JPH0773059B2 - Molten carbonate fuel cell - Google Patents

Molten carbonate fuel cell

Info

Publication number
JPH0773059B2
JPH0773059B2 JP63000393A JP39388A JPH0773059B2 JP H0773059 B2 JPH0773059 B2 JP H0773059B2 JP 63000393 A JP63000393 A JP 63000393A JP 39388 A JP39388 A JP 39388A JP H0773059 B2 JPH0773059 B2 JP H0773059B2
Authority
JP
Japan
Prior art keywords
gas supply
separator
fuel cell
supply passage
molten carbonate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63000393A
Other languages
Japanese (ja)
Other versions
JPH01176669A (en
Inventor
一男 岩本
将人 竹内
浩一 三次
秀夫 岡田
嘉男 岩瀬
聡 黒江
友一 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63000393A priority Critical patent/JPH0773059B2/en
Publication of JPH01176669A publication Critical patent/JPH01176669A/en
Publication of JPH0773059B2 publication Critical patent/JPH0773059B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/244Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes with matrix-supported molten electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は溶融炭酸塩型燃料電池に係り、特にセパレータ
及び電解質板のガス供給路を溶融炭酸塩に腐食されにく
い絶縁耐食性材料で被覆する溶融炭酸塩型燃料電池に関
する。
Description: TECHNICAL FIELD The present invention relates to a molten carbonate fuel cell, and more particularly, to melting gas supply passages for a separator and an electrolyte plate with an insulating corrosion resistant material that is not easily corroded by molten carbonate. The present invention relates to a carbonate fuel cell.

〔従来の技術〕[Conventional technology]

天然ガス等のガスをエネルギー源とし、電気化学反応を
利用して所定の電力を発生する燃料電池において、電池
の内部損失を低減するため、特開昭58−216365号、特開
昭59−27467号及び、特開昭59−27468号で開示されてい
るように、電極の外周面と接触する金属集電枠(セパレ
ータ)を用いることは知られている。このような単位電
池構造では発電能力に限界がある。従って大容量の出力
が得られる電池にするためには、電極,電解質板及びセ
パレータをそれぞれ大型化し、さらに、これらを積層す
る必要がありその技術開発は重要である。
In a fuel cell which uses a gas such as natural gas as an energy source to generate a predetermined electric power by utilizing an electrochemical reaction, in order to reduce internal loss of the cell, JP-A-58-216365 and JP-A-59-27467 are used. And Japanese Patent Laid-Open No. 59-27468, it is known to use a metal collector frame (separator) that comes into contact with the outer peripheral surface of the electrode. In such a unit battery structure, there is a limit in power generation capacity. Therefore, in order to obtain a battery with a large capacity output, it is necessary to increase the size of the electrode, the electrolyte plate, and the separator, respectively, and further to stack these, so that technological development is important.

その大型化,積層を確実に行うためには、ガス送入口を
大きくし又、ガス送入口を多くして電極全面に均一にガ
スがゆきわたるようにしなければならない。
In order to increase the size and stack reliably, it is necessary to enlarge the gas inlet and increase the gas inlet so that the gas is evenly distributed over the entire surface of the electrode.

例えば電極面積100cm2程度の小型溶融炭酸塩型燃料電池
においては、アノード、およびカソードガス供給路は円
筒型のものが1つあれば充分であった。KW級,MW級の電
池を構成しようとする場合には、セパレータ,電極,電
解質板等を大型化し、更に、多数の単位セルを並列,直
列、あるいは直並列に積層しなければならない。その他
にガス供給路の拡大とその複数化、さらにはガス供給路
の構造が複雑化してくる。一般にはセパレータと電解質
板が接するウエットシール部は絶縁されているが、カソ
ードガス供給路と、アノードガス供給路は絶縁されてい
ない。
For example, in a small-sized molten carbonate fuel cell having an electrode area of about 100 cm 2 , one cylindrical type anode and cathode gas supply passage was sufficient. In order to construct a KW class or MW class battery, it is necessary to increase the size of the separator, the electrode, the electrolyte plate, etc., and further stack a large number of unit cells in parallel, series, or series-parallel. In addition, the expansion of gas supply channels and their multipleization will be complicated, and the structure of gas supply channels will become complicated. In general, the wet seal portion where the separator and the electrolyte plate are in contact is insulated, but the cathode gas supply passage and the anode gas supply passage are not insulated.

このような燃料電池を長時間運転した場合、電解質が電
池反応ガス供給路へ流出、移動して導電性材料であるガ
ス供給等で酸素と炭酸塩及び電子によりパレステックリ
アクション反応によりローカルセルの発生により電流の
損失という問題がある。〔文献:ジャーナル エレクト
ロケミカル ソサエティ エレクトロケミカル サイエ
ンス アンド テクノロジィ 2−1986 286頁(J.Ele
ctrochem.Soc.,Electro−Chemical Science and Techno
logy Feb.1986 pp286)〕 〔発明が解決しようとする課題〕 上記従来技術は、溶融炭酸塩燃料電池のセパレータは導
電性材料であり、カソードガス供給路内に、電解質板か
ら炭酸塩が流出,移動した際、供給路の壁に炭酸塩が付
着(ぬれ)することにより電池の発電状態、すなわちカ
ソードガスの酸素と炭酸塩、そして電子により(1),
(2)式のようにローカルセルを形成することによって
電流の損失が起きるなどの問題があった。
When such a fuel cell is operated for a long time, the electrolyte flows out to the cell reaction gas supply path and moves to generate a local cell due to the Palace Reaction reaction by oxygen, carbonate and electrons by the gas supply which is a conductive material. Therefore, there is a problem of current loss. [Reference: Journal Electrochemical Society Electrochemical Science and Technology 2-1986 286 (J.Ele
ctrochem.Soc., Electro-Chemical Science and Techno
logy Feb.1986 pp286)] [Problems to be solved by the invention] In the above-mentioned conventional technology, the separator of the molten carbonate fuel cell is a conductive material, and the carbonate flows out from the electrolyte plate into the cathode gas supply passage. When moving, the carbonate adheres to the wall of the supply path (wet), and the power generation state of the battery, that is, oxygen and carbonate of the cathode gas, and electrons (1),
There is a problem that a current loss occurs due to the formation of the local cell as in the formula (2).

1/2O2+CO2+2e-→CO3 2-- …(1) 2Li++CO3 2-→LiCO3 …(2) 電池を積層するとトータル電圧が高くなるので一層電流
が流れやすく電流損失の影響も大きくなる。さらに溶融
炭酸塩燃料電池を長時間運転すると、炭酸塩が消失し電
池内部の抵抗が増大し電池性能が低下する。また炭酸塩
がセパレータのガス供給路に流出,移動することによ
り、セパレータの鉄と炭酸リチウムにより(3)式のよ
うに腐食がおこる。
1 / 2O 2 + CO 2 + 2e → CO 3 2-- … (1) 2Li + + CO 3 2- → LiCO 3 … (2) When the batteries are stacked, the total voltage becomes higher, so the current will flow more easily and the effect of current loss will occur. Also grows. Further, when the molten carbonate fuel cell is operated for a long time, the carbonate disappears, the internal resistance of the cell increases, and the cell performance deteriorates. Further, when the carbonate flows out and moves to the gas supply passage of the separator, the iron and lithium carbonate of the separator cause corrosion as shown in the formula (3).

本発明の目的はセパレータの電池反応ガス供給路を絶縁
被覆することにより炭酸塩流出によるローカルセルの発
生を防止しさらに他の鉄と炭酸リチウムとによる腐食を
防止して長期的に安定した燃料電池を提供することにあ
る。
The object of the present invention is to provide a stable long-term fuel cell by insulating the cell reaction gas supply path of the separator to prevent the generation of local cells due to the outflow of carbonate and to prevent corrosion due to other iron and lithium carbonate. To provide.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は、一対の陰陽電極が前記陰陽電極より大面積で
あり炭酸塩を電解質とする電解質板を挟んで対向されて
成る溶融炭酸塩型燃料電池本体と、前記溶融炭酸塩型燃
料電池本体は前記陰陽電極より大面積のセパレータを介
して、前記陰陽電極の極性をそろえて複数積層され、前
記セパレータに設けられた各々の前記陰陽電極面に各々
の反応ガスを供給する反応ガス供給路部、及び、前記セ
パレータの反応ガス供給路部に連結され、前記陰陽電極
の周囲に位置し、積層された前記セパレータ及び前記電
解質板を貫通する反応ガス供給路部、とからなる反応ガ
ス供給路を備えた溶融炭酸塩型燃料電池において、前記
反応ガス供給路の内面が絶縁耐食被覆されたことを特徴
とする。
The present invention relates to a molten carbonate fuel cell main body, in which a pair of positive and negative electrodes have a larger area than the positive and negative electrodes and are opposed to each other with an electrolyte plate containing a carbonate as an electrolyte, and the molten carbonate fuel cell main body comprises: Through a separator having a larger area than the Yin-Yo electrode, a plurality of the Yin-Yo electrodes are laminated with the polarities aligned, and a reaction gas supply passage unit for supplying each reaction gas to each Yin-Yo electrode surface provided on the separator, And a reaction gas supply path portion that is connected to the reaction gas supply path portion of the separator, is located around the positive and negative electrodes, and includes a reaction gas supply path portion that penetrates the stacked separator and the electrolyte plate. The molten carbonate fuel cell is characterized in that the inner surface of the reaction gas supply passage is coated with a dielectric and corrosion resistant material.

また、前記絶縁耐食被覆をアルミナ、ジルコニア、チタ
ニア、炭化ケイ素、リチウムアルミネート、窒化ケイ素
のいずれか1つ以上の粉末の塗布焼結処理で行うことを
特徴とする。
Further, it is characterized in that the insulating and corrosion resistant coating is performed by coating and sintering at least one powder of alumina, zirconia, titania, silicon carbide, lithium aluminate and silicon nitride.

〔作用〕[Action]

溶融炭酸塩燃料電池の一対の陰陽電極にそれぞれ対応し
たそれぞれ電池反応ガスを送給するセパレータのガス供
給路の内面を絶縁耐食性材料で被覆して該ガス供給路に
炭酸塩流出時のローカルセル発生防止を行う。
The inner surface of the gas supply passage of the separator that supplies the cell reaction gas corresponding to the pair of positive and negative electrodes of the molten carbonate fuel cell is coated with an insulating and corrosion-resistant material to generate a local cell when the carbonate flows out to the gas supply passage. Take precautions.

〔実施例〕〔Example〕

以下本発明の一実施例を第1図〜第8図を用いて説明す
る。溶融炭酸塩燃料電池は第3図に示すように電解質板
3と、その電解質板を挟んで対向する一対の電極、すな
わちカソード4,アノード5及び一対の電極の外側に設け
られたセパレータ1(金属製)を有していてセパレータ
1,及び電解質板3を貫通したカソードガス供給路2から
空気とCO2が、アノードガス供給11からH2と、CO2の反応
ガスが流通しカソード室6、アノード室7のそれぞれの
部屋に供給される。カソード4に供給された二酸化炭素
が酸素と電子に反応し炭酸イオンとなりアノードへ移動
する。
An embodiment of the present invention will be described below with reference to FIGS. As shown in FIG. 3, the molten carbonate fuel cell includes an electrolyte plate 3 and a pair of electrodes facing each other with the electrolyte plate sandwiched therebetween, that is, a cathode 4, an anode 5 and a separator 1 (metal Made) and has a separator
Air and CO 2 are circulated from the cathode gas supply passage 2 that penetrates 1 and the electrolyte plate 3, and H 2 and a reaction gas of CO 2 are circulated from the anode gas supply 11 to the cathode chamber 6 and the anode chamber 7, respectively. Supplied. The carbon dioxide supplied to the cathode 4 reacts with oxygen and electrons to become carbonate ions and move to the anode.

アノード5では燃料の水素と炭酸イオンが反応して二酸
化炭素や水を生成するとともに電子を外部回路セパレー
タを通して放出する。すなわち、次式の反応がすすむ。
At the anode 5, hydrogen as a fuel reacts with carbonate ions to generate carbon dioxide and water, and emits electrons through an external circuit separator. That is, the reaction of the following formula proceeds.

全体として さらに炭酸イオンを媒体として炭酸塩を溶融状態で使用
するため、電池の作動温度は炭酸塩溶融温度より高い約
650℃である。
as a whole Further, since the carbonate is used in a molten state with the carbonate ion as a medium, the operating temperature of the battery is higher than the melting temperature of the carbonate.
It is 650 ° C.

そのため炭酸塩がカソードガス供給路11内、およびセパ
レータ1の外部に流出し、アノード側のセパレータ1と
カソード側のセパレータ1をつなぐ炭酸塩の膜が形成さ
れる。そうすると上述したようにその部分で酸素が二酸
化炭素と電子に反応し炭酸イオンとなり、アノード5へ
移動するという現像すなわちパレステイックリアクショ
ンの反応が起きローカルセルを形成し電流損失が生じ
る。そのため電池本来の反応によって生じた電子を100
%外部へ電流として取り出せないことになる。
Therefore, carbonate flows out into the cathode gas supply path 11 and the outside of the separator 1 to form a carbonate film connecting the anode-side separator 1 and the cathode-side separator 1. Then, as described above, oxygen reacts with carbon dioxide and electrons in that portion to form carbonate ions, and the reaction of development or palletic reaction of moving to the anode 5 occurs, forming a local cell and causing current loss. Therefore, 100 electrons generated by the original reaction of the battery
% It cannot be taken out as a current to the outside.

第4図は従来の溶融炭酸塩燃料電池の単体セルの横断面
図、第5図は第4図のカソード4の位置における上部の
断面図である。
FIG. 4 is a cross-sectional view of a unit cell of a conventional molten carbonate fuel cell, and FIG. 5 is a cross-sectional view of the upper portion at the position of the cathode 4 in FIG.

セパレータ1のアノードガス供給路11から供給されたH2
とCO2の燃料ガスはアノード室7に入りアノード5の全
面に一様に接触し、カソードガス供給路2から供給され
るO2及びCO2によってカソード4で生成される炭酸塩(C
O3 2-)を電解質3を通して反応させカソード4とアノー
ド5から電気エネルギーを取出すものである。
H 2 supplied from the anode gas supply path 11 of the separator 1
The fuel gas of CO 2 and CO 2 enters the anode chamber 7 and contacts the entire surface of the anode 5 uniformly, and the carbonate (C) generated at the cathode 4 by the O 2 and CO 2 supplied from the cathode gas supply passage 2
O 3 2− ) is reacted through the electrolyte 3 to extract electric energy from the cathode 4 and the anode 5.

第6図は電池全体の寸法を大きくし大きな出力を得るた
めのカソードガス供給路2、アノードガス供給路11、カ
ソードガス出口部8、アノードガス出口部12を大きくし
両反応ガスが電極表面に均一に拡散するようにしたもの
である。
FIG. 6 shows that the cathode gas supply passage 2, the anode gas supply passage 11, the cathode gas outlet 8 and the anode gas outlet 12 are enlarged in order to increase the size of the entire battery and obtain a large output, and both reaction gases come to the electrode surface. It is designed to diffuse uniformly.

また、各供給路と出口部を大きくし、表面積を大きくし
たことにより電解質流出時のローカルセルの影響が少な
くなる。
Moreover, the influence of the local cell at the time of electrolyte outflow is reduced by enlarging each supply path and the outlet and increasing the surface area.

第1図はローカルセル発生を防止するための本発明の第
1の実施例でセパレータ1の電池反応ガス供給路を絶縁
被覆ガス供給路13としたものである。
FIG. 1 shows a first embodiment of the present invention for preventing the occurrence of local cells, in which the battery reaction gas supply passage of the separator 1 is an insulating coating gas supply passage 13.

第2図は本発明の第2実施例でセパレータ1のガス供給
路に絶縁管ガス供給路14を挿入し、前述のローカルセル
の発生防止を行ったものである。このようにセパレータ
1及び電解質板3の貫通するガス供給路を耐食性絶縁材
料で被覆することにより炭酸塩流出、移動によるローカ
ルセルの発生は起らない。従って電子の授受はなく電流
損失もなくなり電池の発電によって得られた電流は100
%外部に回収することができる。
FIG. 2 shows the second embodiment of the present invention in which the insulating pipe gas supply passage 14 is inserted into the gas supply passage of the separator 1 to prevent the occurrence of the above-mentioned local cell. As described above, by coating the gas supply passage that penetrates the separator 1 and the electrolyte plate 3 with the corrosion-resistant insulating material, the generation of local cells due to the outflow and movement of carbonate does not occur. Therefore, there is no transfer of electrons, no current loss, and the current obtained by the power generation of the battery is 100
% It can be collected outside.

さらに、流出した炭酸塩とセパレータ1の鉄の反応によ
って起こる腐食もなくなるので炭酸塩の消耗もなく常に
安定状態を保つことができることになる。次に第1図の
セパレータ1の絶縁被覆ガス供給路13をアルミナで絶縁
処理した実験結果について記述する。
Further, since the corrosion caused by the reaction between the outflowing carbonate and the iron in the separator 1 is also eliminated, the carbonate can be kept in a stable state without being consumed. Next, the experimental results of insulating treatment of the insulating coating gas supply passage 13 of the separator 1 of FIG. 1 with alumina will be described.

電解質板3はリチウムアルミネートを基板とする400×4
00mm,厚さ2mmの基板に炭酸塩電解質(炭酸リチウム:炭
酸カリウム=62:38モル比)を含浸して用いた。セパレ
ータ1には、SUS310を用い、電解質板と同寸法のもの
で、カソードガス供給路2、アノードガス供給路11、と
それぞれ2ケ所もうけた。
The electrolyte plate 3 is made of lithium aluminate as a substrate 400 × 4
A substrate of 00 mm and thickness of 2 mm was impregnated with a carbonate electrolyte (lithium carbonate: potassium carbonate = 62: 38 molar ratio) and used. The separator 1 was made of SUS310 and had the same size as the electrolyte plate, and two places were provided respectively for the cathode gas supply passage 2 and the anode gas supply passage 11.

このアノード5としてニッケル電極板300×300mmを用
い、カソード4には酸化ニッケル電極板300×300mmを用
いた。アノードガスとして15%O2−30%CO2−55%N2
合ガスを供給し発電試験を実施した。650℃の温度にお
ける電池性能を調べた結果、初期特性として電流密度15
0mA/cm2に於いて単体セル電池電圧は、第7図に示すよ
うに、0.90Vを得ることができた。さらに150mA/cm2での
連続発電試験においても第8図に示すようにほとんど低
下はみられず、2500時間経過後で0.87V,5000時間後で0.
85Vであった。
A nickel electrode plate 300 × 300 mm was used as the anode 5, and a nickel oxide electrode plate 300 × 300 mm was used as the cathode 4. A power generation test was performed by supplying a mixed gas of 15% O 2 -30% CO 2 -55% N 2 as an anode gas. As a result of examining the battery performance at a temperature of 650 ° C., the current density was 15
The unit cell battery voltage at 0 mA / cm 2 was 0.90 V as shown in FIG. 7. Further, in the continuous power generation test at 150 mA / cm 2 , almost no decrease was seen as shown in Fig. 8, and 0.87 V after 2500 hours and 0. 0 after 5000 hours.
It was 85V.

絶縁被覆なしの場合は2500時間経過後で約0.85V,5000時
間後で約0.80Vであった。これにより絶縁の効果は長時
間側で安定した出力が得られるということが分る。
In the case of no insulating coating, it was about 0.85V after 2500 hours and about 0.80V after 5000 hours. As a result, it can be seen that the effect of insulation is that a stable output can be obtained for a long time.

この時の積層セルの出力は初期において486W,2500時間
経過後470Wであつた。
The output of the laminated cell at this time was 486 W at the initial stage and 470 W after 2500 hours had elapsed.

さらに第2図で示すように絶縁管ガス供給路14を用いた
結果においても上記と同様の特性を得ることができた。
Further, as shown in FIG. 2, the same characteristics as above can be obtained even in the result of using the insulating pipe gas supply passage 14.

このように、溶融炭酸塩燃料電池を構成する金属製セパ
レータ、および電解質板3を貫通するカソードガス供給
路2およびアノードガス供給路11内の壁を耐食性絶縁材
料で被覆することにより電解質板3からカソードガス供
給路2内への炭酸塩の流出,移動を防止することができ
る。別通路を通して炭酸塩がカソードガス供給路2内に
流出してきても、金属製セパレータのカソードガス供給
路2内も絶縁しておくことによりローカルセルによる電
子の授受の場がないため電流が流れず電流の損失はな
い。さらに腐食を防ぐことにより電池性能の安定化がは
かれることが実験によって明らかになった。
In this way, by coating the metal separators constituting the molten carbonate fuel cell and the walls inside the cathode gas supply passage 2 and the anode gas supply passage 11 penetrating the electrolyte plate 3 with a corrosion-resistant insulating material, It is possible to prevent the carbonate from flowing out and moving into the cathode gas supply passage 2. Even if the carbonate flows out into the cathode gas supply passage 2 through another passage, there is no place for electron transfer by the local cell by insulating the cathode gas supply passage 2 of the metal separator, so no current flows. There is no current loss. Experiments have shown that the cell performance is stabilized by preventing corrosion.

なお、耐食性電気絶縁材料として用いることができるも
のはアルミナ,ジルコニア,チタニア,炭化ケイ素,リ
チウムアルミネート,窒化ケイ素,などの酸化物,チッ
化物などでありこれらの粉末をカソードガス供給路2お
よびアノードガス供給路11の表面に塗布あるいは吹付て
焼結処理する方法、およびアルミナ等のパイプをガス供
給路に埋設するなどの方法が有効である。
In addition, what can be used as the corrosion resistant electrical insulating material is oxides such as alumina, zirconia, titania, silicon carbide, lithium aluminate, silicon nitride, and nitrides, and these powders are used as the cathode gas supply passage 2 and the anode. A method of applying or spraying to the surface of the gas supply path 11 for sintering treatment, and a method of burying a pipe of alumina or the like in the gas supply path are effective.

本実施例ではガス供給路を絶縁耐食被覆することを記述
したが、セパレータ1の他の部分でも前述のローカルセ
ルの発生や腐食が起る個所があれば、その部分を部分的
に絶縁耐食被覆できることは当然である。
In the present embodiment, the gas supply passage is described as being coated with an insulating and corrosion resistant material. However, if there is a portion where the above-mentioned local cells are generated or corrosion occurs also in the other portion of the separator 1, that portion is partially coated with an insulating and corrosion resistant material. Of course you can.

〔発明の効果〕〔The invention's effect〕

本発明によれば、溶融炭酸塩燃料電池のガス供給路の内
面を絶縁耐食材料で被覆することにより、炭酸塩流出に
よって起きるガス供給路でのローカルセルの発生と腐食
を防止することができるので、長期的に安定した性能の
良い電池を得ることができる。
According to the present invention, by coating the inner surface of the gas supply passage of the molten carbonate fuel cell with an insulating and corrosion-resistant material, it is possible to prevent the generation and corrosion of local cells in the gas supply passage caused by the outflow of carbonate. It is possible to obtain a stable battery with good performance in the long term.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を示すセパレータのガス供給路
の絶縁被覆を示す断面斜視図、第2図は絶縁被覆に絶縁
管を用いた場合のセパレータの断面斜視図、第3図は単
体セルを積層した溶融炭酸塩燃料電池の全体構成を示す
断面斜視図、第4図は単体セルの断面図、第5図,第6
図はカソード部の上部断面図、第7図,及び第8図はガ
ス供給路をアルミナで絶縁処理した単体セル実験時の電
流密度と電圧との関係図と時間に対する電圧の低下の程
度を示す図である。 1……セパレータ、2……カソードガス供給路、3……
電解質板、4……カソード、5……アノード、11……ア
ノードガス供給路、13……絶縁被覆ガス供給路、14……
絶縁管ガス供給路。
FIG. 1 is a sectional perspective view showing an insulating coating of a gas supply passage of a separator showing an embodiment of the present invention, FIG. 2 is a sectional perspective view of a separator when an insulating pipe is used for the insulating coating, and FIG. FIG. 4 is a sectional perspective view showing the entire structure of a molten carbonate fuel cell in which cells are stacked, FIG. 4 is a sectional view of a single cell, FIG.
FIG. 7 is a cross-sectional view of the upper part of the cathode part, and FIGS. 7 and 8 are diagrams showing the relationship between the current density and the voltage and the degree of the voltage drop with time in the single cell experiment in which the gas supply path was insulated with alumina. It is a figure. 1 ... Separator, 2 ... Cathode gas supply path, 3 ...
Electrolyte plate, 4 ... Cathode, 5 ... Anode, 11 ... Anode gas supply path, 13 ... Insulation coating gas supply path, 14 ...
Insulation pipe gas supply path.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 秀夫 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 岩瀬 嘉男 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 黒江 聡 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 加茂 友一 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (56)参考文献 特開 昭61−267268(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideo Okada 4026 Kuji Town, Hitachi City, Hitachi City, Ibaraki Prefecture, Hitachi Research Laboratory, Ltd. (72) Inventor Yoshio Iwase 4026 Kuji Town, Hitachi City, Ibaraki Prefecture, Hitachi City Corporation Hitachi Research Laboratory (72) Inventor Satoshi Kuroe 4026 Kuji Town, Hitachi City, Ibaraki Prefecture, Hitate Works, Ltd. Hitachi Research Laboratory (72) Inventor Yuichi Kamo 4026 Kuji Town, Hitachi City, Ibaraki Prefecture, Hitachi Research Institute, Ltd. (56) References JP-A-61-267268 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一対の陰陽電極が前記陰陽電極より大面積
であり炭酸塩を電解質とする電解質板を挟んで対向され
て成る溶融炭酸塩型燃料電池本体と、前記溶融炭酸塩型
燃料電池本体は前記陰陽電極より大面積のセパレータを
介して、前記陰陽電極の極性をそろえて複数積層され、
前記セパレータに設けられた各々の前記陰陽電極面に各
々の反応ガスを供給する反応ガス供給路部、及び、前記
セパレータの反応ガス供給路部に連絡され、前記陰陽電
極の周囲に位置し、積層された前記セパレータ及び前記
電解質板を貫通する反応ガス供給路部、とからなる反応
ガス供給路を備えた溶融炭酸塩型燃料電池において、前
記反応ガス供給路の内面が絶縁耐食被覆されたことを特
徴とする溶融炭酸塩型燃料電池。
1. A molten carbonate fuel cell main body comprising a pair of positive and negative electrodes having a larger area than the negative and positive electrodes and facing each other with an electrolyte plate containing a carbonate as an electrolyte, and the molten carbonate fuel cell main body. Is a plurality of layers with the polarities of the Yin-Yo electrodes aligned with each other through a separator having a larger area than the Yin-Yo electrodes.
Reactive gas supply passages for supplying respective reaction gases to the respective positive and negative electrode surfaces provided on the separator, and communicating with the reaction gas supply passages of the separator, located around the positive and negative electrodes, and laminated. In a molten carbonate fuel cell having a reaction gas supply passage consisting of the separator and the reaction gas supply passage portion penetrating the electrolyte plate, an inner surface of the reaction gas supply passage is coated with an insulating corrosion-resistant coating. Characterized molten carbonate fuel cell.
【請求項2】前記絶縁耐食被覆をアルミナ,ジルコニ
ア,チタニア,炭化ケイ素,リチウムアルミネート,窒
化ケイ素のいずれか1つ以上の粉末の塗布焼結処理で行
うことを特徴とする特許請求の範囲第1項記載の溶融炭
酸塩型燃料電池。
2. The insulating and corrosion-resistant coating is performed by coating and sintering one or more powders of alumina, zirconia, titania, silicon carbide, lithium aluminate, and silicon nitride. 2. A molten carbonate fuel cell according to item 1.
JP63000393A 1988-01-06 1988-01-06 Molten carbonate fuel cell Expired - Fee Related JPH0773059B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63000393A JPH0773059B2 (en) 1988-01-06 1988-01-06 Molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63000393A JPH0773059B2 (en) 1988-01-06 1988-01-06 Molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPH01176669A JPH01176669A (en) 1989-07-13
JPH0773059B2 true JPH0773059B2 (en) 1995-08-02

Family

ID=11472561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63000393A Expired - Fee Related JPH0773059B2 (en) 1988-01-06 1988-01-06 Molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH0773059B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2810376B2 (en) * 1987-08-28 1998-10-15 三菱電機株式会社 Electrolyte protection material for molten carbonate fuel cell power generator
JP4834254B2 (en) * 2001-08-07 2011-12-14 東芝エレベータ株式会社 Governor rope pulling lever, governor rope pulling jig, and pulling method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267268A (en) * 1985-05-21 1986-11-26 Mitsubishi Electric Corp Fluid passage plate for molten carbonate type fuel cell

Also Published As

Publication number Publication date
JPH01176669A (en) 1989-07-13

Similar Documents

Publication Publication Date Title
JP2656943B2 (en) Improved solid oxide fuel cell and assembly
US7153601B2 (en) Fuel cell with embedded current collector
RU2528388C2 (en) Device to accumulate electric energy comprising battery of oxide-ion accumulator cells and module configurations
JP3064746B2 (en) Flat solid electrolyte fuel cell
JP2003512705A (en) Unit solid oxide fuel cell
WO2004030136A9 (en) Solid oxide fuel cell stack assembly having tapered diffusion layers
JP4300947B2 (en) Solid oxide fuel cell
JPH09129252A (en) Highly durable solid electrlyte fuel cell and manufacture thereof
JP4529393B2 (en) Solid oxide fuel cell
JP2004139960A (en) Fuel cell
WO1993026055A1 (en) Fuel cells
JPH0773059B2 (en) Molten carbonate fuel cell
JPS6191876A (en) Fuel cell device
JP4678115B2 (en) Operation method and operation system of solid oxide fuel cell
JPH01267963A (en) Fuel battery with solid electrolyte
JP3058012B2 (en) Single cell of internal reforming high temperature solid oxide fuel cell
JPH06342663A (en) Solid electrolyte fuel cell
JPH03238758A (en) Fuel cell of solid electrolyte type
JP2003263997A (en) Solid oxide fuel cell
JPH06150958A (en) Solid electrolyte fuel cell
KR100195091B1 (en) Molten carbonate fuel cell
KR100318206B1 (en) A heat treatment method for separator of molten carbonate fuel cell
JP3094767B2 (en) Fuel cell electrolyte replenishment method
JP2948441B2 (en) Flat solid electrolyte fuel cell
JP2000306590A (en) Solid electrolyte fuel cell

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees