JPH11350921A - Exhaust heat recovery boiler - Google Patents
Exhaust heat recovery boilerInfo
- Publication number
- JPH11350921A JPH11350921A JP15817898A JP15817898A JPH11350921A JP H11350921 A JPH11350921 A JP H11350921A JP 15817898 A JP15817898 A JP 15817898A JP 15817898 A JP15817898 A JP 15817898A JP H11350921 A JPH11350921 A JP H11350921A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- water supply
- water
- economizer
- pressure system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は排熱回収ボイラに関
し、特に節炭器の伝熱面積の増加を少なくしながら、給
水系の動力を低減した排熱回収ボイラに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust heat recovery boiler, and more particularly to an exhaust heat recovery boiler in which the power of a water supply system is reduced while an increase in the heat transfer area of a economizer is reduced.
【0002】[0002]
【従来の技術】従来の排熱回収ボイラは、例えば図8に
示されるような高圧、中圧及び低圧蒸気発生系からなる
三重圧排熱回収ボイラ又は高圧及び低圧蒸気発生系から
なる複圧排熱回収ボイラであり、基本的にボイラハウジ
ング内で排ガスが導入される入口部の高温側から出口部
の低温側に向けて過熱器、蒸発器、節炭器等の熱交換器
をそれぞれ配置したものであり、前記熱交換器内に導入
される水系または水蒸気系とハウジング内を流れる排ガ
スが対向流となるようにして、最小の伝熱面積で最大の
熱回収ができるような構成を備えている。また、当初の
排熱回収ボイラは単圧であったが、最近の熱効率向上の
要求に伴い、高圧及び低圧蒸気発生系からなる複圧排熱
回収ボイラや、さらには高圧・中圧及び低圧蒸気発生系
からなる三重圧排熱回収ボイラが提案され実際に採用さ
れている。以下、三重圧ボイラの代表的系統の構成例で
ある図8に示すボイラについて説明する。2. Description of the Related Art A conventional exhaust heat recovery boiler is, for example, a triple-pressure exhaust heat recovery boiler comprising a high-pressure, medium-pressure and low-pressure steam generation system as shown in FIG. This is a boiler with heat exchangers such as superheaters, evaporators, and economizers arranged basically from the high temperature side of the inlet where the exhaust gas is introduced in the boiler housing to the low temperature side of the outlet. In addition, a configuration is provided in which the water or steam system introduced into the heat exchanger and the exhaust gas flowing through the housing have a counterflow, so that the maximum heat recovery can be performed with a minimum heat transfer area. The original heat recovery steam generator was single-pressure, but due to the recent demand for improved thermal efficiency, a double-pressure heat recovery steam generator consisting of high-pressure and low-pressure steam generation systems, as well as high-, medium-, and low-pressure steam generation A triple-pressure exhaust heat recovery boiler consisting of a system has been proposed and actually employed. Hereinafter, a boiler shown in FIG. 8, which is a configuration example of a typical system of a triple pressure boiler, will be described.
【0003】復水器46からの水は復水ポンプ47によ
り低圧蒸気系に必要な圧力まで昇圧されて低温給水管1
から低圧給水管2aを経由して、低圧節炭器8に供給さ
れる。低圧節炭器8でハウジング28内を流れる排ガス
29との熱交換により昇温された給水は低圧給水管2b
において分岐され、一部は低圧ドラム9に供給された
後、低圧降水管10から低圧蒸発器11を経由する過程
で蒸気化される。一部が蒸気化された給水は低圧蒸発器
11から低圧ドラム9に戻されて気水分離が行われ、蒸
気は低圧主蒸気管12より図示されていない蒸気タービ
ンへ送られる。[0003] The water from the condenser 46 is boosted by a condenser pump 47 to a pressure required for the low-pressure steam system, and is supplied to the low-temperature water supply pipe 1.
Is supplied to the low-pressure economizer 8 via the low-pressure water supply pipe 2a. The supply water whose temperature has been raised by heat exchange with the exhaust gas 29 flowing through the housing 28 in the low pressure economizer 8 is supplied to the low pressure water supply pipe 2b.
After a part is supplied to the low-pressure drum 9, it is vaporized in a process of passing from the low-pressure downcomer 10 to the low-pressure evaporator 11. Partially vaporized feedwater is returned from the low-pressure evaporator 11 to the low-pressure drum 9 to perform steam separation, and the steam is sent from the low-pressure main steam pipe 12 to a steam turbine (not shown).
【0004】また、低圧給水管2bで分岐された他の給
水は中高圧用給水管42から高・中圧蒸気系に必要な圧
力にまで昇圧されて、それぞれ中圧ドラム14と高圧ド
ラム20に供給される。中圧ドラム14と高圧ドラム2
0に供給された給水は蒸発器16と蒸発器22において
それぞれ蒸気化され、さらに各過熱器17、23、25
を経て図示しない蒸気タービンに送られる。[0004] Further, the other water supplied by the low-pressure water supply pipe 2b is boosted from the medium- and high-pressure water supply pipe 42 to a pressure required for the high- and medium-pressure steam system, and is supplied to the medium-pressure drum 14 and the high-pressure drum 20, respectively. Supplied. Medium pressure drum 14 and high pressure drum 2
The feed water supplied to the evaporator 16 is vaporized in the evaporator 16 and the evaporator 22, respectively.
Through a steam turbine (not shown).
【0005】すなわち、中高圧用給水管42に設けられ
た高圧給水ポンプ39により昇圧された給水は高圧給水
管4aを経由して高圧一次節炭器6に送られ、ここで加
熱された後、高圧給水管4bを経由して高圧二次節炭器
19で排ガス29と熱交換した後、高圧給水管4cを経
由して高圧ドラム20に導入される。高圧ドラム20内
の高圧水は高圧降水管21から高圧蒸発器22を経由す
る過程で高圧蒸気となり、高圧蒸発器22から高圧ドラ
ム20に戻されて気水分離が行われ、高圧蒸気は高圧一
次過熱器23と高圧二次過熱器25でさらに過熱され
て、図示しない高圧蒸気タービンへ送られる。なお、高
圧一次過熱器23と高圧二次過熱器25の間の蒸気流路
には過熱蒸気温度を制御する減温器24が設けられてい
る。[0005] That is, the feed water pressurized by the high-pressure feed pump 39 provided in the middle-high pressure feed pipe 42 is sent to the high-pressure primary economizer 6 via the high-pressure feed pipe 4a, where it is heated. After the heat exchange with the exhaust gas 29 in the high pressure secondary economizer 19 via the high pressure water supply pipe 4b, the heat is introduced into the high pressure drum 20 via the high pressure water supply pipe 4c. The high-pressure water in the high-pressure drum 20 becomes high-pressure steam in the process of passing from the high-pressure downcomer 21 to the high-pressure evaporator 22, is returned from the high-pressure evaporator 22 to the high-pressure drum 20, and is subjected to gas-water separation. It is further heated by the superheater 23 and the high-pressure secondary superheater 25 and sent to a high-pressure steam turbine (not shown). In the steam flow path between the high-pressure primary superheater 23 and the high-pressure secondary superheater 25, a desuperheater 24 for controlling the superheated steam temperature is provided.
【0006】また、中高圧用給水管42に設けられた中
圧給水ポンプ40により昇圧された給水は中圧給水管3
aを経由して中圧一次節炭器7に送られ、ここで加熱さ
れた後、中圧給水管3bを経由して中圧ドラム14に導
入される。中圧ドラム14内の中圧水は中圧降水管15
から中圧蒸発器16を経由する過程で中圧蒸気となり、
中圧蒸発器16から中圧ドラム14に戻されて気水分離
が行われ、中圧蒸気は中圧過熱器17で過熱されて、中
圧主蒸気管18から図示しない中圧蒸気タービンへ送ら
れる。[0006] The water supplied by the medium-pressure water supply pump 40 provided in the medium- and high-pressure water supply pipe 42 is supplied to the medium-pressure water supply pipe 3.
The medium is sent to the intermediate-pressure primary economizer 7 via a, is heated here, and is introduced into the intermediate-pressure drum 14 via the intermediate-pressure water supply pipe 3b. The medium-pressure water in the medium-pressure drum 14 is supplied to the medium-pressure downcomer 15
Into medium-pressure steam in the process of passing through the medium-pressure evaporator 16,
The steam is returned from the medium-pressure evaporator 16 to the medium-pressure drum 14, where the steam is separated. The medium-pressure steam is superheated by the medium-pressure superheater 17 and sent from the medium-pressure main steam pipe 18 to a medium-pressure steam turbine (not shown). Can be
【0007】また、高圧給水ポンプ39の中段から抽水
した給水は給水再循環配管27から低温給水配管1に戻
し、低温給水の温度を約60℃に昇温させて低圧節炭器
8の炭酸水腐食を防止している。さらに高圧給水ポンプ
39から高圧一次節炭器6に供給する給水の一部は高圧
給水ミニマムフロー管5に、中圧給水ポンプ40から中
圧一次節炭器7に供給する給水の一部は中圧給水ミニマ
ムフロー管41から復水器46にそれぞれ送られ、高圧
給水ポンプ39と中圧給水ポンプ40のミニマムフロー
量を確保する。Water supplied from the middle stage of the high-pressure water supply pump 39 is returned to the low-temperature water supply pipe 1 from the water supply recirculation pipe 27, and the temperature of the low-temperature water is raised to about 60 ° C. Prevents corrosion. Further, part of the water supplied from the high-pressure water pump 39 to the high-pressure primary economizer 6 is supplied to the high-pressure water minimum flow pipe 5, and part of the water supplied from the medium-pressure water pump 40 to the intermediate-pressure primary economizer 7 is medium. The water is sent from the pressure supply minimum flow pipe 41 to the condenser 46, and the minimum flow amount of the high pressure water supply pump 39 and the medium pressure water supply pump 40 is secured.
【0008】上記排熱回収ボイラにおいて、高圧給水ポ
ンプ39と中圧給水ポンプ40の入口配管である中高圧
用給水管42内には低圧節炭器8の出口より分岐された
高温水が供給されているので、毎日起動と停止を繰り返
す運転を行うボイラ等においては起動時に6℃/秒程度
の温度急変にさらされ、ポンプ39、40の耐久性に問
題があった。In the above-mentioned heat recovery steam generator, high-temperature water branched from the outlet of the low-pressure economizer 8 is supplied to a medium- and high-pressure water supply pipe 42 which is an inlet pipe of the high-pressure water supply pump 39 and the medium-pressure water supply pump 40. Therefore, a boiler or the like that repeatedly starts and stops every day is exposed to a sudden temperature change of about 6 ° C./second at the time of starting, and there is a problem in durability of the pumps 39 and 40.
【0009】図9は特開平7−225003号公報など
に記載された排熱回収ボイラであり、中・高圧給水ポン
プの温度急変を解消するとともにポンプ台数を削減し
て、ボイラの配置を容易にするために、低温給水管1に
給水ポンプ45を設け、低・中圧系を給水ポンプ45の
中間段から抽水した系である。FIG. 9 shows an exhaust heat recovery boiler described in Japanese Patent Application Laid-Open No. 7-225003, which eliminates sudden changes in temperature of medium- and high-pressure feed pumps, reduces the number of pumps, and facilitates boiler arrangement. For this purpose, a water supply pump 45 is provided in the low-temperature water supply pipe 1 and a low / medium pressure system is drawn from an intermediate stage of the water supply pump 45.
【0010】すなわち、給水ポンプ45の吐出水を高圧
一次節炭器6と高圧給水管4bと高圧二次節炭器19を
介して高圧ドラム20に供給し、また高圧給水ポンプ4
5の中段からの抽水を中圧給水管3aと中圧一次節炭器
7を介して低圧ドラム9に供給し、さらに中圧一次節炭
器7の出口より分岐した中圧給水管3bから中圧二次節
炭器13と中圧給水管3cを介して中圧ドラム14へ供
給する構成としている。このため給水ポンプ45に流入
する給水の温度変化が抑えられ、ポンプ45に過大な熱
衝撃を与えることがなく、給水ポンプ45の劣化を防ぐ
ことができ、また大型の給水ポンプ45が1台あれば、
所内消費動力の低減、補機の設置数の低減が可能とな
る。That is, the water discharged from the water supply pump 45 is supplied to the high-pressure drum 20 via the high-pressure primary economizer 6, the high-pressure water supply pipe 4 b and the high-pressure secondary economizer 19.
5 is supplied to the low-pressure drum 9 via the medium-pressure water supply pipe 3a and the medium-pressure primary economizer 7, and further from the medium-pressure water supply pipe 3b branched from the outlet of the medium-pressure primary economizer 7. It is configured to be supplied to the medium pressure drum 14 via the pressure secondary economizer 13 and the medium pressure water supply pipe 3c. For this reason, the temperature change of the feedwater flowing into the feedwater pump 45 is suppressed, the pump 45 is not subjected to an excessive thermal shock, the deterioration of the feedwater pump 45 can be prevented, and one large-sized feedwater pump 45 is provided. If
It is possible to reduce the power consumption in the office and the number of installations of auxiliary equipment.
【0011】また、図9に示す構成では、中圧一次節炭
器7の出口部に給水再循環配管27を設け、この配管2
7から給水ポンプ45入口側に給水の一部を再循環する
ことにより中圧一次節炭器7及び高圧一次節炭器6など
の低温腐食を防止することもできる。In the configuration shown in FIG. 9, a feed water recirculation pipe 27 is provided at the outlet of the intermediate-pressure primary economizer 7, and
By recirculating a part of the feedwater from 7 to the inlet side of the feedwater pump 45, low-temperature corrosion of the medium-pressure primary economizer 7 and the high-pressure primary economizer 6 can also be prevented.
【0012】[0012]
【発明が解決しようとする課題】上記従来技術は低圧給
水系を図8の例のように高圧ポンプ39と中圧ポンプ4
0により高圧または中圧に昇圧するために、または図9
の例のように大型給水ポンプ45により中圧または高圧
に昇圧するために、補機動力が増加することと、図9の
例では、給水ポンプ45の中・低圧系から抽水としてい
るために抽水比率が大きくなり、毎日ボイラの起動・停
止を繰り返すことや負荷変化の激しいコンバインドサイ
クル(ガスタービンとその排気ガスを利用する排熱回収
ボイラと蒸気タービンの組み合わせからなる)では給水
ポンプ系の耐久性に悪影響を与える可能性があった。In the above prior art, the low pressure water supply system is provided with a high pressure pump 39 and a medium pressure pump 4 as shown in FIG.
0 to increase to high or medium pressure, or FIG.
As shown in FIG. 9, the auxiliary power is increased to increase the pressure to medium pressure or high pressure by the large water supply pump 45, and in the example of FIG. 9, water is drawn from the medium / low pressure system of the water supply pump 45. As the ratio increases, the boiler starts and stops every day, and the combined cycle in which the load changes drastically (combined with a gas turbine and a waste heat recovery boiler using its exhaust gas and a steam turbine), the durability of the feedwater pump system Could be adversely affected.
【0013】本発明の課題は補機動力を低下させ、抽水
比率も少なくしながらポンプ給水温度変化をなくした排
熱回収ボイラを提供することにある。An object of the present invention is to provide an exhaust heat recovery boiler in which the power of auxiliary equipment is reduced and the pump water supply temperature is not changed while reducing the water extraction ratio.
【0014】[0014]
【課題を解決するための手段】本発明の上記課題は次の
構成により解決される。すなわち、二以上の圧力系から
なる排ガス流路内に設けられる伝熱管群と、各圧力系の
伝熱管群の中の節炭器へ給水する給水経路と、各圧力系
の節炭器から給水される気水分離ドラムをそれぞれ備え
た排熱回収ボイラにおいて、低圧系への給水経路より分
岐した分岐給水経路と、該分岐給水経路に設けられた高
圧給水ポンプと、該高圧給水ポンプからの吐出水を高圧
側の圧力系に給水する給水経路と、高圧給水ポンプ中間
段抽水を中間の圧力系に給水する給水経路を設けた排熱
回収ボイラである。The above object of the present invention is attained by the following constitution. That is, a heat transfer tube group provided in an exhaust gas flow path composed of two or more pressure systems, a water supply path for supplying water to the economizer in the heat transfer tube group of each pressure system, and a water supply from the economizer of each pressure system In the exhaust heat recovery boiler provided with each of the steam-water separation drums, a branch water supply path branched from a water supply path to the low-pressure system, a high-pressure water supply pump provided in the branch water supply path, and a discharge from the high-pressure water supply pump An exhaust heat recovery boiler is provided with a water supply path for supplying water to a high-pressure side pressure system and a water supply path for supplying high-pressure water supply pump intermediate stage extraction to an intermediate pressure system.
【0015】上記本発明の一例を図面で説明すると、図
1に示すように、低温給水管1に分岐給水配管を設け、
低圧系へは低温給水管1からそのまま給水し、分岐した
配管に高圧給水ポンプ39を配置し、該高圧給水ポンプ
39の出口給水を高圧系に、高圧給水ポンプ39の中間
段抽水を中圧の抽水系に供給するものである。Referring to the drawings, one example of the present invention will be described. As shown in FIG. 1, a low-temperature water supply pipe 1 is provided with a branch water supply pipe.
The low-pressure system is supplied with water from the low-temperature water supply pipe 1 as it is, a high-pressure water supply pump 39 is disposed in the branched pipe, the outlet water supply of the high-pressure water supply pump 39 is used for the high-pressure system, and the intermediate-stage water extraction of the high-pressure water supply pump 39 is applied to the medium pressure. It is supplied to the water extraction system.
【0016】こうして、排熱回収ボイラに供給される低
温の給水は低圧系に必要な圧力でそのまま低圧系節炭器
へ供給され、低温の給水を供給する給水経路より分岐さ
れた高・中圧系の給水のみ高圧給水ポンプにより昇圧さ
れるために低圧系を無駄に昇圧することがなく、かつ、
中圧系給水のみを高圧給水ポンプの中段から抽水するた
めに抽水比率も小さくできる。In this manner, the low-temperature feedwater supplied to the exhaust heat recovery boiler is supplied to the low-pressure system economizer at the pressure required for the low-pressure system as it is, and the high- and medium-pressure water branched from the water supply path for supplying the low-temperature feedwater. Since only the system water is boosted by the high-pressure water pump, the low-pressure system is not unnecessarily boosted, and
Since only the medium-pressure water is extracted from the middle stage of the high-pressure water pump, the extraction ratio can be reduced.
【0017】本発明により、節炭器は、例えば高圧、中
圧、低圧の3種となる。図1には低圧蒸発器11の排ガ
ス流れの後流側に前流側から順に低圧節炭器8、中圧1
次節炭器7、高圧1次節炭器6を配置しているが、この
場合、排ガスと水の温度分布は図2に示す通りとなり、
低圧節炭器8と中圧1次節炭器7との間の温度差が中圧
1次節炭器7と高圧1次節炭器6との間の温度差より小
さいので低圧節炭器8と中圧1次節炭器7では排ガスの
熱を有効に使えなくなる。図2の横軸は各圧力系での必
要な伝熱面積を表す。According to the present invention, there are three types of economizers, for example, high pressure, medium pressure and low pressure. In FIG. 1, a low-pressure economizer 8 and a medium-pressure 1
The secondary economizer 7 and the high-pressure primary economizer 6 are arranged. In this case, the temperature distribution of exhaust gas and water is as shown in FIG.
Since the temperature difference between the low pressure economizer 8 and the medium pressure primary economizer 7 is smaller than the temperature difference between the medium pressure primary economizer 7 and the high pressure primary economizer 6, the low pressure economizer 8 and the medium In the pressure primary economizer 7, the heat of the exhaust gas cannot be used effectively. The horizontal axis in FIG. 2 represents a necessary heat transfer area in each pressure system.
【0018】したがって、実際の配置は図4の排熱回収
ボイラの上から見た図に示すように、高圧、中圧、低圧
の3種の節炭器をガス流れ方向に並列配置とすることに
より各節炭器の伝熱管の伝熱面積の増加を防止できる。Therefore, the actual arrangement is such that three types of economizers of high pressure, medium pressure and low pressure are arranged in parallel in the gas flow direction, as shown in the top view of the exhaust heat recovery boiler in FIG. Thereby, an increase in the heat transfer area of the heat transfer tube of each economizer can be prevented.
【0019】しかしこの場合、ガス流れの直交方向の伝
熱管本数の比率は 高圧節炭器:中圧節炭器:低圧節炭器=100:5〜1
0:5〜10 と中圧節炭器と低圧節炭器の伝熱管の伝熱面積が極端に
少ないため、伝熱管群の製作や各節炭器の伝熱管群間の
排ガスバイパス構造などにコスト高となる要因がある。
この問題は図6または図7の排熱回収ボイラの上から見
た図に示すように各節炭器の伝熱管を排ガス流路の排ガ
ス流れ方向に各圧力系の伝熱面積に応じた伝熱管数分だ
け直列に混在した配置とすることにより解決される。However, in this case, the ratio of the number of heat transfer tubes in the direction perpendicular to the gas flow is as follows: high-pressure economizer: medium-pressure economizer: low-pressure economizer = 100: 5-1
0: 5-10 and the heat transfer area of the heat transfer tubes of the medium-pressure and low-pressure economizers is extremely small. There are factors that increase costs.
As shown in the top view of the exhaust heat recovery boiler in FIG. 6 or 7, the problem is that the heat transfer tubes of each economizer are transferred in the exhaust gas flow direction of the exhaust gas passage according to the heat transfer area of each pressure system. The problem is solved by arranging them in series for the number of heat tubes.
【0020】上記説明では高圧、中圧及び低圧系の3つ
の圧力系について説明したが、本発明はこれに限らず2
以上の給水または蒸気圧力系の排熱回収ボイラに適用で
きる。In the above description, the three pressure systems of high pressure, medium pressure and low pressure have been described. However, the present invention is not limited to this.
It can be applied to the waste heat recovery boiler of the above water supply or steam pressure system.
【0021】このとき高圧と低圧系の2つの圧力系につ
いて本発明の排熱回収ボイラを適用する場合には、高圧
ポンプの中間段の抽水は不要となる。At this time, when the exhaust heat recovery boiler of the present invention is applied to two pressure systems, a high pressure system and a low pressure system, it is not necessary to extract water at an intermediate stage of the high pressure pump.
【0022】また、本発明は高圧タービンで一部仕事を
した後の高圧蒸気を再熱する場合には、高圧蒸気を中圧
系に戻し、再熱蒸気として過熱し、再び蒸気タービンに
供給する構成としても良い。Further, according to the present invention, when reheating high-pressure steam after performing a part of the work in the high-pressure turbine, the high-pressure steam is returned to the medium-pressure system, superheated as reheated steam, and supplied to the steam turbine again. It is good also as composition.
【0023】また、上記本発明では、所定の圧力系の節
炭器(図1では中圧二次節炭器13)で熱回収した高温
の給水の一部を高圧の給水ポンプ(図1では高圧給水ポ
ンプ39)が設けられる分岐給水経路の上流側の低圧系
への給水給水経路1に戻す給水再循環経路(図1では給
水再循環配管27)を設けることにより、高圧給水ポン
プの熱衝撃及び各節炭器の低温腐食を防止できる。Further, in the present invention, a part of the high-temperature feedwater heat recovered by the economizer of a predetermined pressure system (the intermediate-pressure secondary economizer 13 in FIG. 1) is partially replaced with a high-pressure feed pump (in FIG. 1, a high-pressure feed pump). By providing a water supply recirculation path (the water supply recirculation pipe 27 in FIG. 1) for returning to the water supply water supply path 1 to the low pressure system upstream of the branch water supply path where the water supply pump 39) is provided, the thermal shock of the high pressure water supply pump and Low temperature corrosion of each economizer can be prevented.
【0024】また、高圧給水ポンプ39の下流側の高圧
給水管4aから高圧一次節炭器6に供給する給水の一部
は高圧給水ポンプミニマムフロー管5に送られ、高圧給
水ポンプ39のミニマムフロー量を確保する。また、図
4、図6または図7に示すような節炭器の配置構造は図
8、図9に示す構成の排熱回収ボイラにも適用できる。A part of the water supplied from the high pressure water supply pipe 4a downstream of the high pressure water supply pump 39 to the high pressure primary economizer 6 is sent to the high pressure water supply pump minimum flow pipe 5, and the minimum flow of the high pressure water supply pump 39 is minimized. Secure quantity. Further, the arrangement structure of the economizer as shown in FIG. 4, FIG. 6 or FIG. 7 can also be applied to the exhaust heat recovery boiler having the configuration shown in FIG.
【0025】[0025]
【発明の実施の形態】本発明の実施の形態について図面
と共に説明する。本発明の実施の形態の排熱回収ボイラ
をコンバインドサイクルに適用した場合を図1に示す。
図示しないガスタービンから得られる約600℃の排ガ
スは排熱回収ボイラによって熱回収され、約100℃の
低温排ガス29となって図示しない煙突から大気中に放
出される。Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a case where an exhaust heat recovery boiler according to an embodiment of the present invention is applied to a combined cycle.
Exhaust gas at about 600 ° C. obtained from a gas turbine (not shown) is recovered by an exhaust heat recovery boiler, and is discharged as a low temperature exhaust gas 29 at about 100 ° C. from a chimney (not shown) into the atmosphere.
【0026】他方、排熱回収ボイラで発生した低圧主蒸
気は低圧主蒸気管12、中圧主蒸気は中圧主蒸気管18
および高圧主蒸気は高圧主蒸気管26から、それぞれの
圧力系の図示しない蒸気タービンに送られ、仕事をした
後、復水器46で利用できない熱を放出して水に戻し、
復水ポンプ47で昇圧され、低温給水となり、低温給水
管1から排熱回収ボイラに給水される。On the other hand, the low-pressure main steam generated in the exhaust heat recovery boiler is a low-pressure main steam pipe 12, and the medium-pressure main steam is a medium-pressure main steam pipe 18.
The high-pressure main steam is sent from the high-pressure main steam pipe 26 to steam turbines (not shown) of the respective pressure systems, and after working, releases heat that cannot be used in the condenser 46 to return to water,
The pressure is raised by the condensate pump 47 to be low-temperature water supply, and the low-temperature water supply pipe 1 supplies water to the exhaust heat recovery boiler.
【0027】低温給水管1から供給される低温給水は低
圧給水管2aを経て低圧節炭器8で低圧ドラム9内圧力
での飽和温度より約10℃低い温度まで昇温され、つい
で低圧ドラム9に供給され、降水管10、蒸発器11及
びドラム9の間を循環しながら給水が蒸気化され、低圧
ドラム9での気水分離により得られた低圧蒸気のみが低
圧主蒸気管12により図示しないタービンに供給され
る。The low-temperature water supplied from the low-temperature water supply pipe 1 passes through the low-pressure water supply pipe 2a and is heated by the low-pressure economizer 8 to a temperature about 10 ° C. lower than the saturation temperature at the pressure in the low-pressure drum 9; And the feedwater is vaporized while circulating between the downcomer 10, the evaporator 11 and the drum 9, and only the low-pressure steam obtained by the steam separation in the low-pressure drum 9 is not shown by the low-pressure main steam pipe 12. Supplied to the turbine.
【0028】また、低温給水管1から分岐された高圧給
水管4aに供給された給水は高圧給水ポンプ39により
高圧系に必要な圧力、約130kg/cm2まで昇圧さ
れ、高圧一次節炭器6で加熱され、ついで高圧給水管4
bを経由して高圧二次節炭器19に送られ、さらに加熱
されて高圧給水管4cを介して高圧ドラム20に供給さ
れる。高圧ドラム20からは高圧降水管21、高圧蒸発
器22及び高圧ドラム20の間を循環しながら蒸気化
し、高圧ドラム20で分離された高圧蒸気は高圧一次過
熱器23と高圧二次過熱器25を順次経由することで約
540℃に過熱されて、高圧主蒸気管26から図示しな
い高圧蒸気タービンへ送られる。なお、高圧一次過熱器
23と高圧二次過熱器25の間の蒸気流路には過熱蒸気
温度を制御する減温器24が設けられている。The water supplied to the high-pressure water supply pipe 4a branched from the low-temperature water supply pipe 1 is boosted by a high-pressure water supply pump 39 to a pressure required for the high-pressure system, about 130 kg / cm 2. And then the high pressure water pipe 4
b, it is sent to the high-pressure secondary economizer 19, further heated and supplied to the high-pressure drum 20 via the high-pressure water supply pipe 4c. The high-pressure drum 20 vaporizes while circulating between the high-pressure downcomer 21, the high-pressure evaporator 22, and the high-pressure drum 20, and the high-pressure steam separated by the high-pressure drum 20 passes through the high-pressure primary superheater 23 and the high-pressure secondary superheater 25. It is superheated to about 540 ° C. by passing through sequentially and sent from the high-pressure main steam pipe 26 to a high-pressure steam turbine (not shown). In the steam flow path between the high-pressure primary superheater 23 and the high-pressure secondary superheater 25, a desuperheater 24 for controlling the superheated steam temperature is provided.
【0029】高圧給水ポンプ39の中間段からの抽水圧
力は約35kg/cm2であり、高圧給水ポンプ39の一
段翼の後流より抽水され、中圧給水管3aを経由して中
圧一次節炭器7に供給され、その後、中圧給水管3b、
中圧二次節炭器13を経由して中圧ドラム14に供給さ
れる。中圧ドラム14から中圧降水管15、中圧蒸発器
16及び中圧ドラム14の間を循環しながら給水は蒸気
化される。中圧ドラム14で分離された中圧蒸気は、中
圧過熱器17で過熱された後、中圧主蒸気管18から図
示しない中圧蒸気タービンへ送られる。The water extraction pressure from the intermediate stage of the high-pressure water supply pump 39 is about 35 kg / cm 2 , water is extracted from the wake of the first stage blade of the high-pressure water supply pump 39, and the medium-pressure primary node is passed through the medium-pressure water supply pipe 3a. It is supplied to the charcoal 7 and then the medium pressure water supply pipe 3b,
It is supplied to the medium pressure drum 14 via the medium pressure secondary economizer 13. The feed water is vaporized while circulating from the medium pressure drum 14 to the medium pressure downcomer 15, the medium pressure evaporator 16, and the medium pressure drum 14. The intermediate-pressure steam separated by the intermediate-pressure drum 14 is superheated by the intermediate-pressure superheater 17 and then sent from the intermediate-pressure main steam pipe 18 to an intermediate-pressure steam turbine (not shown).
【0030】また、図1に示す構成では、中圧二次節炭
器13の出口給水の一部を再循環配管27から高圧給水
ポンプ39入口より上流側の低温給水管1に再循環する
ことにより高圧給水ポンプ39の熱衝撃を緩和し、かつ
節炭器6〜8などの低温腐食を防止できる。高圧タービ
ンで一部仕事をした後の高圧蒸気を再熱する場合には、
高圧蒸気を中圧系に戻し、再熱蒸気として過熱し、再び
蒸気タービンに供給する構成としても良い。Further, in the configuration shown in FIG. 1, a part of the outlet water supply of the intermediate-pressure secondary economizer 13 is recirculated from the recirculation pipe 27 to the low-temperature water supply pipe 1 upstream of the inlet of the high-pressure water supply pump 39. The thermal shock of the high-pressure water supply pump 39 can be reduced, and low-temperature corrosion of the economizers 6 to 8 can be prevented. When reheating high pressure steam after doing some work in a high pressure turbine,
The high-pressure steam may be returned to the medium-pressure system, superheated as reheated steam, and supplied to the steam turbine again.
【0031】このように、低圧系は復水ポンプ47で昇
圧された圧力系の給水を用い、高圧ポンプ39の中段か
らの抽水は中圧系給水としてだけ使用することにより、
給水ポンプ39の動力、高圧給水ポンプ39の抽水比率
(対吸込流量)は下記の表に示すようになる。As described above, the low-pressure system uses the water supply of the pressure system pressurized by the condensate pump 47, and the water drawn from the middle stage of the high-pressure pump 39 is used only as the medium-pressure water supply.
The power of the water supply pump 39 and the water extraction ratio (to the suction flow rate) of the high-pressure water supply pump 39 are as shown in the following table.
【0032】 [表1] =================================== 本発明 従来技術 −−−−−−−−−−−−−−−−−− (図1) (図8) (図9) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ポンプ軸動力(kw) 1170 1190 1210 抽水比率(平常時)(%) 25 16 32 抽水比率(特殊運転時)(%) 35〜45 16〜25 42〜52 ===================================[Table 1] ================================== The Present Invention Prior Art ---- -------------------------------------------------------- (FIG. 1) (FIG. 8) (FIG. 9) ------------------------------------------------------------------------ −−−−−−−−−−− Pump shaft power (kw) 1170 1190 1210 Extraction ratio (normal) (%) 25 16 32 Extraction ratio (during special operation) (%) 35 to 45 16 to 25 42 to 52 ==================================
【0033】ここで特殊運転時とは起動時や負荷変化時
などのことである。本発明により、高圧ポンプ39の軸
動力は従来技術に比べて低減でき、高圧ポンプ39の中
段からの抽水比率もポンプ機能的には問題ない範囲とな
り、運用性、経済性、ポンプ寿命上にも大きな効果が得
られる。Here, the special operation is at the time of starting or at the time of load change. According to the present invention, the shaft power of the high-pressure pump 39 can be reduced as compared with the prior art, and the water extraction ratio from the middle stage of the high-pressure pump 39 is within a range in which there is no problem in terms of the pump function. A great effect can be obtained.
【0034】次に、節炭器を高圧、中圧、低圧系に分流
した場合の節炭器の経済的な配置について説明する。例
えば、本発明の実施の形態である図1に示す排熱回収ボ
イラでは中圧一次節炭器7は低圧節炭器8より排ガス流
れの後流側に、高圧一次節炭器6は中圧一次節炭器7と
低圧節炭器8より排ガス流れの後流側にそれぞれ配置さ
れるために、中圧一次節炭器7より上流側に配置される
低圧節炭器8の熱交換後の温度低下した排ガス29との
熱交換が中圧一次節炭器7で行われ、また、高圧一次節
炭器6より上流側に配置される中圧一次節炭器7と低圧
節炭器8の熱交換後の温度低下した排ガス29との熱交
換が高圧一次節炭器6で行われる。そのため、図2に示
すように中圧一次節炭器7の出口側の給水温度と排ガス
温度の温度差は低圧節炭器8の出口側の給水温度と排ガ
ス温度の温度差に比べて小さくなり、また、高圧一次節
炭器6の出口側の給水温度と排ガス温度の温度差は中圧
一次節炭器7の出口側の給水温度と排ガス温度の温度差
に比べて小さくなる。従って、中圧一次節炭器7と高圧
一次節炭器6の伝熱面積を増加させる必要がある。Next, an economical arrangement of the economizer when the economizer is divided into a high pressure, a medium pressure and a low pressure system will be described. For example, in the exhaust heat recovery boiler shown in FIG. 1, which is an embodiment of the present invention, the intermediate-pressure primary economizer 7 is on the downstream side of the exhaust gas flow from the low-pressure economizer 8, and the high-pressure primary economizer 6 is intermediate-pressure. After the heat exchange of the low-pressure economizer 8 disposed upstream of the medium-pressure primary economizer 7, since it is arranged on the downstream side of the exhaust gas flow from the primary economizer 7 and the low-pressure economizer 8, respectively. Heat exchange with the temperature-reduced exhaust gas 29 is performed in the intermediate-pressure primary economizer 7, and between the intermediate-pressure primary economizer 7 and the low-pressure economizer 8 arranged upstream of the high-pressure primary economizer 6. The heat exchange with the exhaust gas 29 whose temperature has decreased after the heat exchange is performed in the high-pressure primary economizer 6. Therefore, as shown in FIG. 2, the temperature difference between the feedwater temperature and the exhaust gas temperature at the outlet side of the medium-pressure primary economizer 7 is smaller than the temperature difference between the feedwater temperature and the exhaust gas temperature at the outlet side of the low-pressure economizer 8. The temperature difference between the feed water temperature on the outlet side of the high pressure primary economizer 6 and the exhaust gas temperature is smaller than the temperature difference between the feed water temperature on the outlet side of the medium pressure primary economizer 7 and the exhaust gas temperature. Therefore, it is necessary to increase the heat transfer area of the intermediate-pressure primary economizer 7 and the high-pressure primary economizer 6.
【0035】図4に示すように排熱回収ボイラのケーシ
ング28を開けて上方から見た図と図5に排熱回収ボイ
ラの側面から見た図を示すが、排ガス流れ方向に並行に
高圧、中圧及び低圧節炭器を配置するが、高圧一次節炭
器6(図1)の伝熱管部38の管寄せ34、中圧一次節
炭器7(図1)の伝熱管部37の管寄せ32、低圧節炭
器8(図1)の伝熱管部36の管寄せ30にそれぞれ高
圧給水管4a、中圧給水管3a及び低圧給水管2aが接
続している。また、高圧節炭器管寄せ34は高圧節炭器
連絡管35で連結され、中圧節炭器管寄せ32は中圧節
炭器連絡管33で連結され、さらに低圧節炭器管寄せ3
0は低圧節炭器連絡管31で連結されている。As shown in FIG. 4, the casing 28 of the exhaust heat recovery boiler is opened and viewed from above, and FIG. 5 is a view viewed from the side of the exhaust heat recovery boiler. The medium-pressure and low-pressure economizers are arranged, and the heat exchanger tube section 34 of the high-pressure primary economizer 6 (FIG. 1) and the heat exchanger tube section 37 of the intermediate-pressure primary economizer 7 (FIG. 1) are arranged. The high-pressure feed pipe 4a, the medium-pressure feed pipe 3a, and the low-pressure feed pipe 2a are connected to the feeder 32 and the feeder 30 of the heat transfer pipe portion 36 of the low-pressure economizer 8 (FIG. 1), respectively. The high-pressure economizer header 34 is connected by a high-pressure economizer connection pipe 35, the medium-pressure economizer header 32 is connected by a medium-pressure economizer connection pipe 33, and the low-pressure economizer header 3 is connected.
Numeral 0 is connected by a low-pressure economizer connecting pipe 31.
【0036】各節炭器で熱交換された給水は高圧給水管
4b、中圧給水管3b及び低圧給水管2bからそれぞれ
次の流路に送り出される。この場合排ガスと給水の温度
分布は図2に示す通りとなり、温度差を有効に使用する
ため、ガス流れに直交する方向の伝熱管本数の比率は高
圧:中圧:低圧=100:5〜10:5〜10となるよ
うに、低圧節炭器6と中圧一次節炭器7と低圧節炭器8
の各伝熱管を設置する。The feed water heat-exchanged in each economizer is sent out from the high-pressure feed pipe 4b, the medium-pressure feed pipe 3b and the low-pressure feed pipe 2b to the next flow path. In this case, the temperature distribution of the exhaust gas and the feedwater is as shown in FIG. 2, and the ratio of the number of heat transfer tubes in the direction orthogonal to the gas flow is high: medium pressure: low pressure = 100: 5 to 10 in order to effectively use the temperature difference. : Low-pressure economizer 6, medium-pressure primary economizer 7 and low-pressure economizer 8 so as to be 5 to 10
Install each heat transfer tube.
【0037】図4に示す各節炭器6〜8の伝熱管部36
〜38の製作や伝熱管群間の排ガスバイパス構造を設け
るなどのためにコスト高となる要因があるが、図6また
は図7(いずれもボイラの上面から見た図)に示すよう
に各節炭器の伝熱管を各圧力系の伝熱面積に応じた伝熱
管数分のガス流れに直交する方向ヘ直列に配置して混在
させることで、前記製造コストなどの問題は解決され
る。The heat transfer tube 36 of each of the economizers 6 to 8 shown in FIG.
Although there is a factor that increases the cost due to the manufacture of No. 38 and the provision of the exhaust gas bypass structure between the heat transfer tube groups, as shown in FIG. 6 or FIG. 7 (all viewed from the top of the boiler), By arranging and mixing the heat transfer tubes of the charcoal in series in a direction orthogonal to the gas flow for the number of heat transfer tubes corresponding to the heat transfer area of each pressure system, the above-mentioned problems such as the production cost can be solved.
【0038】分流された高圧、中圧および低圧系の給水
を、図6に示すように3分割した場合において、節炭器
6〜8で加熱される給水の温度と熱交換量の関係を図3
に示すが、まず、中圧一次節炭器7と低圧節炭器8につ
いては、伝熱管の伝熱面積に大きく影響する給水出口側
の給水温度と排ガス温度との温度差は、従来の図2に示
すそれらの温度差と全く同じまたはほとんど同じであ
る。FIG. 6 shows the relationship between the temperature of the feed water heated by the economizers 6 to 8 and the amount of heat exchange when the split high-, medium- and low-pressure feed water is divided into three parts as shown in FIG. 3
First, as for the medium-pressure primary economizer 7 and the low-pressure economizer 8, the temperature difference between the feedwater temperature on the feedwater outlet side and the exhaust gas temperature, which greatly affects the heat transfer area of the heat transfer tube, is shown in FIG. 2, exactly or almost the same as their temperature differences.
【0039】次に、高圧一次節炭器6については、給水
出口側の温度差は従来の図2に比べて、排ガスの高温側
へずらすことができるので、高圧一次節炭器8の出口側
の給水温度と排ガス温度との温度差は図2の場合の減少
に比べてはるかに小さいものとなり、したがって高圧一
次節炭器8の伝熱面積増加率も図6に示す場合は図4に
示す場合に比べて小さくなる。Next, as for the high-pressure primary economizer 6, the temperature difference at the feed water outlet side can be shifted to the higher temperature side of the exhaust gas as compared with the conventional one shown in FIG. The temperature difference between the feed water temperature and the exhaust gas temperature is much smaller than the decrease in the case of FIG. 2, so that the rate of increase in the heat transfer area of the high-pressure primary economizer 8 is also shown in FIG. It becomes smaller than the case.
【0040】ある排熱回収ボイラプラントにおける実際
の排ガスと高圧一次節炭器8の出口給水温度の差を下記
の表2に示す。 [表2] ================================== 従来技術(図8) 図2 本発明(図3) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− 排ガスと高圧出口温度差 15度 8.3度 12.8度 ==================================The difference between the actual exhaust gas and the outlet feed water temperature of the high-pressure primary economizer 8 in a certain waste heat recovery boiler plant is shown in Table 2 below. [Table 2] ================================= Prior Art (FIG. 8) FIG. 3) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− Temperature difference between exhaust gas and high pressure outlet 15 ° 8.3 ° 12. 8 degrees ==================================
【0041】図6に示すように節炭器6〜8を3分割す
る代わりに図7に示すごとく、分割数を多くすればする
程効果があるが、中圧節炭器の伝熱管群数、低圧節炭器
の伝熱管群数が増えるため、経済的でなくなり、通常は
2〜4分割が最も経済的である。As shown in FIG. 7, instead of dividing the economizers 6 to 8 into three as shown in FIG. 6, the greater the number of divisions, the more the effect is obtained. Since the number of heat transfer tube groups of the low-pressure economizer increases, it is not economical, and usually the most economical is to divide into two to four.
【0042】本発明の他の実施の形態として、図9に示
す排熱回収ボイラの構成において、高圧一次節炭器6と
中圧一次節炭器7を図4、図6、図7に示すような分割
配置構造にしても良い。更に、図8に示す高圧一次節炭
器6と中圧一次節炭器7を図4、図6、図7に示すよう
な分割配置構造にしても良い。As another embodiment of the present invention, in the configuration of the exhaust heat recovery boiler shown in FIG. 9, a high-pressure primary economizer 6 and an intermediate-pressure primary economizer 7 are shown in FIGS. 4, 6 and 7. Such a split arrangement structure may be adopted. Further, the high-pressure primary economizer 6 and the intermediate-pressure primary economizer 7 shown in FIG. 8 may have a split arrangement structure as shown in FIGS. 4, 6, and 7.
【0043】[0043]
【発明の効果】本発明によれば補機動力を低減し、抽水
比率も大幅な増加なしに給水ポンプの1台化、一定給水
温度域に配置できるので、経済性、ポンプ寿命、全体配
置、及びメンテナンス性に効果がある。According to the present invention, it is possible to reduce the power of auxiliary equipment and to use a single water supply pump and arrange it in a constant water supply temperature range without a large increase in the water extraction ratio. It is also effective for maintenance.
【0044】また、節炭器の分割配置により、伝熱面
積、管群数を経済的に設定できる効果がある。Further, the divisional arrangement of the economizer has the effect that the heat transfer area and the number of tube groups can be set economically.
【図1】 本発明の実施の形態の排熱回収ボイラの系統
図である。FIG. 1 is a system diagram of an exhaust heat recovery boiler according to an embodiment of the present invention.
【図2】 本発明の実施の形態の排熱回収ボイラの給水
の温度分布図である。FIG. 2 is a temperature distribution diagram of feedwater of the exhaust heat recovery boiler according to the embodiment of the present invention.
【図3】 本発明の実施の形態の排熱回収ボイラの給水
の温度分布図である。FIG. 3 is a temperature distribution diagram of feedwater of an exhaust heat recovery boiler according to an embodiment of the present invention.
【図4】 本発明の実施の形態の排熱回収ボイラの節炭
器の配置例を示す上面図である。FIG. 4 is a top view showing an arrangement example of economizers of the exhaust heat recovery boiler according to the embodiment of the present invention.
【図5】 本発明の実施の形態の排熱回収ボイラの節炭
器の配置例を示す側面図である。FIG. 5 is a side view showing an arrangement example of a economizer of the exhaust heat recovery boiler according to the embodiment of the present invention.
【図6】 本発明の実施の形態の排熱回収ボイラの節炭
器の配置例を示す上面図である。FIG. 6 is a top view showing an example of the arrangement of the economizer of the exhaust heat recovery boiler according to the embodiment of the present invention.
【図7】 本発明の実施の形態の排熱回収ボイラの節炭
器の配置例を示す上面図である。FIG. 7 is a top view showing an example of the arrangement of the economizer of the exhaust heat recovery boiler according to the embodiment of the present invention.
【図8】 従来技術の排熱回収ボイラの系統図である。FIG. 8 is a system diagram of a conventional heat recovery steam generator.
【図9】 従来技術の排熱回収ボイラの系統図である。FIG. 9 is a system diagram of a conventional heat recovery steam generator.
1 低温給水管 2a,2b 低
圧給水管 3a,3b 中圧給水管 4a,4b 高
圧給水管 5 ミニマムフロー管 6 高圧一次節
炭器 7 中圧一次節炭器 8 低圧節炭器 9 低圧ドラム 10 降水管 11 蒸発器 12 低圧主蒸
気管 13 中圧二次節炭器 14 中圧ドラ
ム 15 中圧降水管 16 中圧蒸発
器 17 中圧過熱器 18 中圧主蒸
気管 18 中圧主蒸気管 19 高圧二次
節炭器 20 高圧ドラム 21 高圧降水
管 22 高圧蒸発器 23 高圧一次
過熱器 24 減温器 25 高圧二次
過熱器 26 高圧主蒸気管 27 再循環配
管 30、32、34 管寄せ 31、33、3
5 連絡管 36、37、38 伝熱管部 39 高圧給水
ポンプ 46 復水器 47 復水ポン
プDESCRIPTION OF SYMBOLS 1 Low-temperature water supply pipe 2a, 2b Low-pressure water supply pipe 3a, 3b Medium-pressure water supply pipe 4a, 4b High-pressure water supply pipe 5 Minimum flow pipe 6 High-pressure primary energy-saving device 7 Medium-pressure primary energy-saving device 8 Low-pressure energy-saving device 9 Low-pressure drum 10 Precipitation Pipe 11 Evaporator 12 Low-pressure main steam pipe 13 Medium-pressure secondary economizer 14 Medium-pressure drum 15 Medium-pressure downcomer 16 Medium-pressure evaporator 17 Medium-pressure superheater 18 Medium-pressure main steam pipe 18 Medium-pressure main steam pipe 19 High-pressure pipe Next-stage coal saver 20 High-pressure drum 21 High-pressure downcomer 22 High-pressure evaporator 23 High-pressure primary superheater 24 Desuperheater 25 High-pressure secondary superheater 26 High-pressure main steam pipe 27 Recirculation pipe 30, 32, 34 Heading 31, 33, 3
5 Connecting pipes 36, 37, 38 Heat transfer pipe section 39 High pressure water supply pump 46 Condenser 47 Condensate pump
Claims (6)
設けられる伝熱管群と、各圧力系の伝熱管群の中の節炭
器へ給水する給水経路と、各圧力系の節炭器から給水さ
れる気水分離ドラムをそれぞれ備えた排熱回収ボイラに
おいて、 低圧系への給水経路より分岐した分岐給水経路と、該分
岐給水経路に設けられた高圧給水ポンプと、該高圧給水
ポンプからの吐出水を高圧側の圧力系に給水する給水経
路と、高圧給水ポンプ中間段抽水を中間の圧力系に給水
する給水経路を設けたことを特徴とする排熱回収ボイ
ラ。1. A heat transfer tube group provided in an exhaust gas flow path comprising two or more pressure systems, a water supply path for supplying water to a economizer in the heat transfer tube group of each pressure system, and a water saving passage of each pressure system. An exhaust heat recovery boiler provided with a steam-water separation drum supplied from a water heater, a branch water supply path branched from a water supply path to a low-pressure system, a high-pressure water supply pump provided in the branch water supply path, and a high-pressure water supply pump. A wastewater heat recovery boiler provided with a water supply path for supplying water discharged from a high pressure side to a high pressure side pressure system and a water supply path for supplying high pressure water pump intermediate stage extraction water to an intermediate pressure system.
た後の高圧蒸気を再熱する再熱器を排ガス流路内に設け
たことを特徴とする請求項1記載の排熱回収ボイラ。2. The exhaust heat recovery according to claim 1, wherein a reheater for reheating the high-pressure steam after working using the steam obtained in the high-pressure system is provided in the exhaust gas passage. boiler.
る方向に、各圧力系の伝熱面積に応じた伝熱管数の各圧
力系の節炭器の伝熱管をそれぞれ並列にまたは直列に配
置したことを特徴とする請求項1または2記載の排熱回
収ボイラ。3. The heat transfer tubes of the economizer of each pressure system having the number of heat transfer tubes corresponding to the heat transfer area of each pressure system are arranged in parallel or in series in a direction orthogonal to the exhaust gas flow direction in the exhaust gas passage. The exhaust heat recovery boiler according to claim 1, wherein the exhaust heat recovery boiler is disposed.
る方向に、低圧系と中圧系の節炭器の伝熱面積をほぼ同
じにした伝熱管を並列配置し、高圧系節炭器の伝熱面積
を前記中・低圧系の節炭器の合計伝熱面積とほぼ同じに
した伝熱管を前記中・低圧系節炭器と直列に配置したこ
とを特徴とする請求項3記載の排熱回収ボイラ。4. A high-pressure system economizer in which heat transfer tubes having substantially the same heat transfer area as a low-pressure system and a medium-pressure system economizer are arranged in parallel in a direction orthogonal to the exhaust gas flow direction in the exhaust gas flow path. 4. The heat transfer tube whose heat transfer area is substantially the same as the total heat transfer area of the medium / low pressure system economizer is arranged in series with the middle / low pressure system economizer. Waste heat recovery boiler.
の給水の一部を高圧の給水ポンプが設けられる分岐給水
経路の上流側の低圧系への給水経路に戻す給水再循環経
路を設けたことを特徴とする請求項1ないし4のいずれ
かに記載の排熱回収ボイラ5. A feedwater recirculation route for returning a part of high-temperature feedwater heat recovered by a economizer of a predetermined pressure system to a feedwater route to a low-pressure system on an upstream side of a branch feedwater route provided with a high-pressure feedwater pump. An exhaust heat recovery boiler according to any one of claims 1 to 4, further comprising:
設けられる伝熱管群と、各圧力系の伝熱管群の中の節炭
器へ給水する給水経路と、各圧力系の節炭器から給水さ
れる気水分離ドラムをそれぞれ備えた排熱回収ボイラに
おいて、 節炭器を一以上の高圧系節炭器と一以上の低圧系節炭器
とに分割し、低圧系節炭器で加熱された給水の一部を一
以上の高圧系節炭器へそれぞれ給水する給水経路と、該
高圧系節炭器への給水経路に設けられる高圧給水ポンプ
と、該高圧給水ポンプ中間段抽水を低圧系節炭器に給水
する給水経路とを設け、 排ガス流路内の排ガス流れ方向に直交する方向に、それ
ぞれ断面積が異なる各圧力系の節炭器の伝熱管を並列ま
たは直列に配置配置したことを特徴とする排熱回収ボイ
ラ。6. A heat transfer tube group provided in an exhaust gas flow path composed of two or more pressure systems, a water supply path for supplying water to a economizer in the heat transfer tube group of each pressure system, and a water saving passage of each pressure system. In an exhaust heat recovery boiler equipped with steam-water separation drums supplied from a steam generator, the economizer is divided into one or more high-pressure economizers and one or more low-pressure economizers. A water supply path for supplying a portion of the feed water heated in step 1 to one or more high-pressure system economizers; a high-pressure water pump provided in a water supply path to the high-pressure economizer; And a water supply path for supplying water to the low-pressure system economizer, and heat transfer tubes of economizers of each pressure system with different cross-sectional areas are arranged in parallel or in series in the direction orthogonal to the exhaust gas flow direction in the exhaust gas flow path. An exhaust heat recovery boiler characterized by being arranged.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15817898A JPH11350921A (en) | 1998-06-05 | 1998-06-05 | Exhaust heat recovery boiler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15817898A JPH11350921A (en) | 1998-06-05 | 1998-06-05 | Exhaust heat recovery boiler |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11350921A true JPH11350921A (en) | 1999-12-21 |
Family
ID=15665984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15817898A Withdrawn JPH11350921A (en) | 1998-06-05 | 1998-06-05 | Exhaust heat recovery boiler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11350921A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013543573A (en) * | 2010-10-05 | 2013-12-05 | シーメンス アクチエンゲゼルシヤフト | Fossil fuel combustion steam generator |
JP2017537299A (en) * | 2014-11-06 | 2017-12-14 | シーメンス アクティエンゲゼルシャフト | Control method for operating a once-through steam generator |
-
1998
- 1998-06-05 JP JP15817898A patent/JPH11350921A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013543573A (en) * | 2010-10-05 | 2013-12-05 | シーメンス アクチエンゲゼルシヤフト | Fossil fuel combustion steam generator |
US9506376B2 (en) | 2010-10-05 | 2016-11-29 | Siemens Aktiengesellschaft | Fossil-fired steam generator |
JP2017537299A (en) * | 2014-11-06 | 2017-12-14 | シーメンス アクティエンゲゼルシャフト | Control method for operating a once-through steam generator |
US10101021B2 (en) | 2014-11-06 | 2018-10-16 | Siemens Aktiengesellschaft | Control method for operating a heat recovery steam generator |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7900431B2 (en) | Process and plant for power generation | |
US5428950A (en) | Steam cycle for combined cycle with steam cooled gas turbine | |
US6041588A (en) | Gas and steam turbine system and operating method | |
US6244035B1 (en) | Gas and steam-turbine plant and method of operating the plant | |
US6604354B2 (en) | Combined cycle power plant | |
US6047548A (en) | Gas and steam turbine plant and method for operating the same | |
CN101012924A (en) | Composite cycle power generation system improved in efficiency | |
CA2019748C (en) | Combined gas and steam turbine plant with coal gasification | |
US20160273406A1 (en) | Combined cycle system | |
EP0618997B1 (en) | Steam system in a multiple boiler plant | |
US5992138A (en) | Method for operating a gas and steam-turbine plant and plant working according to the method | |
JP2004504538A (en) | Operating method of gas and steam combined turbine equipment and its equipment | |
JPH03221702A (en) | Duplex type heat exchanger for waste heat recovery | |
US6460325B2 (en) | Method of converting a system generating saturated steam, having at least one steam turbine group, and power station converted in accordance with the method | |
JPH11350921A (en) | Exhaust heat recovery boiler | |
JP2753169B2 (en) | Double pressure type waste heat recovery boiler | |
JP2007183068A (en) | Once-through exhaust heat recovery boiler | |
RU2144994C1 (en) | Combined-cycle plant | |
JP3222035B2 (en) | Double pressure type waste heat recovery boiler feeder | |
JP3753762B2 (en) | Waste heat recovery boiler | |
JP4842071B2 (en) | Operation method of once-through exhaust heat recovery boiler and operation method of power generation equipment | |
JPH03117801A (en) | Exhaust heat recovery boiler | |
WO1996023961A1 (en) | Boiler for superheating of combined cycle power plant steam | |
JPH0726908A (en) | Combined cycle power plant | |
JPH03264710A (en) | Heat recovery type power system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050302 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20060522 |