JP2003326116A - Flexible tubular filter medium - Google Patents

Flexible tubular filter medium

Info

Publication number
JP2003326116A
JP2003326116A JP2002138863A JP2002138863A JP2003326116A JP 2003326116 A JP2003326116 A JP 2003326116A JP 2002138863 A JP2002138863 A JP 2002138863A JP 2002138863 A JP2002138863 A JP 2002138863A JP 2003326116 A JP2003326116 A JP 2003326116A
Authority
JP
Japan
Prior art keywords
filter medium
tubular filter
flexible
filter
flexible tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002138863A
Other languages
Japanese (ja)
Inventor
Takahiro Kubota
隆弘 窪田
Akira Matsuzoe
晃 松添
Hideki Jinbo
秀規 神保
Yutaka Kanzaki
裕 神崎
Yuji Kakita
裕次 柿田
Shigehiro Yoshio
慈洋 吉尾
Tetsuji Koyama
哲司 小山
Mamoru Sazuka
守 佐塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2002138863A priority Critical patent/JP2003326116A/en
Publication of JP2003326116A publication Critical patent/JP2003326116A/en
Pending legal-status Critical Current

Links

Landscapes

  • Braiding, Manufacturing Of Bobbin-Net Or Lace, And Manufacturing Of Nets By Knotting (AREA)
  • Filtering Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flexible tubular filter medium following an object formed into an arbitrary shape by bending processing to generate no folding closure, having a stable pore size with respect to the repetition of pressure or bending and having characteristics capable of easily removing adhered particles or fiber refuse in washing. <P>SOLUTION: The flexible tubular filter medium is regular and uniform in the pore size, arrangement and shape of a filter and follows even the interior of piping of which the filter arranging place is bent to generate no folding closure. This flexible tubular filter medium has round braided texture constituted of braided yarns rotated in both left and right directions and a longitudinal direction and a flexible support is inserted in the tubular filter medium in a contact state. The ratio of the contact area of the flexible support with the inner wall of the tubular filter medium is 50% or less of the area of the inner wall of the tubular filter material. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、流体中に含まれる
粒子、とりわけ水,油,燃料などの液体中に含まれる粒
子を除去することができる屈曲閉塞を起こさない均一な
孔径を持った管状濾材に関するものである。 【0002】 【従来の技術】流体中の粒子を除去する気体フィルタ−
や液体フィルタ−は、工作機械や自動車など広い分野で
機器の保護に使用されている。一般に流体中に含まれる
粒子、とりわけ水,油,燃料などの液体中の汚濁物質で
ある粒子の除去には、パルプからなる濾紙や合成繊維か
らなる不織布、あるいは金属や合成樹脂の網などのいわ
ゆるシート濾材を折り畳み加工して成型した菊花型フィ
ルターが用いられている。しかし近年、これらの機器の
高性能化と省スペ−ス化の面から、これらに使用される
フィルタ−の孔径の均一化、さらにはフィルターを配管
系に組み込み、配管を曲げて使用しても屈曲閉塞しない
フィルターの要求があり、従来のシート濾材では対応で
きない状況にある。 【0003】フィルターの孔径の均一性については、パ
ルプからなる濾紙や合成繊維からなる不織布などは、繊
維が複雑に絡み合っているので、孔の大きさも配置も形
状もランダムである。従って、機器に損傷を与えるある
大きさ以上の粒子を完全に除去できる構造にすると、機
器に影響を及ぼさない小さな粒子も多くがフィルターに
捕捉されてしまい、結果としてフィルターの目詰まりが
早くおきフィルターの寿命が短くなる。また、シート濾
材においては、構造的な理由から、フィルタ−エレメン
トを円筒状以外の任意の形状に加工することも不可能で
ある。 【0004】フィルターを継続的に使用する場合には一
定周期毎に、濾過方向とは逆の方向の流体を加えたり振
動を与えたりして濾材に付着した粒子を除去する必要が
ある。しかし、金属網のように濾材の変形が極めて少な
いフィルターに挟まった繊維屑のようなものの除去や、
繊維が複雑に絡み合った濾紙や不織布の中に捕捉された
粒子の除去は極めて難しいのが現状である。 【0005】 【発明が解決しようとする課題】本発明は、以上の点を
鑑みて、流体中に含まれる粒子、とりわけ液体中の粒子
の濾過においてはフィルターを任意の形状に曲げ加工し
ても追従して屈曲閉塞を起こさず、圧力や屈曲の繰り返
しに対して安定な孔径を持ち、一方、洗浄においては付
着した粒子や繊維屑のようなものを容易に除去できる特
性を持った可撓性管状濾材を提供することにある。 【0006】 【課題を解決するための手段】本発明者らはフィルタ−
の孔径、配置、形状が規則正しく一様で、かつフィルタ
−を設置する場所が屈曲している配管の中であっても追
従して屈曲閉塞を起こさない可撓性管状濾材を得るた
め、右回りと左回りの組糸が交差して正方形、あるいは
ひし形、三角形などの孔を形成する、フレキシブルチュ
−ブである丸打組物に着目し、鋭意検討した結果本発明
に到達した。 【0007】 【発明の実施の形態】本発明は、左右両方向かつ長手方
向に沿って回転する組糸で構成された丸打組物組織の管
状濾材であって、管状濾材内部に可撓性支持体が接触挿
入されており、可撓性支持体が管状濾材内壁に接触して
いる面積が管状濾材内壁面積の50%以下であることを
特徴とする可撓性管状濾材に関するものである。 【0008】本発明において、丸打組物組織とは螺旋状
に各々左右両方向かつ長手方向に沿って回転する組糸か
らなり、本発明の可撓性管状濾材は、これら丸打組物組
織の内面の長手方向に沿って可撓性のある支持体を挿入
して形成されている。 【0009】本発明において、可撓性管状濾材を構成す
る組糸は、モノフィラメントや長繊維の集合体であるマ
ルチフィラメントや短繊維の集合体である紡績糸や加工
糸の形態があり、その原料繊維はセルロース,ビスコー
ス等の半合成繊維,ポリエステル,ポリオレフィン,ポ
リアミド,アクリル,ポリスルフォン,ポリアミドイミ
ド,ポリイミド,ポリフェニレンサルファイド,ポリ弗
化ビニリデン等の合成繊維やガラス,カ−ボン,メタル
などの無機繊維でありこれらの繊維の単独あるいは混合
した糸や樹脂含浸加工した糸が使用できる。 【0010】本発明において、可撓性管状濾材を構成す
る組糸は毛羽を有していないものが好ましい。組糸が毛
羽を有していると、組糸の交差点で形成される孔の表面
や内部が毛羽で覆われ、それにより捕捉する必要のない
小さな粒子も捕捉されてしまい、結果としてフィルター
エレメントの寿命が短くなるのである。したがって、モ
ノフィラメントや樹脂含浸加工したフィラメント、紡績
糸が好ましい。 【0011】本発明において、可撓性管状フィルターを
構成する組糸の繊度は、1.1〜5500dtex、好ましく
は22〜2200dtex、より好ましくは33〜1100dtex
である。これ未満では濾材の十分な耐圧性に欠け、これ
を越えると開孔率が小さくなって、濾過性能が低下する
のである。 【0012】本発明において、濾過流体の流れは管状濾
材の外から内である。洗浄時の流体の流れは管状濾材の
内から外である。 【0013】本発明において、フィルター内壁に支持体
が接触して組込まれていることが重要である。これによ
り、管状構造の保持だけでは無く、濾材の長手方向に対
する伸縮が抑えられ寸法安定性が向上し、目ずれが防止
され、安定した濾過性能が得られるのである。さらに支
持体を可撓性とすることで管状フィルターに可撓性が付
与されるためフィルターを屈曲させて使用することも可
能となる。即ち、組糸の主な役目が粒子の捕捉にあるの
に対して、可撓性支持体の主な役目は、該管状フィルタ
ーの組織を固定する事と該管状フィルターに可撓性を持
たせることにある。 【0014】上述のように可撓性支持体は濾過時の筒外
圧に対しては濾材の変形を抑制するように働く。一方、
筒内圧に対しては濾材の伸縮を抑える機能は全く無い。
これは濾材の性能維持に非常に都合が良い。つまり、該
可撓性フィルターを洗浄する際、筒の内面から圧力を加
えることにより濾材孔が大きく目開きするのと同時に濾
材が大きく伸縮変形する。この結果、濾材孔に挟まった
粒子は瞬時に離脱し、濾材表面に付着した粒子も界面の
せん断力により瞬時に離脱するのである。 【0015】本発明において、可撓性支持体の形態とし
ては図2に示す螺旋状物であっても、図3に示すリング
状物であっても網を円筒に加工したものであっても良
い。但し、可撓性濾材内壁との接触面積は少ない管状濾
材内壁面積の50%以下とする必要がある。管状濾材内
壁と接触する面積が50%を超えるとフィルターの濾過
面積が少なくなるだけでは無く、濾過時の圧力上昇や、
洗浄時に濾材孔の目開きが不充分となり洗浄性が低下す
る等の問題が発生するからである。可撓性支持体に用い
る線材としては、高分子材料でも金属材料でも良い。線
材の径や繰返しの周期を特に規定するものでは無い。必
要な濾過液の貫通抵抗が確保でき、且つ、必要な濾過フ
ィルターの可撓性が確保でき、さらに、洗浄性が損なわ
れない濾材孔の目開き率が確保できる形態を選択すれば
良い。但し、丸打組物組織の長手方向の周期より広いピ
ッチで支持体が接触している場合には濾材の長手方向に
対する寸法安定性が低下する恐れがある。従って、螺旋
のピッチは丸打組物組織の周期の1/2倍から5倍とす
ることが望ましい。濾材の長手方向に対する寸法安定性
をさらに高めるためには、融点の異なる糸を合糸して管
状濾材を製作した後、濾材チューブ内に金属ロッドを挿
入し、糸交絡部で一方の糸が固着または変形する温度域
で熱セットするなどの方法で糸交絡部を固着、または織
り形状を安定させるとよい。組糸の配置例を図1に示
す。 【0016】本発明において、管状濾材の長さは5〜2
00cmが好ましく、より好ましくは200〜120c
mである。外径は3mm〜200mmが好ましく、より
好ましくは6mm〜50mmである。この範囲内でない
とフィルターエレメントが大きくなったり、フィルター
内の流れが不均一となり濾過性能が低下したりするので
ある。 【0017】本発明における管状濾材の端末は、一方は
閉じられ、他方は開かれ、閉じられた端末は熱溶着処
理、接着剤固着処理、かしめ処理などで封鎖される。一
方、開放端末は、リング状金具やプラスチックスで端末
処理をしてフィルターのケーシングにセットされる。 【0018】本発明における可撓性管状濾材の制御でき
る孔径は1μm〜5000μmであり、この孔径は除去
すべき粒子サイズにより自由に選ぶことができる。 【0019】本発明における可撓性管状濾材の孔径分布
については、特に限定するものではないが、好ましい範
囲を例示すると平均孔径に対する変動係数が500%以
下が好ましく、より好ましくは300%以下である。可
撓性管状濾材の孔径分布が大きくなり、変動係数が50
0%を越えると除去する必要のない小さな粒子まで濾材
で捕捉する割合が大きくなって、結果として濾材の寿命
が短くなるのである。ここで、変動係数とは、孔径の標
準偏差を平均値で割った値である。以下に実施例にて本
発明をさらに詳しく説明する。 【0020】[実施例1]64打の丸打製紐機を用い、
275デシテックスのポリエステルモノフィラメントを
2本合糸しこれを組糸として管状濾材を製作した。この
管状濾材のチューブ内に線材径が0.6mmφ、外形
6.7mm、ピッチ4mmのステンレス製螺旋状支持体
挿入した。得られた可撓性管状濾材は、長さ300mm
で、外径7mm、厚さ0.3mm、目付213g/m2
で、光学顕微鏡により測定した平均孔径は730μmで
その変動係数は240%であった。該可撓性管状濾材の
一方の端部をエポキシ樹脂で固着して閉塞端とし、内径
10mmのバイトンゴム製ケ−シングに挿入し、フィル
タ−アセンブリーとした。 【0021】次に、このフィルターアセンブリーに標準
ふるいでふるい分けた海砂を80%グリセリン水溶液に
均一に分散させた0.2g/リットルの濃度の粒子懸濁
液2リットルを2リットル/minの流量で流入して濾
過を行った。この間にフィルターアセンブリーに捕捉さ
れた粒子量及び通過した粒子量を重量法により測定し、
各粒径ごとの捕集効率を測定した。また、このフィルタ
ーアセンブリーに海砂(粒径177〜1700μm)を
80%グリセリン水溶液に均一に分散させた1g/リッ
トルの濃度の粒子懸濁液を5リットル/minの流量で
流入してシングルパス濾過を行った。フィルターアセン
ブリーの圧力損失が0.5kg/cm2 に達するまでの
時間をフィルターアセンブリーの寿命として測定し、該
寿命は54分であった。次にフィルタアセンブリーに
0.3Mpaの圧縮エアーを1秒加える操作を1秒間隔
に計5回行いフィルタアセンブリから剥離した粒子を重
量法により測定した。結果、粒子の剥離率は99%であ
った。結果を表1に示した。 【0022】 【表1】 【0023】[比較例1]繊維径70μmのポリプロピ
レンからなる不織布(目付22g/m2 、厚さ0.21
mm)を外径7mm、長さ300mmの管状に加工し、
開口部の一端をエポキシ樹脂で硬めて閉じ、それを内径
10mmのバイトンゴム製ケ−シングに挿入してフィル
タ−アセンブリーを製作し、前述の実施例1と同様の測
定条件(濾過の方向、洗浄方向が実施例1とは逆)で濾
過性能を測定したところ、寿命は21分、粒子の剥離率
は78%であった。 【0024】実施例1及び比較例1の測定結果を表1に
各粒径ごとの捕集効率を示した。本発明における可撓性
管状濾材からなるフィルタ−アセンブリーの実施例1は
従来から用いられている不織布からなるフィルタ−アセ
ンブリーの比較例1に比べ、孔径の分布が非常にシャー
プであるため孔径以上の粒子のみを完全に分離すること
ができ、結果として長寿命となることがわかった。さら
に剥離性にも優れるため、繰返し使用にも適することが
わかった。 【0025】[実施例2および比較例2]実施例1で述
べたフィルターアセンブリー及び比較例2で述べたフィ
ルターアセンブリーをそれぞれ曲率半径500mmで同
じように曲げ、実施例1と同様の条件で濾過性能を測定
した。このとき実施例3の平均孔径は730μmでその
変動係数は250%であった。各粒径ごとの捕集効率を
表3に示した。寿命は実施例が53分、比較例が14分
で、剥離性が実施例99%、比較例72%であった。 【0026】比較例2は濾材を付設したケ−シングを曲
げたときに管状濾材がそれに追従できず屈曲閉塞を起こ
したために濾過性能の低下が生じたものと考えられる。
一方、実施例2は実施例1の結果と一致しており、濾過
性能の低下は認められず、このことは本発明の可撓性管
状濾材が、曲げ変形に対しても孔径の変化が極めて小さ
く、屈曲閉塞しない、且つ、粒子の剥離性が良い優れた
濾材であることを示している。 【0027】 【発明の効果】以上記載の通り、本発明の可撓性管状濾
材は従来の濾紙や不織布濾材と比較すると濾過精度が正
確であるため、除去したい粒子のみを完全に捕捉するこ
とが可能で、かつ濾材を屈曲させて使用しても管状濾材
の可撓性ゆえに屈曲閉塞を起こさず、外力に対して安定
した濾過性能が得られるという優れた効果を有し、さら
に濾過方向とは逆方向の力を加えることで濾材孔が大き
く目開きする特性により粒子の分離、洗浄が瞬時に実現
できる優れた効果を有するものである。また、本発明の
可撓性管状濾材は、液体はさることながら気体にも応用
できるものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bending obstruction capable of removing particles contained in a fluid, in particular, particles contained in a liquid such as water, oil and fuel. The present invention relates to a tubular filter medium having a uniform pore size that does not cause cracking. [0002] A gas filter for removing particles in a fluid
Liquid filters are used for protecting equipment in a wide range of fields such as machine tools and automobiles. Generally, particles contained in a fluid, particularly particles that are pollutants in a liquid such as water, oil, or fuel, are removed by a so-called filter paper made of pulp, a nonwoven fabric made of synthetic fibers, or a mesh of metal or synthetic resin. A chrysanthemum flower filter obtained by folding and molding a sheet filter material is used. However, in recent years, from the viewpoint of high performance and space saving of these devices, filters used in these devices have a uniform pore diameter, and furthermore, filters can be incorporated in a piping system and used by bending piping. There is a demand for a filter that does not bend and block, and is in a situation where conventional sheet filter media cannot cope. [0003] Regarding the uniformity of the pore diameter of the filter, the size, arrangement and shape of the pores are random in filter paper made of pulp and non-woven fabric made of synthetic fibers because the fibers are intertwined in a complicated manner. Therefore, if a structure that can completely remove particles that are larger than a certain size that damages the device is used, many small particles that do not affect the device will be captured by the filter, and as a result, the filter will be clogged earlier and the filter will be caught earlier. Life is shortened. Further, in the sheet filter medium, it is impossible to process the filter element into an arbitrary shape other than the cylindrical shape for structural reasons. When the filter is used continuously, it is necessary to remove the particles adhering to the filter medium by applying a fluid in the direction opposite to the filtration direction or applying vibration at regular intervals. However, removal of things like fiber debris caught between filters with very little deformation of the filter medium, such as metal nets,
At present, it is extremely difficult to remove particles trapped in filter paper or nonwoven fabric in which fibers are intricately entangled. SUMMARY OF THE INVENTION In view of the above, the present invention has been made in consideration of the above problems, and therefore, in filtering particles contained in a fluid, particularly particles in a liquid, even if the filter is bent into an arbitrary shape. Flexibility that has a stable pore size against pressure and repetition of bending without causing bending obstruction following, while easily removing particles such as adhered particles and fiber debris during cleaning It is to provide a tubular filter medium. [0006] The present inventors have proposed a filter.
In order to obtain a flexible tubular filter medium that has a uniform and uniform hole diameter, arrangement, and shape, and that does not cause bent blockage even in a bent pipe where the filter is installed, The present inventors have focused on a round tube braid, which is a flexible tube in which a square, a rhombus, a triangle, and the like are intersected by a pair of counterclockwise braids, and as a result of intensive studies, the present invention has been reached. DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a tubular filter medium having a round-punched braid structure composed of braiding yarns rotating in both the left and right directions and the longitudinal direction, wherein a flexible support is provided inside the tubular filter medium. The present invention relates to a flexible tubular filter medium, wherein a body is inserted in contact therewith, and an area where the flexible support is in contact with an inner wall of the tubular filter medium is 50% or less of an inner wall area of the tubular filter medium. In the present invention, the round braided structure is composed of braids that are spirally rotated in both the left and right directions and the longitudinal direction, and the flexible tubular filter medium of the present invention is composed of these round braided structures. It is formed by inserting a flexible support along the longitudinal direction of the inner surface. In the present invention, the braid constituting the flexible tubular filter medium is in the form of a monofilament, a multifilament which is an aggregate of long fibers, a spun yarn which is an aggregate of short fibers, or a processed yarn. Fibers are semi-synthetic fibers such as cellulose and viscose, polyester, polyolefin, polyamide, acrylic, polysulfone, polyamide imide, polyimide, polyphenylene sulfide, polyvinylidene fluoride, etc., and inorganic fibers such as glass, carbon and metal. It is a fiber, and a single or mixed yarn of these fibers or a yarn impregnated with a resin can be used. In the present invention, the braid constituting the flexible tubular filter medium preferably has no fluff. If the braid has fluff, the surface or inside of the hole formed at the intersection of the braid will be covered with fluff, thereby trapping small particles that do not need to be trapped. Life is shortened. Therefore, a monofilament, a filament impregnated with a resin, and a spun yarn are preferable. In the present invention, the fineness of the braid constituting the flexible tubular filter is 1.1 to 5500 dtex, preferably 22 to 2200 dtex, more preferably 33 to 1100 dtex.
It is. If it is less than this, the filter medium lacks sufficient pressure resistance, and if it exceeds this, the porosity decreases and the filtration performance decreases. In the present invention, the flow of the filtration fluid is from outside to inside the tubular filter medium. The flow of the fluid during washing is from inside to outside of the tubular filter medium. In the present invention, it is important that the support is incorporated in contact with the inner wall of the filter. This not only maintains the tubular structure, but also suppresses expansion and contraction of the filter medium in the longitudinal direction, improves dimensional stability, prevents misalignment, and provides stable filtration performance. In addition, since the tubular filter is made flexible by making the support flexible, the filter can be bent and used. That is, while the main role of the braid is to capture particles, the main role of the flexible support is to fix the tissue of the tubular filter and to make the tubular filter flexible. It is in. As described above, the flexible support works to suppress the deformation of the filter medium against the external pressure during filtration. on the other hand,
There is no function to suppress the expansion and contraction of the filter medium against the in-cylinder pressure.
This is very convenient for maintaining the performance of the filter medium. In other words, when the flexible filter is washed, pressure is applied from the inner surface of the tube, so that the filter medium hole is greatly opened and the filter medium is greatly expanded and contracted. As a result, the particles sandwiched between the pores of the filter medium are instantaneously released, and the particles adhering to the surface of the filter medium are also instantly released due to the shearing force at the interface. In the present invention, the form of the flexible support may be a spiral one shown in FIG. 2, a ring one shown in FIG. 3, or a net formed into a cylinder. good. However, the area of contact with the inner wall of the flexible filter medium must be 50% or less of the area of the inner wall of the tubular filter medium. If the area in contact with the inner wall of the tubular filter medium exceeds 50%, not only does the filtration area of the filter decrease, but also the pressure rise during filtration and
This is because problems such as insufficient opening of the filter medium holes at the time of washing and deterioration of washability occur. The wire used for the flexible support may be a polymer material or a metal material. There is no particular limitation on the diameter of the wire or the cycle of repetition. What is necessary is just to select the form which can ensure the required penetration resistance of the filtrate, the required flexibility of the filtration filter, and can secure the opening ratio of the filter material hole which does not impair the cleaning performance. However, when the support is in contact with a pitch wider than the period of the round braided structure in the longitudinal direction, the dimensional stability of the filter medium in the longitudinal direction may be reduced. Therefore, it is desirable that the pitch of the helix be 1/2 to 5 times the cycle of the round braided tissue. In order to further increase the dimensional stability of the filter media in the longitudinal direction, yarns with different melting points are combined to produce a tubular filter media, then a metal rod is inserted into the filter media tube, and one of the threads is fixed at the thread entanglement. Alternatively, the yarn entangled portion may be fixed or the woven shape may be stabilized by a method such as heat setting in a deforming temperature range. FIG. 1 shows an example of the arrangement of the braided yarn. In the present invention, the length of the tubular filter medium is 5 to 2
00 cm is preferable, and more preferably 200 to 120 c
m. The outer diameter is preferably from 3 mm to 200 mm, more preferably from 6 mm to 50 mm. If it is not within this range, the size of the filter element becomes large, or the flow in the filter becomes non-uniform, so that the filtration performance decreases. One end of the tubular filter medium in the present invention is closed and the other is opened, and the closed end is closed by a heat welding process, an adhesive fixing process, a caulking process, or the like. On the other hand, the open terminal is subjected to terminal treatment with a ring-shaped metal fitting or plastics, and set in a filter casing. The controllable pore size of the flexible tubular filter medium in the present invention is from 1 μm to 5000 μm, and this pore size can be freely selected depending on the particle size to be removed. The pore size distribution of the flexible tubular filter medium in the present invention is not particularly limited, but a preferred range is, for example, a coefficient of variation with respect to the average pore size of 500% or less, more preferably 300% or less. . The pore size distribution of the flexible tubular filter medium is increased and the coefficient of variation is 50
If it exceeds 0%, the rate at which small particles that do not need to be removed are captured by the filter medium increases, and as a result, the life of the filter medium is shortened. Here, the coefficient of variation is a value obtained by dividing the standard deviation of the pore diameter by the average value. Hereinafter, the present invention will be described in more detail with reference to Examples. [Example 1] Using a 64 hitting round stringing machine,
Two polyester monofilaments of 275 decitex were plied and used as a braid to produce a tubular filter medium. A stainless steel spiral support having a wire diameter of 0.6 mmφ, an outer diameter of 6.7 mm and a pitch of 4 mm was inserted into the tube of the tubular filter medium. The obtained flexible tubular filter medium has a length of 300 mm.
, Outer diameter 7 mm, thickness 0.3 mm, basis weight 213 g / m 2
The average pore diameter measured by an optical microscope was 730 μm, and the coefficient of variation was 240%. One end of the flexible tubular filter medium was fixed with an epoxy resin to form a closed end, and inserted into a case made of Viton rubber having an inner diameter of 10 mm to obtain a filter assembly. Next, 2 l of a particle suspension having a concentration of 0.2 g / l in which sea sand sieved with a standard sieve was uniformly dispersed in an aqueous 80% glycerin solution was passed through the filter assembly at a flow rate of 2 l / min. And filtered. During this time, the amount of particles captured by the filter assembly and the amount of particles passed therethrough were measured by a gravimetric method,
The collection efficiency for each particle size was measured. A 1 g / liter particle suspension in which sea sand (particle diameter: 177 to 1700 μm) is uniformly dispersed in an 80% glycerin aqueous solution is introduced into the filter assembly at a flow rate of 5 liter / min, and a single pass is performed. Filtration was performed. The time required for the pressure loss of the filter assembly to reach 0.5 kg / cm 2 was measured as the life of the filter assembly, and the life was 54 minutes. Next, the operation of applying 0.3 Mpa compressed air to the filter assembly for 1 second was performed 5 times at 1 second intervals in total, and particles separated from the filter assembly were measured by a gravimetric method. As a result, the peeling rate of the particles was 99%. The results are shown in Table 1. [Table 1] Comparative Example 1 A nonwoven fabric made of polypropylene having a fiber diameter of 70 μm (basis weight: 22 g / m 2 , thickness: 0.21)
mm) into a tube with an outer diameter of 7 mm and a length of 300 mm,
One end of the opening was hardened with epoxy resin and closed, and it was inserted into a case made of Viton rubber having an inner diameter of 10 mm to manufacture a filter assembly. The same measurement conditions (filtration direction, washing direction) as in Example 1 were used. (The reverse of Example 1), the filtration performance was measured, and the life was 21 minutes and the particle exfoliation rate was 78%. The measurement results of Example 1 and Comparative Example 1 are shown in Table 1 and the collection efficiency for each particle size is shown. Example 1 of the filter assembly made of the flexible tubular filter medium in the present invention has a very sharp pore size distribution as compared with Comparative Example 1 of the filter assembly made of a nonwoven fabric which has been conventionally used. It was found that only particles could be completely separated, resulting in a long life. Furthermore, it was found that it was also excellent in releasability, so that it was suitable for repeated use. Example 2 and Comparative Example 2 The filter assembly described in Example 1 and the filter assembly described in Comparative Example 2 were each similarly bent at a radius of curvature of 500 mm under the same conditions as in Example 1. The filtration performance was measured. At this time, the average pore diameter of Example 3 was 730 μm, and the coefficient of variation was 250%. Table 3 shows the collection efficiency for each particle size. The life was 53 minutes in the example and 14 minutes in the comparative example, and the peelability was 99% in the example and 72% in the comparative example. It is probable that in Comparative Example 2, when the casing provided with the filter medium was bent, the tubular filter medium could not follow the case, causing a bending blockage, resulting in a decrease in filtration performance.
On the other hand, Example 2 was consistent with the result of Example 1, and no decrease in filtration performance was observed. This indicates that the flexible tubular filter medium of the present invention had a very small change in pore diameter even with bending deformation. This shows that the filter medium is small, does not bend and block, and has excellent particle releasability. As described above, the filtering efficiency of the flexible tubular filter of the present invention is more accurate than that of the conventional filter paper or non-woven filter, so that only the particles to be removed can be completely captured. It is possible, and even if it is used by bending the filter medium, it does not cause bending and closing due to the flexibility of the tubular filter medium, and has an excellent effect that stable filtration performance can be obtained against external force. By applying a force in the opposite direction, the filter medium pores are greatly opened, so that there is an excellent effect that separation and washing of particles can be instantaneously realized. Further, the flexible tubular filter medium of the present invention can be applied to gas as well as liquid.

【図面の簡単な説明】 【図1】管状濾材の断面図 【図2】可撓性支持体の例 【図3】可撓性支持体の例 【符号の説明】 1.組糸 2.螺旋状支持体[Brief description of the drawings] FIG. 1 is a cross-sectional view of a tubular filter medium. FIG. 2 shows an example of a flexible support. FIG. 3 shows an example of a flexible support. [Explanation of symbols] 1. Braid 2. Spiral support

───────────────────────────────────────────────────── フロントページの続き (72)発明者 神崎 裕 滋賀県大津市堅田二丁目1番1号 東洋紡 績株式会社総合研究所内 (72)発明者 柿田 裕次 滋賀県大津市堅田二丁目1番1号 東洋紡 績株式会社総合研究所内 (72)発明者 吉尾 慈洋 滋賀県大津市堅田二丁目1番1号 東洋紡 績株式会社総合研究所内 (72)発明者 小山 哲司 大阪市北区堂島浜二丁目2番8号 東洋紡 績株式会社本社内 (72)発明者 佐塚 守 大阪市北区堂島浜二丁目1番9号 東洋紡 エンジニアリング株式会社本社内 Fターム(参考) 4D019 AA03 BA02 BA03 BA04 BA13 BA17 BB02 BC20 BD10 CA03 CB06 4L046 AA03 AA24 BA00 BB00    ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Hiroshi Kanzaki             Toyobo, 2-1-1 Katata, Otsu City, Shiga Prefecture             Achievement Research Institute (72) Inventor Yuji Kakita             Toyobo, 2-1-1 Katata, Otsu City, Shiga Prefecture             Achievement Research Institute (72) Inventor Yoshihiro Yoshio             Toyobo, 2-1-1 Katata, Otsu City, Shiga Prefecture             Achievement Research Institute (72) Inventor Tetsuji Koyama             2-8-8 Dojimahama, Kita-ku, Osaka Toyobo             Achievement Co., Ltd. (72) Inventor Mamoru Satsuka             Toyobo, 2-9-1 Dojimahama, Kita-ku, Osaka-shi             Engineering Co., Ltd. F-term (reference) 4D019 AA03 BA02 BA03 BA04 BA13                       BA17 BB02 BC20 BD10 CA03                       CB06                 4L046 AA03 AA24 BA00 BB00

Claims (1)

【特許請求の範囲】 【請求項1】左右両方向かつ長手方向に沿って回転する
組糸で構成された丸打組物組織の管状濾材であって、管
状濾材内部に可撓性支持体が接触挿入されており、可撓
性支持体が管状濾材内壁に接触していることを特徴とす
る可撓性管状濾材。
Claims 1. A tubular filter medium having a braided knitted structure composed of a braid that rotates in both the left-right direction and the longitudinal direction, wherein a flexible support comes into contact with the inside of the tubular filter medium. A flexible tubular filter medium inserted, wherein the flexible support is in contact with the inner wall of the tubular filter medium.
JP2002138863A 2002-05-14 2002-05-14 Flexible tubular filter medium Pending JP2003326116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002138863A JP2003326116A (en) 2002-05-14 2002-05-14 Flexible tubular filter medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002138863A JP2003326116A (en) 2002-05-14 2002-05-14 Flexible tubular filter medium

Publications (1)

Publication Number Publication Date
JP2003326116A true JP2003326116A (en) 2003-11-18

Family

ID=29700198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002138863A Pending JP2003326116A (en) 2002-05-14 2002-05-14 Flexible tubular filter medium

Country Status (1)

Country Link
JP (1) JP2003326116A (en)

Similar Documents

Publication Publication Date Title
WO1990010487A1 (en) Flexible tubular filter medium
JP6050752B2 (en) Cartridge filter including combination of depth filter and submicron filter and RO pretreatment method
DE69205288T2 (en) FILTER FABRIC FOR HOT GASES FROM SEPARATE UNCRUSHED, AIRY FILLED YARNS.
KR970001434B1 (en) Filter element and assembly
JP7220235B2 (en) METHOD FOR MANUFACTURING NONWOVEN FABRIC WITH IMPROVED FILTRATION PERFORMANCE
US20050072725A1 (en) Inline water filter
JP2003326116A (en) Flexible tubular filter medium
JP5108347B2 (en) Flexible bowl-shaped resin pipe filter
JP2003326115A (en) Tubular filter medium
KR101774336B1 (en) Apparatus for treating sewage and wastewater using fiber filter media
JPH07727A (en) Flexible tubular filter medium
JP3201488B2 (en) Flexible tubular filter media
JP2508943B2 (en) Flexible tubular filter medium and method for producing the same
JP2004089766A (en) Ascending flow filtering method for suspension water and apparatus therefor
KR102457238B1 (en) Strainer for easily water washing
JP4430852B2 (en) Tubular filter medium and method for producing the same
JP3644812B2 (en) Cylindrical filter
KR102504266B1 (en) Screen for easily water washing
JPH04176313A (en) Flexible tubular filter medium
JP2004267813A (en) Cartridge type filter and manufacturing method therefor
JPH08299707A (en) Filter
JPH03284306A (en) Multilayer flexible tubular filter medium
KR101129612B1 (en) Sediment filter manufacturing method and sediment filter assembly thereof
CN209687577U (en) A kind of diesel engine unit exhaust gas filter net and processing unit
CN220318103U (en) Water inlet grid for reverse osmosis membrane element