KR100318206B1 - A heat treatment method for separator of molten carbonate fuel cell - Google Patents
A heat treatment method for separator of molten carbonate fuel cell Download PDFInfo
- Publication number
- KR100318206B1 KR100318206B1 KR1019990033810A KR19990033810A KR100318206B1 KR 100318206 B1 KR100318206 B1 KR 100318206B1 KR 1019990033810 A KR1019990033810 A KR 1019990033810A KR 19990033810 A KR19990033810 A KR 19990033810A KR 100318206 B1 KR100318206 B1 KR 100318206B1
- Authority
- KR
- South Korea
- Prior art keywords
- separator
- heat treatment
- plate
- fuel cell
- molten carbonate
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 23
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 title claims abstract description 14
- 239000000446 fuel Substances 0.000 title claims abstract description 14
- 238000000034 method Methods 0.000 title claims abstract description 14
- 239000010935 stainless steel Substances 0.000 claims abstract description 14
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 12
- 229910000975 Carbon steel Inorganic materials 0.000 claims abstract description 12
- 239000010962 carbon steel Substances 0.000 claims abstract description 12
- 239000007789 gas Substances 0.000 claims description 8
- 239000002737 fuel gas Substances 0.000 claims description 6
- 239000007800 oxidant agent Substances 0.000 claims description 5
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 230000006835 compression Effects 0.000 claims description 2
- 238000007906 compression Methods 0.000 claims description 2
- 238000002788 crimping Methods 0.000 claims 1
- 238000003825 pressing Methods 0.000 abstract description 13
- 239000011247 coating layer Substances 0.000 abstract description 4
- 238000005260 corrosion Methods 0.000 abstract description 4
- 230000007797 corrosion Effects 0.000 abstract description 4
- 238000005502 peroxidation Methods 0.000 abstract description 4
- 238000000926 separation method Methods 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 238000003487 electrochemical reaction Methods 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 238000010248 power generation Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0241—Composites
- H01M8/0245—Composites in the form of layered or coated products
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/14—Fuel cells with fused electrolytes
- H01M2008/147—Fuel cells with molten carbonates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
본 발명은 용융탄산염 연료전지용 분리판의 열처리 방법에 관한 것으로, 분리판(1)을 탄소 또는 스테인리스 재질의 압착판(101) 사이에 끼워 적층하고 탄소 또는 스테인리스 재질의 덮개(102)로 덮은 상태로 열처리함으로써, 압착판의 하중에 의해 분리판의 열변형이 복구되며 덮개에 의해 온도 구배가 감소하여 내식 코팅층의 과산화 및 벗겨짐 현상이 방지되는 이점이 있다.The present invention relates to a heat treatment method of a separator plate for molten carbonate fuel cell, the separator plate (1) sandwiched between the pressing plate 101 of carbon or stainless steel, laminated and covered with a cover 102 of carbon or stainless steel By heat treatment, the thermal deformation of the separator plate is restored by the load of the pressing plate, and the temperature gradient is reduced by the cover to prevent peroxidation and peeling of the corrosion-resistant coating layer.
Description
본 발명은 용융탄산염 연료전지(Molten Carbonate Fuel Cell; MCFC)용 분리판의 열처리 방법에 관한 것으로, 더욱 상세하게는 분리판을 탄소 또는 스테인리스 재질의 압착판 사이에 끼워 적층한 상태로 열처리하여 압착판의 하중에 의해 분리판의 열변형이 복구되도록 한 MCFC용 분리판의 열처리 방법에 관한 것이다.The present invention relates to a heat treatment method of a separator plate for molten carbonate fuel cell (MCFC), and more particularly, a press plate by heat treatment in a state in which the separator plate is sandwiched between carbon or stainless steel press plates. It relates to a heat treatment method of a separator plate for MCFC to recover the thermal deformation of the separator plate by the load of.
주지와 같이, 연료전지는 전기화학 반응에 의해 반응물(수소와 산소)의 화학에너지를 직접 전기에너지로 변환시키는 발전장치로서 환경 조화성이 우수하고 높은 발전효율이 기대되고 있다.As is well known, a fuel cell is a power generation device that converts chemical energy of reactants (hydrogen and oxygen) directly into electrical energy by an electrochemical reaction, and is expected to have excellent environmental harmony and high power generation efficiency.
연료전지 중에서 MCFC는 탄산염의 용융물을 전해질로 사용하여 작동온도가 650℃로 높기 때문에 전기화학 반응의 속도가 빨라 저온형 연료전지와는 달리 백금 등의 귀금속 촉매가 필요하지 않으며, 전기와 고온의 배열을 함께 이용할 경우 80% 이상의 열효율을 기대할 수 있어 석탄 가스화에 의한 복합 열병합 발전이 가능하다.In the fuel cell, MCFC uses carbonate melt as electrolyte, and its operating temperature is high at 650 ℃, so the electrochemical reaction is fast. Unlike low-temperature fuel cells, MCFC does not require precious metal catalysts such as platinum. When used together, thermal efficiency of 80% or more can be expected, which enables combined cogeneration with coal gasification.
MCFC의 단위셀은, 전기화학 반응이 일어나는 연료극(anode) 및 산소극(cathode)과, 연료가스와 산화제가스를 해당 전극으로 공급하기 위한 유로를 형성하는 분리판과, 해당 전극에서 발생된 전하를 포집하는 집전판과, 두 전극 사이에서 이온만 이동시키는 역할을 하는 전해질판과, 전해질이 함침될 수 있는 다공성 구조로 되어 용융된 탄산염을 흡수하여 수용하는 매트릭스로 이루어진다.The unit cell of the MCFC includes an anode and an oxygen cathode in which an electrochemical reaction occurs, a separator forming a flow path for supplying fuel gas and an oxidant gas to the electrode, and charges generated from the electrode. It is composed of a current collector plate to collect, an electrolyte plate that serves to move only ions between two electrodes, and a porous structure in which the electrolyte can be impregnated to absorb and accept molten carbonate.
분리판은 연료가스와 산화제가스의 기밀을 유지하도록 하는 가스기밀부와, 연료극과 산소극을 장착하는 전극부와, 연료가스를 전극부로 분배하는 분배구로 구성되며, 그 재질은 스테인리스 스틸 316L 또는 310L을 이용하는 것이 보통이다.The separation plate is composed of a gas tight part for maintaining the airtightness of the fuel gas and the oxidant gas, an electrode part for mounting the fuel electrode and the oxygen electrode, and a distribution port for distributing the fuel gas to the electrode part. The material is made of stainless steel 316L or 310L. It is common to use.
이와 같은 구조로 된 MCFC는, 연료극으로 연료가스를 공급하고 산소극으로 산화제가스를 공급하면 연료극에서 수소와 탄산이온이 반응하여 물과 탄산가스로 변하면서 전자가 발생되며, 산소극에서 탄산가스와 산소가 전자 2개와 반응하여 탄산이온으로 변화된다. 이때 전지전체에서는 수소와 산소가 반응하여 물이 생성되는 반응이다.In the MCFC having such a structure, when fuel gas is supplied to the fuel electrode and oxidant gas is supplied to the oxygen electrode, hydrogen and carbonate ions react at the fuel electrode to change into water and carbon dioxide gas, and electrons are generated. Oxygen reacts with the two electrons and turns into carbonate ions. At this time, in the entire battery, hydrogen and oxygen react to produce water.
탄산염 전해질은 상온에서는 고체였다가 전지의 온도가 490℃가 되면 용융되기 시작하여 액체로 변하며, 전해질은 두 전극 사이에 형성된 매트릭스의 미세 기공에 함침되어 연료극 및 산소극에서 발생되는 전기화학 반응에 참가함으로써 이온 전도를 일으키는 역할을 하는 것이다.The carbonate electrolyte is solid at room temperature but begins to melt when the temperature of the battery reaches 490 ° C and becomes liquid. The electrolyte is impregnated in the micropores of the matrix formed between the two electrodes and participates in the electrochemical reaction generated at the anode and the anode. By doing so, it is responsible for causing ion conduction.
이와 같은 전기화학 반응에 의해 직류전력이 얻어지는데, 단위셀의 전압은 정격방전시에 약 0.8V로 낮기 때문에 실제 발전에서는 단위셀을 다수 적층하여 전압을 높이고, 셀 면적을 증가시켜 고출력화를 달성하게 된다. 이때 단위셀을 여러 단으로 적층한 것을 스택(stack)이라고 부른다.The DC power is obtained by such an electrochemical reaction. Since the unit cell voltage is low at about 0.8 V at the rated discharge, in actual power generation, a plurality of unit cells are stacked to increase the voltage and increase the cell area to achieve high output. Done. In this case, a stack of unit cells in multiple stages is called a stack.
한편, 앞에서 설명한 바와 같이 MCFC는 650℃이상의 고온 및 부식성 가스 분위기에서 작동하기 때문에 탄산염과 접하는 분리판은 알루미늄 또는 그 합금을 코팅한 후 700℃이상의 고온 수소 분위기하에서 확산 열처리하여 제조한다.On the other hand, as described above MCFC is operated in a high temperature and corrosive gas atmosphere of 650 ℃ or more, the separator contacting the carbonate is prepared by coating the aluminum or its alloy and diffusion heat treatment in a high temperature hydrogen atmosphere of 700 ℃ or more.
도 1은 종래 기술에 따라 용융탄산염 연료전지용 분리판을 열처리하는 과정을 설명하기 위한 상태도이다.1 is a state diagram for explaining a process of heat treatment of a separator plate for a molten carbonate fuel cell according to the prior art.
분리판(1)을 스테인리스제의 지지대(3)를 이용하여 수직으로 세워 지지한 상태로 열처리로(2)내에 장입시킨 뒤에 온도를 올려 열처리를 실시하는 것이다.The separator 1 is loaded into the heat treatment furnace 2 in a vertically supported state using the support 3 made of stainless steel, and then heated at a temperature.
전술한 바와 같은 종래 기술에 의하면, 분리판을 수직으로 세운 상태로 열처리하므로 용접 및 기계 가공 후에 생긴 열변형에 의한 휨 또는 물결형태의 변형을 복구하지 못하며, 온도 구배가 생겨 내식 코팅층의 과산화 및 벗겨짐 현상이 발생되는 문제점이 있었다.According to the prior art as described above, the separation plate is heat-treated in a vertical state, so it is not possible to recover the warpage or the wave shape deformation due to the heat deformation generated after welding and machining, and the temperature gradient is generated, resulting in peroxidation and peeling of the corrosion-resistant coating layer. There was a problem that the phenomenon occurs.
따라서, 본 발명은 상기한 종래 기술의 문제점을 해결하기 위하여 제안한 것으로서, 그 목적하는 바는 분리판을 탄소 또는 스테인리스 재질의 압착판 사이에 끼워 적층한 상태로 열처리하여 압착판의 하중에 의해 분리판의 열변형이 복구되도록 하는 데 있다.Accordingly, the present invention has been proposed to solve the above problems of the prior art, the object of which is to separate the separation plate by the load of the compression plate by heat treatment in a laminated state sandwiched between the pressing plate of carbon or stainless steel It is to allow the thermal deformation of to be recovered.
도 1은 종래 기술에 따라 용융탄산염 연료전지용 분리판을 열처리하는 과정을 설명하기 위한 상태도.1 is a state diagram for explaining a process of heat-treating the separator plate for molten carbonate fuel cell according to the prior art.
도 2는 본 발명에 따라 용융탄산염 연료전지용 분리판을 열처리하는 과정을 설명하기 위한 상태도.Figure 2 is a state diagram for explaining the process of heat treatment the separator plate for molten carbonate fuel cell according to the present invention.
*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *
1 : 분리판 2 : 열처리로1: separating plate 2: heat treatment furnace
3 : 지지대 101 : 압착판3: support 101: pressing plate
102 : 덮개102: cover
이러한 목적을 달성하기 위한 본 발명은, MCFC에서 연료가스와 산화제가스를 해당 전극으로 공급하기 위한 유로를 형성하는 분리판을 열처리하는 방법에 있어서:In order to achieve the above object, the present invention provides a method of heat-treating a separator to form a flow path for supplying fuel gas and oxidant gas to a corresponding electrode in MCFC:
상기 분리판을 탄소 또는 스테인리스 재질의 압착판 사이에 끼워 적층한 상태로 열처리로내에 장입시켜 열처리하는 것을 특징으로 한다.The separator is sandwiched between the press plates of carbon or stainless steel and inserted into the heat treatment furnace in a stacked state to perform heat treatment.
선택적으로, 상기 압착판의 두께는 5∼10㎜로 규정한다.Optionally, the pressing plate has a thickness of 5 to 10 mm.
바람직하기로, 상기 적층된 분리판 및 압착판을 탄소 또는 스테인리스 재질의 두께가 1∼5㎜인 덮개로 덮은 상태로 열처리하는 것을 특징으로 한다.Preferably, the laminated separator and the pressing plate is characterized in that the heat treatment in a state covered with a cover having a thickness of 1 to 5 mm of carbon or stainless steel.
본 발명의 실시예로는 다수개가 존재할 수 있으며, 이하에서는 바람직한 실시예에 대하여 상세히 설명하기로 한다. 이 실시예를 통해 본 발명의 목적, 특징 및 이점들을 보다 잘 이해할 수 있게 된다.There may be a plurality of embodiments of the present invention, hereinafter will be described in detail with respect to the preferred embodiment. This embodiment allows for a better understanding of the objects, features and advantages of the present invention.
도 2는 본 발명에 따라 MCFC 분리판을 열처리하는 과정을 설명하기 위한 상태도이다.2 is a state diagram for explaining a process of heat-treating the MCFC separator in accordance with the present invention.
본 발명에 따른 분리판 열처리 방법은, 분리판(1)과 동일한 넓이를 가지며 그 두께가 5∼10㎜인 탄소 또는 스테인리스 재질의 압착판(101) 사이에 분리판(1)을 밀착되게 끼워 적층하고, 적층된 분리판(1) 및 압착판(101)을 탄소 또는 스테인리스 재질의 두께가 1∼5㎜인 직육면체형 덮개(102)로 덮은 상태로 열처리로(2)내에 장입하며, 이후 온도를 올려 수소 분위기하에서 확산 열처리한다.In the separation plate heat treatment method according to the present invention, the separation plate 1 is sandwiched between the pressing plate 101 made of carbon or stainless steel having the same width as that of the separation plate 1 and having a thickness of 5 to 10 mm. Then, the laminated separator 1 and the pressing plate 101 are charged into the heat treatment furnace 2 in a state of being covered with a rectangular parallelepiped cover 102 having a thickness of 1 to 5 mm of carbon or stainless steel, and then the temperature is increased. And heat treatment by diffusion in a hydrogen atmosphere.
이러한 본 발명에 의하면, 분리판(1)은 고온에서 강도가 감소되므로 압착판(101)의 하중에 의해 열변형이 복구된다. 즉 압착판(101)의 하중에 의해 분리판(1)은 최초 설계치의 편평도가 유지되는 것이다.According to the present invention, since the separation plate 1 is reduced in strength at high temperature, the thermal deformation is restored by the load of the pressing plate 101. In other words, the flatness of the original design value is maintained by the separation plate 1 by the load of the pressing plate 101.
그리고, 덮개(102)는 열처리 중 분리판(1) 및 압착판(101)에서 발산되는 열을 차단하므로 온도 구배가 크게 감소되며, 이로서 내식 코팅층의 확산 열처리가원할하게 이루어져 벗겨짐 또는 과산화에 의해 분리판(1)의 표면 조도가 증가되는 것이 방지된다.In addition, the cover 102 blocks the heat dissipated from the separating plate 1 and the pressing plate 101 during the heat treatment, thereby greatly reducing the temperature gradient, thereby smoothly diffusing heat treatment of the corrosion resistant coating layer, thereby being separated by peeling or peroxidation. The surface roughness of the plate 1 is prevented from increasing.
따라서, 열처리 중 산화되지 않은 깨끗한 전극부 면을 얻을 수 있다.Thus, a clean electrode surface that is not oxidized during heat treatment can be obtained.
상술한 바와 같이 본 발명은, 분리판을 탄소 또는 스테인리스 재질의 압착판 사이에 끼워 적층하고 탄소 또는 스테인리스 재질의 덮개로 덮은 상태로 열처리함으로써, 압착판의 하중에 의해 분리판의 열변형이 복구되며 덮개에 의해 온도 구배가 감소하여 내식 코팅층의 과산화 및 벗겨짐 현상이 방지되는 효과가 있다.As described above, according to the present invention, the thermal deformation of the separator is restored by the load of the pressing plate by heat-treating the separator in a state where the separator is sandwiched between carbon or stainless steel pressing plates and covered with a cover made of carbon or stainless steel. The temperature gradient is reduced by the cover, thereby preventing the peroxidation and peeling of the corrosion resistant coating layer.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990033810A KR100318206B1 (en) | 1999-08-17 | 1999-08-17 | A heat treatment method for separator of molten carbonate fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990033810A KR100318206B1 (en) | 1999-08-17 | 1999-08-17 | A heat treatment method for separator of molten carbonate fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20010018014A KR20010018014A (en) | 2001-03-05 |
KR100318206B1 true KR100318206B1 (en) | 2001-12-22 |
Family
ID=19607432
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019990033810A KR100318206B1 (en) | 1999-08-17 | 1999-08-17 | A heat treatment method for separator of molten carbonate fuel cell |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100318206B1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4353795B2 (en) * | 2001-07-13 | 2009-10-28 | セラミック・フューエル・セルズ・リミテッド | Gas separator plate for fuel cell |
KR100731330B1 (en) * | 2006-02-10 | 2007-06-21 | 두산중공업 주식회사 | Separate plate for mcfc and manufacturing method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR980006585A (en) * | 1996-06-19 | 1998-03-30 | 이대원 | Corrosion Resistance Treatment Method of Molten Carbonate Fuel Cell Separator |
KR19990011580A (en) * | 1997-07-24 | 1999-02-18 | 이대원 | Corrosion Resistance Treatment Method and Separator for Molten Carbonate Fuel Cell Separator |
JPH11204120A (en) * | 1998-01-19 | 1999-07-30 | Toyota Motor Corp | Manufacture of separator for fuel cell and the separator for fuel cell |
-
1999
- 1999-08-17 KR KR1019990033810A patent/KR100318206B1/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR980006585A (en) * | 1996-06-19 | 1998-03-30 | 이대원 | Corrosion Resistance Treatment Method of Molten Carbonate Fuel Cell Separator |
KR19990011580A (en) * | 1997-07-24 | 1999-02-18 | 이대원 | Corrosion Resistance Treatment Method and Separator for Molten Carbonate Fuel Cell Separator |
JPH11204120A (en) * | 1998-01-19 | 1999-07-30 | Toyota Motor Corp | Manufacture of separator for fuel cell and the separator for fuel cell |
Also Published As
Publication number | Publication date |
---|---|
KR20010018014A (en) | 2001-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007107090A (en) | Alloy for interconnection of fuel cells | |
US7232582B2 (en) | Fuel cell | |
US5811202A (en) | Hybrid molten carbonate fuel cell with unique sealing | |
KR20140039222A (en) | Electrical anode reduction of solid oxide fuel cell | |
US7097929B2 (en) | Molten carbonate fuel cell | |
KR100318206B1 (en) | A heat treatment method for separator of molten carbonate fuel cell | |
JP2008078148A (en) | Fuel cell | |
US6528197B1 (en) | Bipolar plate with porous wall for a fuel cell stack | |
JP2004079246A (en) | Assembling method of fuel cell stack | |
US7803493B2 (en) | Fuel cell system with separating structure bonded to electrolyte | |
JPH1140181A (en) | Start-stopage of solid electrolyte type fuel cell, and high temperature holding method during operation or stand-by state | |
KR0155849B1 (en) | Molten carbonate fuel cell and manufacturing method | |
KR101228763B1 (en) | Planar solid oxide fuel cell having improved reaction area and method for manufacturing the same | |
US7465514B2 (en) | Electrochemical energy source and electronic device incorporating such an energy source | |
US11056709B2 (en) | Fuel cell stack structure | |
JP4849201B2 (en) | Solid oxide fuel cell | |
JPH06333582A (en) | Solid polyelectrolyte fuel cell | |
KR100195091B1 (en) | Molten carbonate fuel cell | |
KR100424195B1 (en) | Fuel cell separator plate comprising bidirectional slot plate | |
KR940001912B1 (en) | Termal electric cell structure of fusing carbonate | |
KR100446781B1 (en) | Electrode structure for fuel cell | |
JP2023161257A (en) | Electrochemical reaction cell stack | |
KR0124862Y1 (en) | Molten carbonate type fuel cell | |
KR100556764B1 (en) | Anode structure for fuel cell | |
KR0127187Y1 (en) | Molten carbonate fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E701 | Decision to grant or registration of patent right | ||
N231 | Notification of change of applicant | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20121204 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20131203 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20141202 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20151202 Year of fee payment: 15 |
|
FPAY | Annual fee payment |
Payment date: 20171204 Year of fee payment: 17 |
|
FPAY | Annual fee payment |
Payment date: 20181130 Year of fee payment: 18 |
|
EXPY | Expiration of term |