JPH0427403A - Cartridge filter - Google Patents

Cartridge filter

Info

Publication number
JPH0427403A
JPH0427403A JP13009490A JP13009490A JPH0427403A JP H0427403 A JPH0427403 A JP H0427403A JP 13009490 A JP13009490 A JP 13009490A JP 13009490 A JP13009490 A JP 13009490A JP H0427403 A JPH0427403 A JP H0427403A
Authority
JP
Japan
Prior art keywords
layer
average pore
filter
pore diameter
filter medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13009490A
Other languages
Japanese (ja)
Inventor
Etsuro Nakao
悦郎 中尾
Hiroshi Tezuka
手塚 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP13009490A priority Critical patent/JPH0427403A/en
Publication of JPH0427403A publication Critical patent/JPH0427403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)

Abstract

PURPOSE:To enable efficient capture of particles having a wide particle size distribution in fluid, to nearly prevent blocking and to prolong service life by gradually increasing the average pore diameter of filter medium layers from the inner layer toward the outer layer. CONSTITUTION:When three or more filter medium layers are wound around a porous core to obtain a cartridge filter, the average pore diameter of the filter medium layers is gradually increased from the inner layer toward the outer layer and relation represented by an equation y=a(n+1)<2>+b (where (a) is 1/29-1/10, (b) is a constant of (1-4a) and error for (y) is + or -7%) is established between the number (n) of filter medium layers counted from the inside and the ratio (y) of the average pore diameter of the 1st layer to that of the n-th layer. Even in the case of fluid contg. particles having a wide particle size distribution, the particles can be captured in the order of decreasing particle size from the outer layer and high capturing efficiency is obtd.

Description

【発明の詳細な説明】 【産業上の利用分野] 本発明は複数のろ材層からなる多層型のカートリッジフ
ィルタに関し、とくにろ材層の平均孔径が内側の層から
外側の層へ大きくなるように勾配を有するカートリッジ
フィルタに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a multilayer cartridge filter consisting of a plurality of filter media layers, and in particular, the filter media layer has a gradient filter in which the average pore diameter of the filter media layer increases from the inner layer to the outer layer. The present invention relates to a cartridge filter having:

[従来の技術] 一般に、液体中のダストなどの粒子をろ過するフィルタ
として、多孔質コア材に糸、紐、紙、不織布、織物など
のろ材を巻回積層して多孔円筒状に成型したカートリッ
ジフィルタが使用されている。
[Prior Art] Generally, as a filter for filtering particles such as dust in a liquid, a cartridge is formed into a porous cylindrical shape by winding and laminating a filter material such as thread, string, paper, nonwoven fabric, or fabric around a porous core material. A filter is used.

従来、これらのカートリッジフィルタにおいては、使用
痔命を延ばすために、ろ材の密度に勾配を持たせること
などによって、液体の流入側である外側から内側へと孔
径を小さくすることが行われていた。すなわち、外側の
ろ材で大きな粒子を捕え、内側のろ材で小さな粒子を捕
えることによって、目詰りを防ぎ、使用寿命を延ばすこ
とが試みられていたのである。しかしながら、従来のカ
−トリッジフィルタには、平均孔径が極端に違うろ材を
組合せたものか、あるいは平均孔径が比例的に変化する
ものしかなく、前者は比較的大きな粒子が平均孔径の小
さなろ材へ到達してしまうため平均孔径の大きく変化す
る界面で目詰りが生じやすく、後者は逆に比較的小さな
粒子が外側で捕えられてしまうため外層で目詰りが生じ
やすく、いずれのカートリッジフィルタもその改善が望
まれていた。
Conventionally, in order to extend the service life of these cartridge filters, the pore diameter was made smaller from the outside, which is the liquid inflow side, to the inside, by creating a gradient in the density of the filter medium. . In other words, attempts were made to prevent clogging and extend the service life of filters by trapping large particles with the outer filter medium and trapping small particles with the inner filter medium. However, conventional cartridge filters only combine filter media with extremely different average pore diameters, or those in which the average pore diameter changes proportionally; in the former, relatively large particles are transferred to filter media with small average pore diameters. As a result, clogging tends to occur at the interface where the average pore size changes greatly, and in the latter case, relatively small particles are captured on the outside, which tends to cause clogging in the outer layer. was desired.

[発明が解決しようとする課題] 本発明は上記従来技術の欠点を解決すべくなされたもの
であり、液中に含まれる輻広い粒度分布を有する粒子を
効率よく捕集でき、しかも目詰りが生じに<<、使用寿
命の長いカートリッジフィルタを提供することを課題と
する。
[Problems to be Solved by the Invention] The present invention has been made to solve the above-mentioned drawbacks of the prior art, and is capable of efficiently collecting particles with a wide particle size distribution contained in a liquid, while preventing clogging. An object of the present invention is to provide a cartridge filter with a long service life.

[1N題を解決する手段1 すなわち、本発明は、多孔質コアに少なくとも3層以上
のろ材層が巻回積層されており、該ろ材層の平均孔径が
内側の層から外側の層へと順次大きくなっているカート
リッジフィルタにおいて、該ろ材層の内側から数えた層
の数nと、第1層と各層との平均孔径比率yとの間に、 y=a (n+1)”+1) (ただし、aは1/29〜1/10、b=1−4aの定
数で、yの誤差は±7%) の関係が成り立つようにした場合、驚くべきことに使用
寿命が飛躍的に延びることを見出してなされたものであ
る。
[Means for Solving the 1N Problem 1] That is, in the present invention, at least three or more filter media layers are wound and laminated around a porous core, and the average pore diameter of the filter media layers is sequentially arranged from the inner layer to the outer layer. In larger cartridge filters, between the number n of layers counted from the inside of the filter medium layer and the average pore diameter ratio y of the first layer and each layer, y=a (n+1)''+1) (however, Surprisingly, they found that if the following relationships were established (a is a constant of 1/29 to 1/10, b = 1-4a, and the error of y is ±7%), the service life could be dramatically extended. It was made by

本発明のカートリッジフィルタのろ材には、紙、不織布
、織物、繊維ウェブなどが使用されるが、ろ過性能に優
れ、平均孔径を比較的自由に変更できることから不織布
を用いることがとくに望ましい。不織布としてはとくに
限定されず、どのような不織布であっても使用できるが
、一般にバインダーによって繊維を結合した不織布は、
バインダーが処理液中に溶出して処理液を汚染するおそ
れがあるため、ノーバインダータイプの不織布を用いる
ことが望ましい。ノーバインダータイプの不織布として
は、メルトブロー法やフラッシュ紡糸法による不織布、
スパンボンド不縁布、繊維接着型不織布、水流結合不織
布、ニードルパンチ不織布などがある。また、ろ材の空
隙率は70〜93%の範囲にあるのがよく、これより空
隙率が小さいとる村内部にダストなどの粒子を保持でき
る容量が小さくなるため使用寿命が短くなるおそれがあ
り、一方、これより空隙率が大きくなると外圧により潰
れるおそれがある。
Paper, nonwoven fabric, woven fabric, fiber web, etc. are used as the filter medium of the cartridge filter of the present invention, but it is particularly desirable to use nonwoven fabric because it has excellent filtration performance and the average pore size can be changed relatively freely. The nonwoven fabric is not particularly limited and any nonwoven fabric can be used, but in general, nonwoven fabrics with fibers bound by a binder are
Since there is a risk that the binder may dissolve into the processing liquid and contaminate the processing liquid, it is desirable to use a binder-free nonwoven fabric. Binder-free nonwoven fabrics include nonwoven fabrics produced by melt blowing or flash spinning,
There are spunbond nonwoven fabrics, fiber bonded nonwoven fabrics, water flow bonded nonwoven fabrics, needle punched nonwoven fabrics, etc. In addition, the porosity of the filter medium is preferably in the range of 70 to 93%, and if the porosity is smaller than this, the capacity to hold particles such as dust will be smaller, which may shorten the service life. On the other hand, if the porosity is larger than this, there is a risk of collapse due to external pressure.

なお、ろ材に強度の低い材質を用いる場合には、巻回積
層する工程などにおいて破損するおそれがあるため、補
強材を積層してもよい。補強材としては、補強するろ材
より目の粗い、ネ・ソト、メツシュ、織物、編み物、不
織布、金網などが用いられる。補強材は実質的にろ材と
ともに積層されてろ材層を形成するが、本発明でろ材層
の平均孔径という場合は、補強材は無視し、ろ材のみか
ら求められる値をいう。
Note that if a material with low strength is used for the filter medium, there is a risk of damage during the winding and laminating process, so a reinforcing material may be laminated. As the reinforcing material, a cloth, mesh, woven fabric, knitted fabric, non-woven fabric, wire mesh, etc., which is coarser than the filter material to be reinforced, is used. The reinforcing material is substantially laminated together with the filter material to form the filter material layer, but in the present invention, when referring to the average pore diameter of the filter material layer, the reinforcing material is ignored and it refers to a value determined only from the filter material.

上記ろ材を、金属製、プラスチック製などの多孔性の筒
などからなる多孔性コアに巻回積層することによってろ
材層が形成される。本発明では、同じろ材からなる層あ
るいは平均孔径が同じろ材からなる層は1つのろ材層と
して数える。従って、1つのろ材層は複数の参回層から
形成されることが多く、通常、粒子の捕捉状態がら判断
して2〜4層の巻回数となる。
A filter medium layer is formed by winding and laminating the above filter medium around a porous core made of a porous tube made of metal, plastic, or the like. In the present invention, layers made of the same filter material or layers made of filter materials with the same average pore diameter are counted as one filter material layer. Therefore, one filter medium layer is often formed from a plurality of circulating layers, and the number of turns is usually 2 to 4 layers, depending on the state of particle capture.

本発明においては、上記ろ材層が多孔質コア材に3層以
上巻回積層されており、内側から数えた層の数nと、第
1層と各層との平均孔径比率yとの間に、 y=a  (n+1) i′+1) (ただし、aは1/29〜1/10、b=1−4aの定
数で、yの誤差は±7%) の関係が成り立つように、各ろ材層の平均孔径が調節さ
れる。
In the present invention, the filter medium layer is wound and laminated in three or more layers on a porous core material, and between the number n of layers counted from the inside and the average pore diameter ratio y of the first layer and each layer, y = a (n + 1) i' + 1) (However, a is a constant of 1/29 to 1/10, b = 1-4a, and the error of y is ±7%) Each filter medium layer is The average pore size of is adjusted.

各ろ材の平均孔径のiN整は、例えばる材が不織布であ
る場合には、繊維径、密度を変えることによって行われ
る。通常、繊維径を細くしていくと、より小さい孔を形
成することができるため平均孔径を小さくすることがで
き、また、密度を大きくしていっても平均孔径を小さく
することができる。
For example, when the material is a nonwoven fabric, the average pore diameter of each filter medium is adjusted by changing the fiber diameter and density. Normally, when the fiber diameter is made thinner, smaller pores can be formed, so the average pore size can be made smaller, and even when the density is increased, the average pore size can be made smaller.

密度の増減を主体とする平均孔径のli1節では、高い
空隙率を維持できない場合があるので、高い空隙率を維
持した状態で平均孔径を調整するためにはIm&1径に
よるwRji5を行うのが望ましい。
In the li1 node of the average pore diameter, which mainly changes density, it may not be possible to maintain a high porosity, so in order to adjust the average pore diameter while maintaining a high porosity, it is desirable to perform wRji5 with Im & 1 diameter. .

上式においてaの値が1710である場合に得られる2
次曲線よりも大きい平均孔径比率のろ材層を外層に有す
る場合、すなわち、最内層のろ材層の平均孔径に対して
外側の層の平均孔径が上式の関係より大きい場合、外側
のろ材層において比較的大きな粒子が十分に捕集されず
、内側のろ材層の目詰りが速くなる。反対に、上式にお
いてaの値が1129である場合に得られる2次曲線よ
りも小さい平均孔径比率のろ材層を有する場合、すなわ
ち、最内層のろ材層の平均孔径に対して外側の層の平均
孔径が上式の関係より小さい場合、外側のろ材層におい
て比較的小さな粒子まで捕集されてしまうため、外側の
ろ材層の目詰りが速くなる。
2 obtained when the value of a is 1710 in the above formula
When the outer layer has a filter medium layer with an average pore diameter ratio larger than the following curve, that is, when the average pore diameter of the outer layer is larger than the relationship shown in the above equation with respect to the average pore diameter of the innermost filter layer, the outer filter layer Relatively large particles are not collected sufficiently, and the inner filter layer becomes clogged quickly. On the other hand, if the filter layer has an average pore diameter ratio smaller than the quadratic curve obtained when the value of a is 1129 in the above equation, that is, the average pore diameter of the outer layer is smaller than the average pore diameter of the innermost filter layer. If the average pore diameter is smaller than the relationship expressed by the above equation, even relatively small particles will be collected in the outer filter layer, resulting in faster clogging of the outer filter layer.

また、aの値が1710である場合に得られる2次曲線
と、1/29である場合に得られる2次曲綿とに挟まれ
る領域に、平均孔径比率が存在するものであっても、そ
の増加の仕方が例えば1次曲線(直U)にのろように緩
やかなものでは、捕集する粒子の分布が広いと外層部に
目詰りが生じやすく、逆に3次曲線にのろように急激な
ものでは、最内層部に目詰りが生じやすい。
Furthermore, even if the average pore diameter ratio exists in the region sandwiched between the quadratic curve obtained when the value of a is 1710 and the quadratic curve obtained when the value of a is 1/29, For example, if the increase is gradual along a linear curve (straight U), if the distribution of particles to be collected is wide, clogging tends to occur in the outer layer; If the temperature is too rapid, the innermost layer is likely to become clogged.

なお、b=1−4aは、第1層目(n=1)の平均孔径
比率yが、第1層目の平均孔径/第1層目の平均孔径=
1であることから、これを上式に代入することによって
求められたものである。
In addition, b=1-4a means that the average pore diameter ratio y of the first layer (n=1) is the average pore diameter of the first layer/average pore diameter of the first layer=
Since it is 1, it was found by substituting this into the above equation.

本発明のカートリッジフィルタは平均孔径比率yが上式
を満たす場合に最もその効果を発揮すると思われるが、
平均孔径比率が完全に上式で表される2次曲線にのって
いなくても、その近傍にあれば十分な効果が期待でき、
また、現実に平均孔径を完全にコントロールすることは
困難であるので、yの値には±7%、望ましくは±5%
程度の誤差があってもよい。ただし、この誤差範囲を超
える場合には本発明の効果は期待できなくなる。
The cartridge filter of the present invention is considered to be most effective when the average pore diameter ratio y satisfies the above formula, but
Even if the average pore size ratio does not completely fall on the quadratic curve expressed by the above equation, a sufficient effect can be expected if it is close to it.
In addition, since it is difficult to completely control the average pore diameter in reality, the value of y should be ±7%, preferably ±5%.
There may be some degree of error. However, if this error range is exceeded, the effects of the present invention cannot be expected.

なお、本発明における不織布の平均孔径は、JIS−B
−83569,10ろ過粒度の試験方法に準じて測定し
た。ただし、上記JISで使用している軽油に代えて、
 JIS−に−8839のイソプロピルアルコールを使
用した。また、不織布はシート状で測定し、このため試
験装置も空気流入口と流出口を設けた円筒容器の上部流
出口に不織布の取付は部を設け、その不織布上にイソプ
ロピルアルコールを入れることができる構造とし、空気
流量が50cc/分の時に、不織布上にイソプロピルア
ルコールを滴下して、イソプロピルアルコールを不織布
上の空間に貯めて試験を行った。試験は、各空気流量に
おける空気圧を測定してグラフを描き、そのグラフがら
JIS−B−83589,10ろ過粒度の試験方法に示
される方法で所定の空気圧を求め、計算式によって平均
孔径を真出した。
Note that the average pore diameter of the nonwoven fabric in the present invention is determined according to JIS-B
Measured according to the test method for -83569, 10 filtration particle size. However, instead of the light oil used in the above JIS,
JIS-8839 isopropyl alcohol was used. In addition, the nonwoven fabric is measured in sheet form, so the test equipment also has a section for attaching the nonwoven fabric to the upper outlet of a cylindrical container with an air inlet and an air outlet, and isopropyl alcohol can be poured onto the nonwoven fabric. A test was conducted by dropping isopropyl alcohol onto the nonwoven fabric and storing the isopropyl alcohol in the space above the nonwoven fabric when the air flow rate was 50 cc/min. In the test, the air pressure at each air flow rate is measured, a graph is drawn, the specified air pressure is determined from the graph using the method shown in JIS-B-83589, 10 filtration particle size test method, and the average pore diameter is calculated using a calculation formula. did.

[実施例〕 メルトブロー法によフて作製された目付Bog/m’、
空隙率85〜90%で、第1表(実施例)及び第2表(
比較例)に示すように平均孔径が異なる5#1類の不織
布を、プラスチック製多孔円筒に平均孔径の小さいもの
から順に各々4周ずつ巻回積層して、多層(5層)型カ
ートリッジフィルタを作製した・第1表 第2表 なお、各実施例及び比較例のろ材層の内側から数えた層
の数nと、第1層と各層との平均孔径比率yとの間に成
り立つ関係式は、 実施例1 :y=1/11(n+1) ”+7/11(
yの誤差は−0,1%〜+3.4%)実施例2:y=1
/12(n+1)”+8/12実施例3: 実施例4: 実施例5: 実施例6: 比較例1: 比較例2: 比較例3: 比較例4: 比較例5: (yの誤差は−0,8%〜+0.9%)V = 1/1
B (n + 1 ) ”+ 12716(yの誤差は
−2,7%〜十〇%) V = 1/20 (n +1 )  ”+16/20
(yの誤差は−0,4%〜+2.9%)y=1/24(
n+1)’+20/24(yの誤差は−1,5%〜+1
.4%)y=1/28(n+ 1 )”+24/28(
yの誤差は−2,7%〜+0.7%)y=1/2(n+
1) (yの誤差は±0%) y=1/3(n+2) (yの誤差は−2,5%〜+3.3%)y=1/6(n
+1)”+2/6 (yの誤差は−1,8%〜十〇%) y=1/9(n+1)”+579 (3・の誤差は−1,4%〜+2.3%)y=1/30
(n+1)  ”+28/30(yの誤差は−5,1%
〜十〇%) であった。
[Example] Fabric weight Bog/m' produced by melt blowing method,
With a porosity of 85 to 90%, Table 1 (Example) and Table 2 (
As shown in Comparative Example), 5 #1 type nonwoven fabrics with different average pore diameters were wound around a plastic porous cylinder four times each in order from the smallest average pore diameter to form a multilayer (5-layer) type cartridge filter. Table 1 Table 2 The relational expression between the number n of layers counted from the inside of the filter media layer of each example and comparative example and the average pore diameter ratio y of the first layer and each layer is as follows. , Example 1: y=1/11(n+1)''+7/11(
y error is -0.1% to +3.4%) Example 2: y=1
/12(n+1)"+8/12 Example 3: Example 4: Example 5: Example 6: Comparative example 1: Comparative example 2: Comparative example 3: Comparative example 4: Comparative example 5: (The error in y is -0.8% to +0.9%) V = 1/1
B (n + 1) ” + 12716 (y error is -2.7% to 10%) V = 1/20 (n + 1) ” + 16/20
(The error in y is -0.4% to +2.9%) y = 1/24 (
n+1)'+20/24 (y error is -1.5% to +1
.. 4%)y=1/28(n+1)”+24/28(
The error of y is -2.7% to +0.7%)y=1/2(n+
1) (y error is ±0%) y=1/3(n+2) (y error is -2.5% to +3.3%) y=1/6(n
+1)"+2/6 (Error of y is -1.8% to 10%) y=1/9(n+1)"+579 (Error of 3. is -1.4% to +2.3%) y= 1/30
(n+1) ”+28/30 (y error is -5.1%
~100%).

得られたカートリッジフィルタの捕集効率とろ過寿命と
を以下の方法で測定して第3表に示した。
The collection efficiency and filtration life of the obtained cartridge filter were measured by the following method and are shown in Table 3.

(捕集効率) JIS8種の塵埃を分散した濃度5 ppmの水を処理
液としてカートリッジフィルタに通し、108mの粒子
のフィルタ通過前後の数をパーティクルカウンターを用
いて測定し、計算によって捕集効率を求めた。
(Collection efficiency) Water with a concentration of 5 ppm in which JIS 8 types of dust was dispersed was passed through a cartridge filter as a treatment liquid, and the number of 108 m particles before and after passing through the filter was measured using a particle counter, and the collection efficiency was determined by calculation. I asked for it.

(ろ過寿命) JI58種の塵埃を分散した濃度10ppmの水をカー
トリッジフィルタに通して圧力損失を測定し、初期圧力
損失との差圧が2.0kg/cm’になるまでに処理さ
れた総ろ過量を測定し、これをろ過寿命とした。
(Filtration life) Water with a concentration of 10 ppm in which JI 58 types of dust is dispersed is passed through a cartridge filter, the pressure loss is measured, and the total filtration is processed until the differential pressure from the initial pressure loss reaches 2.0 kg/cm'. The amount was measured and defined as the filtration life.

E以下余白] 第3表 実施例1〜6に示されるように、ろ材層の内側から数え
た層の数nと、第1層と各層との平均孔径比1−yとの
間に成り立つ関係式が、y=a(n+1)”+l)であ
って、a = 1/29〜1/10、b=1−4aのと
きに、使用寿命は大幅に長くなる。
Margins below E] As shown in Table 3 Examples 1 to 6, the relationship between the number n of layers counted from the inside of the filter medium layer and the average pore diameter ratio 1-y of the first layer and each layer When the formula is y=a(n+1)''+l), a=1/29 to 1/10, and b=1-4a, the service life becomes significantly longer.

一方、aの値がこれより大きな比較例3.4(a = 
1/6.1/9)やこれより小さな比較例5(a= 1
/30)では急激に使用寿命が短くなることがわかる。
On the other hand, Comparative Example 3.4 where the value of a is larger than this (a =
1/6.1/9) and smaller Comparative Example 5 (a = 1
/30), it can be seen that the service life is rapidly shortened.

また、比較例1.2のように、yとnとの関係が1次関
数となっているものは、例えyの値が、n=5、V =
1/29 (n + 1 ) ”+25/29、y =
 1/10(n + 1 ) ”+8710の曲線に囲
まれる領域にあったとしても、使用寿命が短くなること
がわかる。
In addition, as in Comparative Example 1.2, where the relationship between y and n is a linear function, even if the value of y is n = 5, V =
1/29 (n + 1) ”+25/29, y =
It can be seen that even if it is in the region surrounded by the curve 1/10(n+1)''+8710, the service life is shortened.

[発明、の効果] 本発明のカートリッジフィルタは上記のような構成から
なるので、幅広い粒度分布を持つ粒子を含む液であって
も、外層から内層へと順次大きな粒子から小さい粒子へ
と捕集していくことができるため高い捕集効率が得られ
る。また、本発明のカートリッジフィルタでは各ろ材層
の平均孔径の変化が上記特定の関係となっているので、
粒子の捕集が外層に偏ったり、内層に偏ったりすること
なく、各層において一様に捕集が行われるため目詰りが
生じに<<、飛躍的に使用寿命を延ばすことができる。
[Effects of the Invention] Since the cartridge filter of the present invention has the above-described configuration, even if the liquid contains particles with a wide particle size distribution, it can collect particles from large particles to small particles in order from the outer layer to the inner layer. This allows high collection efficiency to be obtained. In addition, in the cartridge filter of the present invention, since the change in the average pore diameter of each filter medium layer has the above-mentioned specific relationship,
Particles are collected uniformly in each layer without being biased toward the outer layer or the inner layer, which prevents clogging and significantly extends the service life.

以上のように本発明のカートリッジフィルタは、幅広い
粒度分布を持つ粒子を含む液であっても、目詰りするこ
となく効率よくろ過でき、使用寿命が長い有用なもので
ある。
As described above, the cartridge filter of the present invention is useful because it can efficiently filter liquids containing particles with a wide particle size distribution without clogging and has a long service life.

Claims (3)

【特許請求の範囲】[Claims] (1)多孔質コアに少なくとも3層以上のろ材層が巻回
積層されており、該ろ材層の平均孔径が内側の層から外
側の層へと順次大きくなつているカートリッジフィルタ
において、該ろ材層の内側から数えた層の数nと、第1
層と各層との平均孔径比率yとの間に、 y=a(n+1)^2+b (ただし、aは1/29〜1/10、b=1−4aの定
数で、yの誤差は±7%) の関係が成り立つことを特徴とするカートリッジフィル
タ。
(1) In a cartridge filter in which at least three or more filter media layers are wound and laminated around a porous core, and the average pore diameter of the filter media layers increases from the inner layer to the outer layer, the filter media layer The number n of layers counted from the inside of
Between the average pore diameter ratio y of the layer and each layer, y=a(n+1)^2+b (However, a is a constant of 1/29 to 1/10, b=1-4a, and the error of y is ±7 %) holds true.
(2)各ろ材層の平均孔径が0.5〜500μmである
請求項1に記載のカートリッジフィルタ。
(2) The cartridge filter according to claim 1, wherein each filter medium layer has an average pore diameter of 0.5 to 500 μm.
(3)各ろ材層の空隙率が70〜93%である請求項1
または2に記載のカートリッジフィルタ。
(3) Claim 1, wherein the porosity of each filter medium layer is 70 to 93%.
Or the cartridge filter described in 2.
JP13009490A 1990-05-18 1990-05-18 Cartridge filter Pending JPH0427403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13009490A JPH0427403A (en) 1990-05-18 1990-05-18 Cartridge filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13009490A JPH0427403A (en) 1990-05-18 1990-05-18 Cartridge filter

Publications (1)

Publication Number Publication Date
JPH0427403A true JPH0427403A (en) 1992-01-30

Family

ID=15025819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13009490A Pending JPH0427403A (en) 1990-05-18 1990-05-18 Cartridge filter

Country Status (1)

Country Link
JP (1) JPH0427403A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222813A (en) * 2006-02-24 2007-09-06 Japan Vilene Co Ltd Cylindrical filter
WO2008032388A1 (en) * 2006-09-14 2008-03-20 Dynic Corporation Air filter material
JP2011104471A (en) * 2009-11-13 2011-06-02 Three M Innovative Properties Co Tubular liquid-treating filter, method for capturing and removing oil content in liquid, method for producing beverage liquid, and method for measuring oil gram life of tubular filter
JP2013236986A (en) * 2012-05-11 2013-11-28 Daiwabo Holdings Co Ltd Cylindrical filter
JP2015093259A (en) * 2013-11-13 2015-05-18 ダイワボウホールディングス株式会社 Cylindrical filter
JP2016521195A (en) * 2013-03-15 2016-07-21 パイロテック インコーポレイテッド Ceramic filter

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007222813A (en) * 2006-02-24 2007-09-06 Japan Vilene Co Ltd Cylindrical filter
WO2008032388A1 (en) * 2006-09-14 2008-03-20 Dynic Corporation Air filter material
US7968176B2 (en) 2006-09-14 2011-06-28 Dynic Corporation Air filter material
JP2011104471A (en) * 2009-11-13 2011-06-02 Three M Innovative Properties Co Tubular liquid-treating filter, method for capturing and removing oil content in liquid, method for producing beverage liquid, and method for measuring oil gram life of tubular filter
JP2013236986A (en) * 2012-05-11 2013-11-28 Daiwabo Holdings Co Ltd Cylindrical filter
JP2016521195A (en) * 2013-03-15 2016-07-21 パイロテック インコーポレイテッド Ceramic filter
JP2015093259A (en) * 2013-11-13 2015-05-18 ダイワボウホールディングス株式会社 Cylindrical filter

Similar Documents

Publication Publication Date Title
US4863602A (en) Flexible filter element employing filtering sheets formed with bypass openings
US4048075A (en) Filter cartridge
US4073732A (en) Media for filtering blood
US3276597A (en) Filter media
JP5252924B2 (en) Filtration media for filtering particulate matter from gas streams
JPH07213814A (en) Filter cartridge structure
EP2618908B1 (en) Cartridge filter combining a depth filter and a sub-micron filter, and reverse osmosis pre-treatment method
JP4236284B2 (en) Cylindrical filter
JP5823205B2 (en) Cartridge filter
WO2018021426A1 (en) Backflushable depth filter
JPH0427403A (en) Cartridge filter
JP2791775B2 (en) Nonwoven fabric wound type cartridge filter
JP5836190B2 (en) Cylindrical filter
JP5836191B2 (en) Cylindrical filter
JP3644812B2 (en) Cylindrical filter
JP2012166122A (en) Cylindrical filter element and filtration device including the same
JPH03278810A (en) Cartridge filter
JP3431086B2 (en) Filter cartridge and filtration method
JP2014159033A (en) Liquid filter with high separability
JP3373877B2 (en) Nonwoven fabric having pore diameter gradient and method for producing the same
JP2531486B2 (en) Filter medium for treating waste liquid in which inorganic particles are dispersed
JP2561791Y2 (en) Multi-layer filtration tube
JPH0618567Y2 (en) Cartridge filter
JP2004267813A (en) Cartridge type filter and manufacturing method therefor
JPH0518614U (en) Cartridge Filter