたわけである。
Furthermore, in the combined cycle power plant shown in FIG. 1, if a steam turbine output greater than the capacity of the exhaust heat recovery boiler is required, a fuel firing device such as the one described above may be added to the conventional exhaust heat recovery boiler. It is possible to improve the steam turbine output by using the auxiliary combustion system provided, but in this case, as mentioned above, if fuel with a high acid content such as sulfur is used, it becomes necessary to install the acid dew point prevention device mentioned above. come. In addition, when using inferior fuel as described above, there are problems with the boiler characteristics due to the design of the duct boiler and unreliability such as burner chip clogging, as described above.

〔発明の目的〕[Purpose of the invention]

本発明は、上記従来技術の問題点に鑑み、低質
燃料に対して酸露点による腐食を防止することを
可能にし、さらに主蒸気条件を高温高圧条件に改
善でき、出力を上昇させ、プラントとしての効率
を向上することができる複合サイクル発電プラン
トを提供することを目的とする。
In view of the above-mentioned problems of the prior art, the present invention makes it possible to prevent corrosion due to acid dew point on low-quality fuel, improve main steam conditions to high temperature and high pressure conditions, increase output, and improve plant performance. The objective is to provide a combined cycle power plant that can improve efficiency.

〔発明の概要〕[Summary of the invention]

上記目的を達成すべく、本発明は給水を排熱回
収ボイラに導入し、排熱回収ボイラ内に設置した
予熱器によりガスタービンの排ガスと熱交換する
と共に予熱し、予熱された給水を排熱回収ボイラ
とは別置の燃料焚ボイラで発生された発生蒸気を
蒸気タービン入口に導く構成をとる。
In order to achieve the above object, the present invention introduces feed water into an exhaust heat recovery boiler, exchanges heat with the exhaust gas of a gas turbine and preheats it using a preheater installed in the exhaust heat recovery boiler, and converts the preheated feed water into exhaust heat. The structure is such that steam generated in a fuel-fired boiler installed separately from the recovery boiler is guided to the steam turbine inlet.

〔発明の実施例〕[Embodiments of the invention]

以下本発明について、その実施例のいくつかを
図面に基づいて詳述することにより更に説明す
る。なお実施例の説明において、前述した従来の
ものと同様の構成部分については、図面中に第1
図と同一の符号を付し、その詳しい説明は省略す
る。
The present invention will be further explained below by describing some of its embodiments in detail with reference to the drawings. In the description of the embodiments, components similar to those of the above-mentioned conventional ones will be referred to as No. 1 in the drawings.
The same reference numerals as those in the figure are given, and detailed explanation thereof will be omitted.

第4図に、前述した第1図の代表的な複合サイ
クル発電プラントに本発明を適用した一実施例を
示す。
FIG. 4 shows an embodiment in which the present invention is applied to the typical combined cycle power plant shown in FIG. 1 described above.

第4図において、本発明の特徴は、給水を排熱
回収ボイラ20に導入し、排熱回収ボイラ20内
の予熱器25により、ガスタービン装置10の排
ガス3と熱交換すると共に予熱し、予熱された給
水を排熱回収ボイラ20とは別置の燃料焚ボイラ
40に導き、燃料焚ボイラからの発生蒸気を蒸気
タービン装置30に導入するところにある。
In FIG. 4, the feature of the present invention is that the feed water is introduced into the waste heat recovery boiler 20, and is exchanged with the exhaust gas 3 of the gas turbine device 10 by the preheater 25 in the waste heat recovery boiler 20, and is preheated. The supplied water is led to a fuel-fired boiler 40 located separately from the exhaust heat recovery boiler 20, and the steam generated from the fuel-fired boiler is introduced into the steam turbine device 30.

この実施例を更に具体的に詳しく説明すると、
次の通りである。図中の符号5は復水系統を示
し、復水器32からの復水は、復水ポンプ33を
経て排熱回収ボイラ20に備えられた節炭器2
3、蒸発器22、ドラム24を順次経て、過熱器
21に導入される。過熱器により過熱された発生
蒸気は、蒸気管9により蒸気タービン31に導入
される。
To explain this example in more detail,
It is as follows. Reference numeral 5 in the figure indicates a condensate system, and the condensate from the condenser 32 is passed through the condensate pump 33 to the energy saver 2 provided in the exhaust heat recovery boiler 20.
3. After passing through the evaporator 22 and drum 24 in this order, it is introduced into the superheater 21. Generated steam superheated by the superheater is introduced into the steam turbine 31 through the steam pipe 9.

一方、上記の復水系統5において復水ポンプ3
3を経て排熱回収ボイラ20に供給される系統よ
り分岐させた給水は、排熱回収ボイラ20に導入
され予熱器25により、給水はガスタービン装置
10の排ガス3と熱交換され120℃〜140℃に温度
上昇される。この温度上昇は、酸露点よりも温度
を高くして、酸腐食を防止させるためでもある。
よつて本予熱器25の設置により、次に説明する
イオウ分等の酸分の多い燃料を使用する燃料焚ボ
イラの場合でも、その酸露点による腐食を防止す
ることが可能となる。
On the other hand, in the above condensate system 5, the condensate pump 3
The feed water branched from the system that is supplied to the exhaust heat recovery boiler 20 through the exhaust heat recovery boiler 20 is introduced into the exhaust heat recovery boiler 20, and the feed water is heat exchanged with the exhaust gas 3 of the gas turbine device 10 by the preheater 25 to 120°C to 140°C. The temperature is raised to ℃. This temperature increase is also to raise the temperature higher than the acid dew point and prevent acid corrosion.
Therefore, by installing the present preheater 25, it is possible to prevent corrosion due to the acid dew point even in the case of a fuel-fired boiler that uses fuel with a high acid content such as sulfur content, which will be described next.

即ちこの構成によつて、イオウ分等を含む粗悪
な燃料を用いた場合でも、その酸分により腐食が
起こることが防止できるものである。ガスタービ
ン装置10の排ガス3により給水の温度を上昇さ
せて、酸露点以上にしておくので、酸露点以下で
生ずる腐食は発生しないからである。
That is, with this configuration, even if inferior fuel containing sulfur or the like is used, corrosion caused by the acid content can be prevented. This is because the temperature of the feed water is raised by the exhaust gas 3 of the gas turbine device 10 and kept above the acid dew point, so corrosion that occurs below the acid dew point does not occur.

上記予熱器25により温度上昇された給水は、
節炭器44、蒸発器43、ドラム45および過熱
器42を具備した燃料焚ボイラ40の、その節炭
器44に導入される。更に蒸発器43、ドラム4
5を経て、過熱器42により過熱される。ここで
の発生蒸気は、高圧高温主蒸気管4を経て前述し
た排ガス回収ボイラからの発生蒸気9と合流し、
蒸気タービン31に主蒸気として導入される。
The feed water whose temperature has been raised by the preheater 25 is
The fuel is introduced into the fuel economizer 44 of the fuel-fired boiler 40, which includes the economizer 44, the evaporator 43, the drum 45, and the superheater 42. Furthermore, an evaporator 43 and a drum 4
5, and is heated by a superheater 42. The generated steam here passes through the high-pressure and high-temperature main steam pipe 4 and joins with the generated steam 9 from the exhaust gas recovery boiler mentioned above,
It is introduced into the steam turbine 31 as main steam.

上記構成の結果、本実施例では熱効率を向上さ
せることができる。この熱効率向上は、本発明に
よる効果の一つであるが、これについて本例の場
合に即して第5図により説明する。
As a result of the above configuration, thermal efficiency can be improved in this embodiment. This improvement in thermal efficiency is one of the effects of the present invention, and will be explained with reference to FIG. 5 in accordance with the present example.

第5図は、蒸気を作動流体として用いる最も簡
単な理論サイクルであるランキンサイクルのT−
S線図を示す。
Figure 5 shows the Rankine cycle, which is the simplest theoretical cycle using steam as the working fluid.
An S diagram is shown.

このランキンサイクルは、ボイラで発生した過
熱蒸気をタービンに導き、膨張させての状態
とし、復水器で冷却して飽和水とし、給水ポン
プで昇圧しての状態でボイラに送り、ここで加
熱して→→の経路で再び過熱蒸気の状態
にもどすサイクルである。
In this Rankine cycle, superheated steam generated in a boiler is guided to a turbine, expanded, and cooled in a condenser to become saturated water.The water pump increases the pressure and sends it to the boiler, where it is heated. In this cycle, the steam is returned to the superheated steam state again via the →→ route.

面積がボイラで供給する熱量を表わ
し、面積が発生する仕事に相当する熱
量(有効熱量)を表わし、また面積が復
水器に捨てる熱量(無効熱量)を表わす。その理
論熱効率は下記式にて表わされる。
The area represents the amount of heat supplied by the boiler, the area represents the amount of heat equivalent to the work generated (effective amount of heat), and the area represents the amount of heat discarded to the condenser (reactive amount of heat). The theoretical thermal efficiency is expressed by the following formula.

ηR=AL/QB ここで、ηR:ランキンサイクル理論熱効率
(%) AL:有効熱量(kcal/h) QB:供給された熱量(kcal/h) したがつてサイクル熱効率を向上させるために
は、有効熱量の増加が無効熱量の増加を上回るこ
とが必要である。
η R = AL/QB Where, η R : Rankine cycle theoretical thermal efficiency (%) AL: Effective amount of heat (kcal/h) QB: Supplied amount of heat (kcal/h) Therefore, in order to improve the cycle thermal efficiency, , it is necessary that the increase in the amount of effective heat exceeds the increase in the amount of reactive heat.

いま、第5図で排気真空度を一定としたとき、
従来の蒸気条件によるランキンサイクルを
で示し、本発明による前記燃料焚ボイラ設置
により蒸気温度が上昇されたランキンサイクルを
1′ b′ で示す。
Now, when the exhaust vacuum level is constant in Figure 5,
A Rankine cycle under conventional steam conditions is shown, and a Rankine cycle in which the steam temperature is increased by installing the fuel-fired boiler according to the present invention is shown.
Denoted by 1′ b′.

本図より過熱温度が上昇するに従つて有効熱量
の増加が無効熱量の増加を上回り、熱効率が向上
されることは明らかである。
It is clear from this figure that as the superheating temperature rises, the increase in the amount of effective heat exceeds the increase in the amount of reactive heat, and the thermal efficiency is improved.

上述の如く本実施例の効果としては、第1に助
燃型排熱回収ボイラでは解決できなかつた、イオ
ウ分等を含む粗悪な燃料に対しても、その酸分に
よる腐食を防止できることがある。即ち本構成で
は、ガスタービン装置10の排ガス3を利用して
給水温度を上昇させることにより、酸露点による
腐食を防止することを可能とした。さらに第2
に、排熱回収ボイラ20とは別置の燃料焚ボイラ
40を設置することにより、従来のガスタービン
排ガス利用による低温蒸気を高温蒸気にさせ主蒸
気条件を改善したので、複合サイクル発電プラン
ト効率の向上が図られる。
As described above, the effects of this embodiment include, firstly, that it is possible to prevent corrosion caused by the acid content of inferior fuel containing sulfur, etc., which could not be solved with an auxiliary combustion type exhaust heat recovery boiler. That is, in this configuration, by raising the temperature of the water supply using the exhaust gas 3 of the gas turbine device 10, it is possible to prevent corrosion due to the acid dew point. Furthermore, the second
By installing a fuel-fired boiler 40 separately from the waste heat recovery boiler 20, the main steam conditions were improved by converting the low-temperature steam generated by conventional gas turbine exhaust gas into high-temperature steam, thereby improving the efficiency of the combined cycle power plant. Improvements will be made.

次に応用例として、複圧型複合サイクル発電プ
ラントに適用した場合の一例を第6図に示す。
Next, as an application example, an example in which the present invention is applied to a double pressure combined cycle power plant is shown in FIG.

第6図は、先に説明した第4図の例に対し、排
熱回収ボイラ20より発生した低温低圧蒸気は、
蒸気管9により蒸気タービン31の中間段に抽入
される。
In contrast to the example shown in FIG. 4 described above, FIG. 6 shows that the low-temperature, low-pressure steam generated from the exhaust heat recovery boiler 20
The steam is introduced into the intermediate stage of the steam turbine 31 through the steam pipe 9 .

一方、復水系統5より分岐された給水は、給水
ポンプ34により昇圧され、排熱回収ボイラ20
に導入され、更に予熱器25を介し燃料焚ボイラ
40に導かれる。ここで発生した高温高圧蒸気
は、蒸気タービン31に主蒸気として導入され
る。
On the other hand, the water supply branched from the condensate system 5 is pressurized by the water supply pump 34, and the pressure is increased to the exhaust heat recovery boiler 20.
The fuel is then introduced into the fuel-fired boiler 40 via the preheater 25. The high temperature and high pressure steam generated here is introduced into the steam turbine 31 as main steam.

本発明は本応用例の如く複圧型複合サイクル発
電プラントにも適用可能で、このような適用によ
り、単圧型複合サイクル発電プラントに比べてさ
らに高温高圧蒸気を発生させることができる。よ
つて複合サイクル発電プラント全体のプラント効
率の向上が図れるものである。
The present invention can also be applied to a double-pressure combined cycle power plant as in this application example, and by such application, higher temperature and high pressure steam can be generated than in a single-pressure combined cycle power plant. Therefore, it is possible to improve the plant efficiency of the entire combined cycle power plant.

なお当然のことではあるが、本発明は図示した
実施例にのみ限定されるものではない。
It goes without saying that the present invention is not limited to the illustrated embodiments.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明においては、第1に
従来の助燃型排熱回収ボイラでは対処できなかつ
た、イオウ分等を含む低質な燃料に対し、給水を
排熱回収ボイラ内の予熱器によりガスタービン装
置の排ガスと熱交換して予熱し、給水温度を上昇
させることにより酸露点による腐食を防止するこ
とが可能となる。さらに第2に、排熱回収ボイラ
とは別置の燃料焚ボイラを設置し、上記の予熱さ
れた給水を導入することにより高温高圧の主蒸気
条件に改善することができたので、複合サイクル
発電プラントのプラント効率を改善することが可
能になる。
As described above, in the present invention, firstly, the feed water is used in the preheater in the waste heat recovery boiler to handle low-quality fuel containing sulfur, etc., which could not be dealt with in the conventional auxiliary combustion type waste heat recovery boiler. Corrosion due to acid dew point can be prevented by preheating by exchanging heat with the exhaust gas of the gas turbine device and raising the temperature of the feed water. Secondly, by installing a fuel-fired boiler separate from the waste heat recovery boiler and introducing the preheated feed water mentioned above, we were able to improve the main steam conditions to high temperature and high pressure, allowing combined cycle power generation. It becomes possible to improve the plant efficiency of the plant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の一般的な単圧型複合サイクル
発電プラントの全体構成を示す図、第2図は、給
水温度と複合サイクル発電プラントの熱効率との
関係を示す図、第3図は、金属温度と腐食速度の
傾向を示す図である。第4図は、本発明に係る一
実施例である単圧複合サイクル発電プラントの全
体構成を示す図である。第5図は、本発明による
理論ランキンサイクルT−S線図上の熱効率向上
を第4図の例について説明する図である。第6図
は、本発明の他の一実施例である複圧型複合サイ
クル発電プラントの全体構成を示す図である。 3…排ガス、10…ガスタービン装置、20…
排熱回収ボイラ、30…蒸気タービン装置、40
…別置の燃料焚ボイラ。
Figure 1 is a diagram showing the overall configuration of a conventional general single-pressure combined cycle power plant, Figure 2 is a diagram showing the relationship between feed water temperature and thermal efficiency of a combined cycle power plant, and Figure 3 is a diagram showing the relationship between metal FIG. 3 is a diagram showing trends in temperature and corrosion rate. FIG. 4 is a diagram showing the overall configuration of a single-pressure combined cycle power plant that is an embodiment of the present invention. FIG. 5 is a diagram for explaining the thermal efficiency improvement on the theoretical Rankine cycle T-S diagram according to the present invention with respect to the example of FIG. 4. FIG. 6 is a diagram showing the overall configuration of a double pressure combined cycle power plant according to another embodiment of the present invention. 3...Exhaust gas, 10...Gas turbine device, 20...
Exhaust heat recovery boiler, 30...Steam turbine device, 40
...Separate fuel-fired boiler.

Claims (1)

【特許請求の範囲】 1 ガスタービン装置と、このガスタービン装置
の排ガスを熱源として蒸気を発生する排熱回収ボ
イラと、このボイラにより発生した蒸気で駆動さ
れる蒸気タービン装置とを備える複合サイクル発
電プラントにおいて、蒸気排熱回収ボイラ内に設
置し、前記排ガスと給水を熱交換して該給水を予
熱する予熱器と、前記排熱回収ボイラとは別に設
置し、かつ前記予熱器からの予熱された給水を加
熱し、蒸気を発生させて蒸気タービン装置に導入
する燃料焚ボイラとを備えたことを特徴とする複
合サイクル発電プラント。 2 特許請求の範囲第1項の複合サイクル発電プ
ラントにおいて、タービンは複数の蒸気入口を有
する複圧タービンに構成するとともに、熱料焚ボ
イラ側発生蒸気は排熱回収ボイラ発生蒸気より高
温高圧としてこれを該複圧タービンの高圧側へ投
入したことを特徴とする複合サイクル発電プラン
ト。
[Claims] 1. A combined cycle power generation system comprising a gas turbine device, an exhaust heat recovery boiler that generates steam using the exhaust gas of the gas turbine device as a heat source, and a steam turbine device driven by the steam generated by the boiler. In the plant, a preheater is installed in the steam exhaust heat recovery boiler and preheats the feed water by exchanging heat between the exhaust gas and the feed water, and a preheater is installed separately from the waste heat recovery boiler and the preheater is heated from the preheater. A combined cycle power generation plant characterized by being equipped with a fuel-fired boiler that heats feed water, generates steam, and introduces the steam into a steam turbine device. 2. In the combined cycle power plant set forth in claim 1, the turbine is constructed as a double-pressure turbine having a plurality of steam inlets, and the steam generated on the heat-fired boiler side is heated at a higher temperature and pressure than the steam generated by the waste heat recovery boiler. A combined cycle power generation plant characterized in that: is injected into the high pressure side of the double pressure turbine.
JP12318183A 1983-07-08 1983-07-08 Dual-cycle power plant Granted JPS6017210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12318183A JPS6017210A (en) 1983-07-08 1983-07-08 Dual-cycle power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12318183A JPS6017210A (en) 1983-07-08 1983-07-08 Dual-cycle power plant

Publications (2)

Publication Number Publication Date
JPS6017210A JPS6017210A (en) 1985-01-29
JPH0445641B2 true JPH0445641B2 (en) 1992-07-27

Family

ID=14854191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12318183A Granted JPS6017210A (en) 1983-07-08 1983-07-08 Dual-cycle power plant

Country Status (1)

Country Link
JP (1) JPS6017210A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59709579D1 (en) * 1997-11-05 2003-04-24 Alstom Switzerland Ltd Hybrid power plant
JP2001009214A (en) 1999-06-30 2001-01-16 Teijin Ltd Filtering device for polycarbonate and production of polycarbonate
EP2067941A3 (en) * 2007-12-06 2013-06-26 Alstom Technology Ltd Combined cycle power plant with exhaust gas recycling and CO2 separation, and also method for operating such a combined cycle power plant
US9828884B2 (en) * 2016-02-25 2017-11-28 General Electric Technology Gmbh System and method for preheating a heat recovery steam generator
KR102619958B1 (en) * 2022-03-08 2024-01-02 월드에너지솔루션(주) Eco-friendly power generator system

Also Published As

Publication number Publication date
JPS6017210A (en) 1985-01-29

Similar Documents

Publication Publication Date Title
US5375410A (en) Combined combustion and steam turbine power plant
US5345755A (en) Steam turbine plant
US6269626B1 (en) Regenerative fuel heating system
RU2009333C1 (en) Combined steam-gas power plant and method of its operation
US8387356B2 (en) Method of increasing power output of a combined cycle power plant during select operating periods
JPH0339166B2 (en)
JPS59162305A (en) Power plant
JP2001520342A (en) Gas / steam combined turbine equipment and its operation method
US4961311A (en) Deaerator heat exchanger for combined cycle power plant
US6497101B2 (en) Method and apparatus for regulating the steam temperature of the live steam or reheater steam in a combined-cycle power plant
SU1521284A3 (en) Power plant
US6301873B2 (en) Gas turbine and steam turbine installation
EP0786590A1 (en) Combined-cycle power generation system using waste matter as fuel
RU101090U1 (en) ENERGY BUILDING STEAM-GAS INSTALLATION (OPTIONS)
CN110397481A (en) Promote the waste incineration and generating electricity device of main steam condition
JPH10306708A (en) Combined cycle generating plant
JPH0445641B2 (en)
JPH1113488A (en) Full fired heat recovery combined plant using steam cooling type gas turbine
RU2144994C1 (en) Combined-cycle plant
JPS6365807B2 (en)
JPS5820914A (en) Power generating plant using blast furnace gas as fuel
RU2258147C1 (en) Method of substitution of gas-turbine fuel in power-generating cycles
WO1994019645A1 (en) Method in small-power plant use
JP2994109B2 (en) Exhaust heat recovery method of pressurized fluidized bed combined cycle system
JPS61233084A (en) Compound generating device by coal gasification