JPH07727A - Flexible tubular filter medium - Google Patents

Flexible tubular filter medium

Info

Publication number
JPH07727A
JPH07727A JP11533591A JP11533591A JPH07727A JP H07727 A JPH07727 A JP H07727A JP 11533591 A JP11533591 A JP 11533591A JP 11533591 A JP11533591 A JP 11533591A JP H07727 A JPH07727 A JP H07727A
Authority
JP
Japan
Prior art keywords
filter medium
yarn
flexible tubular
tubular filter
central
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11533591A
Other languages
Japanese (ja)
Inventor
Toshiaki Hayashi
敏昭 林
Yatsuhiro Tani
八紘 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP11533591A priority Critical patent/JPH07727A/en
Publication of JPH07727A publication Critical patent/JPH07727A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

PURPOSE:To cause no bending clogging that follows even when a casing where a filter element is installed is bent in an arbitrary shape and to keep a uniform and stable pore diameter by integrating central yarn braided intersecting braid ing yarn in the longitudinal direction into braiding yarn that rotates on both sides and along the longitudinal direction. CONSTITUTION:Since central yarn 2 is integrated into braiding yarn 1, extension and contraction of a flexible tubular filter medium in the longitudinal direction are restrained to improve the dimension stability, allowing stable filter performance to be obtained. That is, the main role of the braiding yarn 1 is to capture particles, while that of the central yarn 2 is to fix the structure of the flexible tubular filter medium. Further, the central yarn 2 is unevenly distributed in the flexible tubular filter medium, and particularly for the flexible tubular filter medium with large bending deformation, there is no central yarn 2 on the filter medium surface receiving compression and elongation by bending deformation. The central yarn 2 is preferably distributed unevenly in the intermediate part of compression and elongation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、流体中に含まれる粒
子、とりわけ水,油,燃料などの液体中に含まれる粒子
を除去することができる屈曲閉塞を起こさない均一な孔
径を持った可撓性管状濾材に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is capable of removing particles contained in a fluid, particularly particles contained in a liquid such as water, oil or fuel, and having a uniform pore size without bending clogging. The present invention relates to a flexible tubular filter medium.

【0002】[0002]

【従来の技術】流体中の粒子を除去する気体フィルタ−
や液体フィルタ−は、工作機械や自動車など広い分野で
機器の保護に使用されている。一般に流体中に含まれる
粒子、とりわけ水,油,燃料などの液体中の汚濁物質で
ある粒子の除去には、パルプからなる濾紙や合成繊維か
らなる不織布、あるいは金属や合成樹脂の網などのいわ
ゆるシート濾材を折り畳み加工して成型した菊花型フィ
ルターが用いられている。しかし近年、これらの機器の
高性能化と省スペ−ス化の面から、これらに使用される
フィルタ−の孔径の均一化やさらにはフィルターを配管
系に組み込み、配管を曲げて使用しても屈曲閉塞しない
フィルターの要求があり、従来のシート濾材では対応で
きない状況にある。
2. Description of the Related Art A gas filter for removing particles in a fluid
Liquid filters are used in a wide range of fields such as machine tools and automobiles to protect equipment. Generally, particles that are contained in a fluid, especially particles that are contaminants in liquids such as water, oil, and fuel, are removed by using filter paper made of pulp, non-woven fabric made of synthetic fibers, or a mesh of metal or synthetic resin. A chrysanthemum-shaped filter formed by folding and molding a sheet filter medium is used. However, in recent years, from the viewpoint of high performance and space saving of these devices, even if the filters used for them are made uniform in pore size and further the filter is incorporated into the piping system and the pipe is bent and used. There is a demand for a filter that does not bend and block, and it is in a situation where conventional sheet filter media cannot handle it.

【0003】フィルターの孔径の均一性については、パ
ルプからなる濾紙や合成繊維からなる不織布などは、繊
維が複雑に絡み合っているので、孔の大きさも配置も形
状もランダムである。したがって、機器に損傷を与える
ある大きさ以上の粒子を完全に除去できる構造にする
と、機器に影響を及ぼさない小さな粒子も多くがフィル
ターに捕捉されてしまい、結果としてフィルターの目詰
まりが早くおきフィルターの寿命が短くなる。また、シ
ート濾材においては、構造的な理由から、フィルタ−エ
レメントを円筒状以外の任意の形状に加工することも不
可能である。これに対し、丸打組物組織からなる管状濾
材は、可撓性があり配管系に組み込み、配管を曲げて使
用しても屈曲閉塞しないという特徴を持った濾材である
が、濾材に大きな外力や圧力が加わった場合に、濾材が
長手方向に伸び、あるいは縮み、それにより濾材の孔径
が変化する。
Regarding the uniformity of the pore diameter of the filter, since the fibers of the filter paper made of pulp and the nonwoven fabric made of synthetic fibers are intricately entangled with each other, the size, arrangement and shape of the pores are random. Therefore, if a structure that completely removes particles of a certain size or larger that damages the equipment is completely removed, many small particles that do not affect the equipment will be trapped in the filter, and as a result, the filter will be clogged quickly and the filter will be blocked. Shortens the life of. Further, in the sheet filter medium, it is impossible to process the filter element into any shape other than the cylindrical shape for structural reasons. On the other hand, a tubular filter medium composed of a round braided structure is a filter medium that is flexible and can be incorporated into a piping system so that it does not bend and close even when the pipe is bent and used. When pressure or pressure is applied, the filter medium expands or contracts in the longitudinal direction, which changes the pore size of the filter medium.

【0004】[0004]

【発明が解決しようとする課題】本発明は、以上の点を
鑑みて、流体中に含まれる粒子、とりわけ液体中の粒子
の除去においてフィルタ−エレメントを付設したケ−シ
ングを任意の形状に曲げ加工しても追従して屈曲閉塞を
起こさない、かつ均一で外力に対して安定な孔径を持っ
た可撓性管状濾材を提供することにある。
In view of the above points, the present invention bends a casing provided with a filter element into an arbitrary shape in removing particles contained in a fluid, particularly particles in a liquid. It is an object of the present invention to provide a flexible tubular filter medium which does not cause bending clogging even when processed and has a uniform and stable pore diameter against external force.

【0005】[0005]

【課題を解決するための手段】本発明者らはフィルタ−
の孔径、配置、形状が規則正しく一様で、かつフィルタ
−エレメントを付設したケ−シングを任意の形状に曲げ
加工しても追従して屈曲閉塞を起こさない可撓性管状濾
材を得るため、右回りと左回りの組糸が交差して正方
形、あるいはひし形、三角形などの孔を形成する、フレ
キシブルチュ−ブである丸打組物に着目し、鋭意検討し
た結果本発明に到達した。
The present inventors have proposed a filter-
In order to obtain a flexible tubular filter medium that has a regular and uniform hole diameter, arrangement, and shape, and that does not cause bending blockage even if a casing with a filter element attached is bent into an arbitrary shape, The present invention has been achieved as a result of intensive studies, focusing on a round braid, which is a flexible tube in which the twisted and counterclockwise braids intersect to form a square, diamond, or triangular hole.

【0006】本発明は、丸打組物組織から成る管状濾材
において、中央糸が組み込まれていることを特徴とする
可撓性管状濾材に関するものである。本発明において、
丸打組物組織とは螺旋状に各々左右両方向かつ長手方向
に沿って回転する組糸から成り、本発明の可撓性管状濾
材は、これら組糸に中央糸が組み込まれて管状構造が形
成される。中央糸とは丸打組物組織において左右両方向
かつ長手方向に沿って回転する組糸に対し、長手方向に
これら組糸と交差して編組される糸である。
[0006] The present invention relates to a flexible tubular filter medium comprising a round braided tissue, in which a central yarn is incorporated. In the present invention,
The round punched braided structure is composed of a braided thread which spirally rotates in both left and right directions and along the longitudinal direction. In the flexible tubular filter medium of the present invention, a central thread is incorporated into these braided threads to form a tubular structure. To be done. The central yarn is a yarn that is braided in the circularly braided fabric structure while rotating in both the left and right directions and along the longitudinal direction, while intersecting these braid yarns in the longitudinal direction.

【0007】本発明において、可撓性管状濾材を構成す
る組糸は、モノフィラメントや長繊維の集合体であるマ
ルチフィラメントや短繊維の集合体である紡績糸や加工
糸の形態があり、その原料繊維はセルロース,ビスコー
ス等の半合成繊維,ポリエステル,ポリオレフィン,ポ
リアミド,アクリル,ポリスルフォン,ポリアミドイミ
ド,ポリイミド,ポリフェニレンサルファイド,ポリ弗
化ビニリデン等の合成繊維やガラス,カ−ボン,メタル
などの無機繊維でありこれらの繊維の単独あるいは混合
した糸や樹脂含浸加工した糸が使用できる。
In the present invention, the braided yarn constituting the flexible tubular filter medium is in the form of a multifilament which is an aggregate of monofilaments or long fibers, or a spun yarn or a processed yarn which is an aggregate of short fibers. Fibers are semi-synthetic fibers such as cellulose and viscose, synthetic fibers such as polyester, polyolefin, polyamide, acrylic, polysulfone, polyamideimide, polyimide, polyphenylene sulfide and polyvinylidene fluoride, and inorganic materials such as glass, carbon and metal. Fibers, which can be used as yarns in which these fibers are used alone or as a mixture, and yarns which are resin-impregnated.

【0008】本発明において、可撓性管状濾材を構成す
る組糸は毛羽を有していないものが好ましい。組糸が毛
羽を有していると、組糸の交差点で形成される孔の表面
や内部が毛羽で覆われ、それにより捕捉する必要のない
小さな粒子も捕捉されてしまい、結果としてフィルター
エレメントの寿命が短くなるのである。したがって、モ
ノフィラメントや樹脂含浸加工したフィラメント、紡績
糸が好ましい。
In the present invention, it is preferable that the braided yarn constituting the flexible tubular filter medium has no fluff. When the braid has fluff, the surface and the inside of the pores formed at the intersections of the braid are covered with fluff, which traps small particles that do not need to be trapped, resulting in a filter element The life is shortened. Therefore, monofilaments, resin-impregnated filaments and spun yarns are preferable.

【0009】本発明において、可撓性管状濾材を構成す
る組糸の繊度は、10〜5000デニ−ル、好ましくは
20〜2000デニ−ル、より好ましくは30〜100
0デニ−ルである。これ未満では濾材の十分な耐圧性に
欠け、これを越えると開孔率が小さくなって、濾過性能
が低下するのである。
In the present invention, the fineness of the braided yarn constituting the flexible tubular filter medium is 10 to 5,000 denier, preferably 20 to 2,000 denier, more preferably 30 to 100 denier.
It is 0 denier. If it is less than this, the filter material lacks sufficient pressure resistance, and if it exceeds this, the porosity becomes small and the filtration performance deteriorates.

【0010】本発明において、可撓性管状濾材に中央糸
が組み込まれていることが重要である。該中央糸が組糸
に組み込まれることにより、該可撓性管状濾材の長手方
向に対する伸縮が抑えられ寸法安定性が向上し、安定し
た濾過性能が得られるのである。つまり、組糸の主な役
目が粒子の捕捉にあるのに対して、中央糸の主な役目
は、該可撓性管状濾材の組織を固定する事にある。本発
明において、中央糸に用いる原糸としては紡績糸,モノ
フィラメント,マルチフィラメント等があげられるが、
その中でもモノフィラメントが特に好ましい。加えて、
中央糸は可撓性管状濾材に偏在していることが重要であ
る。特に、曲げ変形の大きい可撓性管状濾材にあっては
曲げ変形により、圧縮と伸長を受ける濾材面には中央糸
のないことが滑らかな変形となり、好ましくは圧縮と伸
長の中間部に中央糸を偏在させて配するのがよい。
In the present invention, it is important that the flexible tubular filter medium incorporates a central thread. By incorporating the central yarn into the braid, expansion and contraction of the flexible tubular filter medium in the longitudinal direction is suppressed, dimensional stability is improved, and stable filtration performance is obtained. That is, while the main function of the braiding thread is to trap particles, the main function of the central thread is to fix the tissue of the flexible tubular filter medium. In the present invention, spun yarn, monofilament, multifilament and the like can be mentioned as the raw yarn used for the central yarn.
Among them, monofilament is particularly preferable. in addition,
It is important that the central yarn is unevenly distributed in the flexible tubular filter medium. In particular, in the case of a flexible tubular filter medium having a large bending deformation, the bending deformation causes a smooth deformation because there is no central yarn on the surface of the filter medium that is subjected to compression and extension, and it is preferable that the central yarn is present in the intermediate portion between compression and extension. It is better to distribute them unevenly.

【0011】この配置例を管状濾材の断面図で図1に示
す。本発明において中央糸の偏在配置は前述のごとく相
対する2カ所に配する以外に1カ所に偏在させてもよ
く、この配置例を管状濾材の断面図で図2に示す。図
1、図2において、は組糸、は中央糸を示す。
An example of this arrangement is shown in FIG. 1 as a cross-sectional view of a tubular filter medium. In the present invention, the uneven distribution of the central yarns may be unevenly distributed in one place instead of being arranged in two opposite positions as described above. An example of this arrangement is shown in a sectional view of the tubular filter medium in FIG. 1 and 2, indicates a braid and a central yarn.

【0012】本発明において、前記中央糸の繊度として
は、10〜2000デニ−ル、好ましくは20〜100
0デニ−ル、より好ましくは30〜500デニ−ルであ
る。これ未満では、十分な寸法安定性が得られず、これ
を越えると、組糸の交差点で形成される孔径や形状が中
央糸と交差する部分では他の部分と大きく異なってしま
うのである。前記中央糸の本数が少ないと十分な寸法安
定性が得られず、多くすると濾材の可撓性が損なわれて
しまうため、組糸の本数に対し25%以下、好ましくは
20%以下の本数であり、通常の中央糸の本数は1〜1
0本である。
In the present invention, the central yarn has a fineness of 10 to 2000 denier, preferably 20 to 100 denier.
It is 0 denier, more preferably 30 to 500 denier. If it is less than this, sufficient dimensional stability cannot be obtained, and if it exceeds this, the hole diameter and shape formed at the intersection of the braiding yarns will be greatly different from the other portions at the portion intersecting the central yarn. When the number of the central yarns is small, sufficient dimensional stability cannot be obtained, and when the number of the central yarns is large, the flexibility of the filter medium is impaired. Therefore, the number of the central yarns is 25% or less, preferably 20% or less. Yes, the number of normal central threads is 1 to 1
It is 0.

【0013】本発明において、管状濾材の長さは5〜2
00cmが好ましく、より好ましくは10〜50cmで
ある。この範囲内でないとフィルターエレメントが大き
くなったり、フィルター内の流れが不均一となり濾過性
能が低下したりするのである。
In the present invention, the length of the tubular filter medium is 5 to 2
00 cm is preferable, and more preferably 10 to 50 cm. If it is not within this range, the filter element becomes large, or the flow in the filter becomes non-uniform and the filtration performance is deteriorated.

【0014】本発明において、管状濾材の断面の形状は
円形、楕円形、矩形、三角形などいずれでもよい。ま
た、管状濾材の断面形状が長手方向に同一でも、異なっ
ていてもいずれでもよい。本発明において、管状濾材の
直径は特に限定するものではないが、好ましくは2mm
〜100mm、より好ましくは5mm〜50mmであ
る。
In the present invention, the cross-sectional shape of the tubular filter medium may be circular, elliptical, rectangular, triangular or the like. Further, the cross-sectional shape of the tubular filter medium may be the same or different in the longitudinal direction. In the present invention, the diameter of the tubular filter medium is not particularly limited, but is preferably 2 mm.
˜100 mm, more preferably 5 mm to 50 mm.

【0015】本発明における管状濾材の端末は、一方は
閉じられ、他方は開かれ、閉じられた端末は熱溶着処
理、接着剤固着処理、かしめ処理などで封鎖される。一
方、開放端末は、リング状金具やプラスチックスで端末
処理をしフィルターのケーシングにセットされる。本発
明において、流体の流れは管状濾材の内から外でも、外
から内でもいずれでもかまわない。
One end of the tubular filter medium in the present invention is closed and the other end is opened, and the closed end is closed by heat welding treatment, adhesive fixing treatment, caulking treatment or the like. On the other hand, the open end is treated with a ring-shaped metal fitting or plastics and set in the filter casing. In the present invention, the fluid flow may be either inside or outside the tubular filter medium or outside or inside.

【0016】本発明における可撓性管状濾材の制御でき
る孔径は10μmから5000μmであり、この孔径は
除去すべき粒子サイズにより自由に選ぶことができる。
本発明における可撓性管状濾材の孔径分布については、
特に限定するものではないが、好ましい範囲を例示する
と平均孔径に対する変動係数が500%以下が好まし
く、より好ましくは300%以下である。以下に実施例
にて本発明をさらに詳しく説明する。
The controllable pore size of the flexible tubular filter medium of the present invention is from 10 μm to 5000 μm, and this pore size can be freely selected depending on the particle size to be removed.
Regarding the pore size distribution of the flexible tubular filter medium in the present invention,
Although not particularly limited, when the preferable range is illustrated, the coefficient of variation with respect to the average pore diameter is preferably 500% or less, and more preferably 300% or less. Hereinafter, the present invention will be described in more detail with reference to Examples.

【0017】[0017]

【実施例1】64打の丸打製紐機を用い、250デニ−
ルのポリエステルモノフィラメントを2本合糸し、25
0デニ−ルのポリエステルモノフィラメントの中央糸を
2本入れて、可撓性管状濾材を製作した。得られた可撓
性管状濾材は、長さ300mmで、外径6.8mm、厚
さ0.33mm、目付228g/m2 で、光学顕微鏡に
より測定した平均孔径は350μmでその変動係数は2
80%であった。該可撓性管状濾材の一方の端部をエポ
キシ樹脂で固着して閉塞端とし、内径10mmのバイト
ンゴム製ケ−シングに挿入し、フィルタ−アセンブリー
とした。
Example 1 Using a round striking machine with 64 strokes, 250 denier
2 polyester monofilaments of
Two central yarns of 0 denier polyester monofilament were put in to produce a flexible tubular filter medium. The obtained flexible tubular filter medium had a length of 300 mm, an outer diameter of 6.8 mm, a thickness of 0.33 mm, a basis weight of 228 g / m 2 , an average pore size measured by an optical microscope of 350 μm, and a coefficient of variation of 2
It was 80%. One end of the flexible tubular filter medium was fixed with an epoxy resin to form a closed end, which was inserted into a Viton rubber casing having an inner diameter of 10 mm to form a filter assembly.

【0018】次に、このフィルターアセンブリーに標準
ふるいでふるい分けた海砂を80%グリセリン水溶液に
均一に分散させた0.2g/リットルの濃度の粒子懸濁
液2リットルを2リットル/minの流量で流入して濾
過を行った。この間にフィルターアセンブリーに捕捉さ
れた粒子量及び通過した粒子量を重量法により測定し、
各粒径ごとの捕集効率を測定した。また、このフィルタ
ーアセンブリーに海砂(粒径177〜420μm)を8
0%グリセリン水溶液に均一に分散させた1g/リット
ルの濃度の粒子懸濁液を5リットル/minの流量で流
入してシングルパス濾過を行った。フィルターアセンブ
リーの圧力損失が0.5kg/cm2 に達するまでの時
間をフィルターアセンブリーの寿命として測定し、該寿
命は38分であった。
Next, 2 l of a particle suspension having a concentration of 0.2 g / l, in which sea sand sieved with a standard sieve was uniformly dispersed in an 80% glycerin aqueous solution, was flown into this filter assembly at a flow rate of 2 l / min. And then filtered. During this period, the amount of particles captured in the filter assembly and the amount of particles that passed through were measured by a gravimetric method,
The collection efficiency was measured for each particle size. Also, add 8 g of sea sand (particle size of 177 to 420 μm) to this filter assembly.
Single-pass filtration was carried out by inflowing a particle suspension having a concentration of 1 g / liter uniformly dispersed in a 0% glycerin aqueous solution at a flow rate of 5 liter / min. The time until the pressure loss of the filter assembly reached 0.5 kg / cm 2 was measured as the life of the filter assembly, which was 38 minutes.

【0019】[0019]

【比較例1】比較のため、平均繊維径70μmのポリプ
ロピレンからなる不織布(目付49g/m2 、厚さ0.
26mm)をプリ−ツ幅15mmでひだ折りし、外径6
5mm、内径35mm、高さ30mmの菊花型エレメン
トを製作した。このフィルタ−エレメントを外径70m
m、高さ35mmのケ−シングに挿入してフィルタ−ア
センブリーとした。このフィルタ−アセンブリーを実施
例1と同様の測定条件で濾過性能を測定した。寿命は4
1分であった。
Comparative Example 1 For comparison, a non-woven fabric made of polypropylene having an average fiber diameter of 70 μm (area weight: 49 g / m 2 , thickness: 0.
26 mm) is pleat-folded with a pleat width of 15 mm, and the outer diameter is 6
A chrysanthemum-shaped element having a size of 5 mm, an inner diameter of 35 mm and a height of 30 mm was manufactured. This filter element has an outer diameter of 70 m
The filter assembly was inserted into a casing having a height of 35 mm and a height of 35 mm. The filtration performance of this filter assembly was measured under the same measurement conditions as in Example 1. Life is 4
It was 1 minute.

【0020】実施例1及び比較例1の測定結果を表1に
各粒径ごとの捕集効率を示した。本発明における可撓性
管状濾材からなるフィルタ−アセンブリーの実施例1は
従来から用いられている不織布からなるフィルタ−アセ
ンブリーの比較例1に比べ、孔径の分布が非常にシャー
プであるため孔径以上の粒子のみを完全に分離すること
ができ、結果として長寿命となることがわかった。
Table 1 shows the measurement results of Example 1 and Comparative Example 1 and shows the collection efficiency for each particle size. Example 1 of the filter assembly made of the flexible tubular filter medium of the present invention has a very sharp distribution of pore diameters as compared with Comparative Example 1 of the conventionally used non-woven fabric filter assembly, and therefore, the pore diameter is equal to or larger than the pore diameter. It was found that only particles can be separated completely, resulting in a long life.

【0021】[0021]

【比較例2】繊維径70μmのポリプロピレンからなる
不織布(目付49g/m2 、厚さ0.26mm)を外径
7mm、長さ300mmの管状に加工し、開口部の一端
をエポキシ樹脂で硬めて閉じ、それを内径10mmのバ
イトンゴム製ケ−シングに挿入してフィルタ−アセンブ
リーを製作し、前述の実施例1と同様の測定条件で濾過
性能を測定したところ、寿命は9分、各粒径ごとの捕集
効率は表2に示すような結果が得られた。比較例2の各
粒径ごとの捕集効率は比較例1と変わらず寿命は実施例
1よりも低いものであった。
[Comparative Example 2] A non-woven fabric made of polypropylene having a fiber diameter of 70 μm (unit weight: 49 g / m 2 , thickness: 0.26 mm) was processed into a tube having an outer diameter of 7 mm and a length of 300 mm, and one end of the opening was hardened with an epoxy resin. When the filter assembly was closed and inserted into a Viton rubber casing having an inner diameter of 10 mm, a filter assembly was manufactured, and the filtration performance was measured under the same measurement conditions as in Example 1 above. The collection efficiency of was obtained as shown in Table 2. The collection efficiency for each particle size of Comparative Example 2 was the same as that of Comparative Example 1, and the life was shorter than that of Example 1.

【0022】[0022]

【実施例2及び比較例3】実施例1で述べたフィルタ−
アセンブリー及び比較例2で述べたフィルタ−アセンブ
リーをそれぞれ曲率半径500mmで同じように曲げ、
実施例1と同様の条件で濾過性能を測定した。各粒径ご
との捕集効率を表3に示した。寿命は実施例が40分、
比較例が4分であった。
Example 2 and Comparative Example 3 The filter described in Example 1
The assembly and the filter-assembly described in Comparative Example 2 were each similarly bent with a radius of curvature of 500 mm,
The filtration performance was measured under the same conditions as in Example 1. The collection efficiency for each particle size is shown in Table 3. The life is 40 minutes in the example,
The comparative example was 4 minutes.

【0023】比較例3は濾材を付設したケ−シングを曲
げたときに管状濾材がそれに追従できず屈曲閉塞を起こ
したために濾過性能の低下が生じたものと考えられる。
一方、実施例2は実施例1の結果と一致しており、濾過
性能の低下は認められず、このことは本発明の可撓性管
状濾材が、曲げ変形に対しても孔径の変化が極めて小さ
く、屈曲閉塞しない優れた濾材であることを示してい
る。
In Comparative Example 3, it is considered that when the casing provided with the filter medium was bent, the tubular filter medium could not follow it and the pipe was blocked due to bending, resulting in deterioration of the filtration performance.
On the other hand, Example 2 is in agreement with the results of Example 1, and no reduction in filtration performance was observed, which means that the flexible tubular filter medium of the present invention has a very small change in pore size even with bending deformation. It shows that the filter material is small and does not bend and close.

【0024】[0024]

【実施例3】48打の丸打製紐機を用い、150デニ−
ルのナイロンモノフィラメントを組糸とし、中央糸には
エポキシ樹脂含浸のガラスロービングのヤーンプリプレ
グ(ヤーン直径200μm)を2本使用して組み上げ、
次いで150℃で30分間熱処理を行い、中央糸と組糸
の接着固着をした。得られた可撓性管状濾材は外径4m
m,厚さ0.2mm、目付150g/m2で平均孔径は
130μmであった。この可撓性管状濾材で実施例1と
同様にフィルターアセンブリーを製作した。次に、この
フィルターアセンブリーを曲率半径300mmに曲げた
状態でもって、試験用ダスト1種を用い、実施例1と同
様の条件で濾過を行い、各粒径ごとの捕集効率および寿
命を測定したところ、寿命は29分で、各粒径ごとの捕
集効率は表4に示すような結果が得られた。実施例3は
実施例1、2と同様に孔径の分布が非常にシャープであ
るため孔径以上の粒子のみを完全に分離することがで
き、曲げ変形に対しても孔径の変化が極めて小さく、屈
曲閉塞しない優れた濾材であることがわかった。
[Embodiment 3] Using a round striking machine of 48 strokes, 150 deniers
The nylon monofilament is used as the braiding yarn, and the center yarn is assembled by using two glass roving yarn prepregs (yarn diameter 200 μm) impregnated with epoxy resin.
Then, heat treatment was performed at 150 ° C. for 30 minutes to bond the central yarn and the braid to each other. The obtained flexible tubular filter medium has an outer diameter of 4 m.
m, thickness 0.2 mm, basis weight 150 g / m 2 , average pore size 130 μm. A filter assembly was manufactured from this flexible tubular filter medium in the same manner as in Example 1. Next, with the filter assembly bent to a radius of curvature of 300 mm, filtration was performed under the same conditions as in Example 1 using one type of test dust, and the collection efficiency and life of each particle size were measured. As a result, the life was 29 minutes, and the collection efficiency for each particle size was as shown in Table 4. In Example 3, as in Examples 1 and 2, the pore size distribution is very sharp, so that only particles having a pore size or more can be completely separated, and the change in pore size due to bending deformation is extremely small, and bending is possible. It was found to be an excellent filter medium that does not clog.

【0025】[0025]

【比較例4】実施例1を製作する際に250デニ−ルの
ポリエステルモノフィラメントの2本の中央糸を使用せ
ずに、250デニ−ルのポリエステルモノフィラメント
の2本合糸の組糸のみで管状濾材の比較例4を製作し
た。得られた比較例4は長さ300mmで外径6.5m
m、厚さ0.33mm、目付190g/m2 であった。
この可撓性管状濾材で実施例1と同様にフィルターアセ
ンブリーを製作し、実施例1と同様の条件で濾過性能を
測定したところ、寿命は41分で、各粒径ごとの補集効
率は表5に示すような結果が得られた。
[Comparative Example 4] In the production of Example 1, two central yarns of 250 denier polyester monofilament were not used, but only a braid of two composite yarns of 250 denier polyester monofilament was used. Comparative Example 4 of the filter medium was manufactured. The obtained comparative example 4 has a length of 300 mm and an outer diameter of 6.5 m.
m, the thickness was 0.33 mm, and the basis weight was 190 g / m 2 .
A filter assembly was manufactured from this flexible tubular filter medium in the same manner as in Example 1, and the filtration performance was measured under the same conditions as in Example 1. The life was 41 minutes, and the collection efficiency for each particle size was The results shown in Table 5 were obtained.

【0026】[0026]

【実施例4および比較例5】実施例1で述べたフィルタ
ーアセンブリー及び比較例4で述べたフィルターアセン
ブリーに挿入されている濾材の伸長方向にそれぞれ30
0gで同じように張力を加え、実施例1と同様の条件で
濾過性能を測定した。各粒径ごとの捕集効率を表6に示
した。寿命は実施例で38分、比較例で23分であっ
た。
EXAMPLE 4 and COMPARATIVE EXAMPLE 5 The filter assembly described in Example 1 and the filter assembly described in Comparative Example 4 were each loaded with 30 in the extending direction of the filter medium.
Tension was similarly applied at 0 g, and the filtration performance was measured under the same conditions as in Example 1. The collection efficiency for each particle size is shown in Table 6. The life was 38 minutes in the example and 23 minutes in the comparative example.

【0027】比較例5は濾材の孔径が外力により変化し
たために比較例4の濾過性能及び寿命が大きく変化した
ものと考えられる。一方、実施例4は実施例1の結果の
一致しており、濾過性能及び寿命の変化は認められず、
このことは本発明の可撓性管状濾材が、外力に対しても
孔径の変化が極めて小さく、安定した濾過性能が得られ
る優れた濾材であることを示している。
It is considered that in Comparative Example 5, the filtration performance and the life of Comparative Example 4 were significantly changed because the pore size of the filter medium was changed by the external force. On the other hand, in Example 4, the results of Example 1 are in agreement, and no change in filtration performance and life is observed,
This indicates that the flexible tubular filter medium of the present invention is an excellent filter medium in which the change of the pore diameter is extremely small even with an external force and stable filtration performance can be obtained.

【0028】[0028]

【発明の効果】以上記載の通り、本発明の可撓性管状濾
材は従来の濾紙や不織布濾材と比較すると濾過精度が正
確であるため、除去したい粒子のみを完全に捕捉するこ
とが可能で、かつ配管系に組み込み、配管を曲げて使用
しても管状濾材の可撓性ゆえに屈曲閉塞を起こさず、外
力に対して安定した濾過性能が得られるという優れた効
果を有するものである。また、本発明の可撓性管状濾材
は液体はさることながら気体にも応用できるものであ
る。
As described above, since the flexible tubular filter medium of the present invention has more accurate filtration accuracy than the conventional filter paper or the non-woven fabric filter medium, it is possible to completely capture only the particles to be removed, In addition, even if the pipe is incorporated into a pipe system and the pipe is bent and used, the tubular filter medium does not cause bending and blockage due to its flexibility, and has an excellent effect that stable filtration performance against external force can be obtained. Further, the flexible tubular filter medium of the present invention can be applied to gas as well as liquid.

【図面の簡単な説明】[Brief description of drawings]

【図1】中央糸を相対する2カ所に配した場合の配置例
を示す管状濾材の断面図であって、は組糸、は中央
糸を示す。
FIG. 1 is a cross-sectional view of a tubular filter medium showing an arrangement example in which central yarns are arranged at two opposite positions, where is a braid and is a central yarn.

【図2】中央糸を1カ所に配した場合の配置例を示す管
状濾材の断面図であって、は組糸、は中央糸を示
す。
FIG. 2 is a cross-sectional view of a tubular filter medium showing an arrangement example in which a central yarn is arranged at one place, where is a braid and is a central yarn.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

【表5】 [Table 5]

【表6】 [Table 6]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】丸打組物組織から成る管状濾材において、
左右両方かつ長手方向に沿って回転する組糸に対し、長
手方向に該組糸と交差して編組される中央糸が組み込ま
れていることを特徴とする可撓性管状濾材。
1. A tubular filter medium composed of a round braided tissue,
A flexible tubular filter medium, characterized in that a central yarn, which is braided in the longitudinal direction so as to intersect with the braid yarn, is incorporated in the braid yarn that rotates both left and right and along the longitudinal direction.
JP11533591A 1991-04-18 1991-04-18 Flexible tubular filter medium Pending JPH07727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11533591A JPH07727A (en) 1991-04-18 1991-04-18 Flexible tubular filter medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11533591A JPH07727A (en) 1991-04-18 1991-04-18 Flexible tubular filter medium

Publications (1)

Publication Number Publication Date
JPH07727A true JPH07727A (en) 1995-01-06

Family

ID=14660008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11533591A Pending JPH07727A (en) 1991-04-18 1991-04-18 Flexible tubular filter medium

Country Status (1)

Country Link
JP (1) JPH07727A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014161840A (en) * 2013-02-27 2014-09-08 Mitsubishi Rayon Co Ltd Water treatment hollow braid, hollow braid module, water treatment method using the same and manufacturing method of ballast water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014161840A (en) * 2013-02-27 2014-09-08 Mitsubishi Rayon Co Ltd Water treatment hollow braid, hollow braid module, water treatment method using the same and manufacturing method of ballast water

Similar Documents

Publication Publication Date Title
WO1990010487A1 (en) Flexible tubular filter medium
JP6050752B2 (en) Cartridge filter including combination of depth filter and submicron filter and RO pretreatment method
US4048075A (en) Filter cartridge
WO2019017849A1 (en) Anisotropic/isotropic microfibre filter and method for its use
US11896921B2 (en) Nonwoven sliver-based filter medium for filtering particulate matter
JPWO2017138477A1 (en) Water purification filter
US4661249A (en) Prefilter device for polymeric material
US20160271540A1 (en) Compressible filter media and filters containing same
JPH07727A (en) Flexible tubular filter medium
JP3201488B2 (en) Flexible tubular filter media
JP2508943B2 (en) Flexible tubular filter medium and method for producing the same
JP2003326115A (en) Tubular filter medium
JP2003326116A (en) Flexible tubular filter medium
KR920003765B1 (en) Method of filter body with cellulose spun bond nonwoven fabric as raw material
JP2004267813A (en) Cartridge type filter and manufacturing method therefor
RU177154U1 (en) CARTRIDGE FOR LIQUID FILTRATION
JPH03284306A (en) Multilayer flexible tubular filter medium
JP3431086B2 (en) Filter cartridge and filtration method
JPH04176313A (en) Flexible tubular filter medium
JP3644812B2 (en) Cylindrical filter
JP3373877B2 (en) Nonwoven fabric having pore diameter gradient and method for producing the same
JPH0427403A (en) Cartridge filter
US5334451A (en) Continuous filament yarn precoat septum
RU2311944C1 (en) Natural gas cleaning filter
CN220318103U (en) Water inlet grid for reverse osmosis membrane element