JPH0772213B2 - Method for producing methacrylic resin - Google Patents

Method for producing methacrylic resin

Info

Publication number
JPH0772213B2
JPH0772213B2 JP5210113A JP21011393A JPH0772213B2 JP H0772213 B2 JPH0772213 B2 JP H0772213B2 JP 5210113 A JP5210113 A JP 5210113A JP 21011393 A JP21011393 A JP 21011393A JP H0772213 B2 JPH0772213 B2 JP H0772213B2
Authority
JP
Japan
Prior art keywords
monomer
less
weight
methyl methacrylate
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5210113A
Other languages
Japanese (ja)
Other versions
JPH06239938A (en
Inventor
勝昭 前田
郁二 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP5210113A priority Critical patent/JPH0772213B2/en
Publication of JPH06239938A publication Critical patent/JPH06239938A/en
Publication of JPH0772213B2 publication Critical patent/JPH0772213B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はメタクリル系樹脂の製造
方法に関するものである。さらに詳しくいえば、本発明
は、特にレンズ、光ディスク、光繊維などの光学分野に
おいて好適に用いられる、分子の均質性に優れ、かつ光
学純度が高く、無色透明なメタクリル系樹脂の製造方法
に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for producing a methacrylic resin. More specifically, the present invention relates to a method for producing a colorless and transparent methacrylic resin, which has excellent molecular homogeneity and high optical purity, which is preferably used in the optical field of lenses, optical disks, optical fibers and the like. Is.

【0002】[0002]

【従来の技術】メタクリル系樹脂はその卓越した透明
性、良好な機械的性質、加工性並びに成形品における外
観の美麗さなどによって、例えば照明器具、看板、各種
装飾品及び銘板などに広く用いられているほか、自動車
部品、テーブルウエアーなどにも用いられている。
BACKGROUND OF THE INVENTION Methacrylic resins are widely used in, for example, lighting fixtures, signboards, various ornaments and nameplates because of their excellent transparency, good mechanical properties, processability, and beautiful appearance of molded products. Besides, it is also used for automobile parts and tableware.

【0003】ところで、このメタクリル系樹脂は、最近
レンズ、光ディスク、光繊維などの光学分野に用いられ
はじめており、そのため、前記特性に加えて、光学純度
の向上のため例えば微小異物の低減、残存モノマーなど
の揮発成分の低減、高分子量ゲルの極小化などが要求さ
れている。
By the way, recently, this methacrylic resin has begun to be used in optical fields such as lenses, optical disks, and optical fibers. Therefore, in addition to the above-mentioned characteristics, in order to improve optical purity, for example, reduction of minute foreign matters, residual monomer, etc. There is a demand for reduction of volatile components such as, and minimization of high molecular weight gel.

【0004】従来、メタクリル系樹脂は成形材料とし
て、通常メタクリル酸メチル又はこれと共重合可能な成
分とを水懸濁法又は水性エマルジョン法により重合する
ことによって製造されている。しかしながら、このよう
な方法によって得られるメタクリル系樹脂は、不純物、
重合助剤、異物などの混入は避けられず、さらにはペレ
ット化工程において、ヤケやコゲなどが発生しやすく、
必ずしも光学純度に優れているとはいえず、その上、分
子的に不均質であるため、その成形品にくもりやにごり
が発生するなどの欠点を有している。
Conventionally, a methacrylic resin has been produced as a molding material by polymerizing methyl methacrylate or a component copolymerizable therewith by an aqueous suspension method or an aqueous emulsion method. However, the methacrylic resin obtained by such a method contains impurities,
Mixing of polymerization aids and foreign substances is unavoidable, and further, burns and kogation are likely to occur in the pelletizing process,
It cannot be said that it is necessarily excellent in optical purity, and in addition, since it is molecularly inhomogeneous, it has drawbacks such as cloudiness or turbidity occurring in the molded product.

【0005】そこで、このような欠点を改良する方法と
して、例えば連続塊状重合法(連続バルク重合法)や連
続溶液重合法が試みられたが、これまで連続重合法によ
って得られたメタクリル系樹脂は、分子の均質性につい
ては改善されているとしても光学純度の向上については
必ずしも満足しうる結果が得られていなかった。
Therefore, as a method for improving such a defect, for example, a continuous bulk polymerization method (continuous bulk polymerization method) or a continuous solution polymerization method has been tried. However, the methacrylic resin obtained by the continuous polymerization method has hitherto been used. However, even if the homogeneity of the molecule is improved, satisfactory results have not always been obtained for the improvement of optical purity.

【0006】ところで、塊状重合や溶液重合によって製
造した反応組成物から、未反応単量体、溶剤、副生成物
などの揮発成分を除去して純度の高い成形材料とする方
法は、これまで主としてスチレン系樹脂を中心に検討が
進められており(特公昭35−8557号公報、同38
−120号公報、同44−20097号公報、同45−
31678号公報、特開昭47−27872号公報な
ど)、メタクリル系樹脂については、わずかに2、3が
知られているにすぎない(特公昭52−17555号公
報、特開昭50−88197号公報など)。しかしなが
ら、これらのメタクリル系樹脂についての方法において
は、得られた樹脂が高温長時間滞留による劣化や着色が
著しい上に、副反応生成物が多いなどの問題があり、光
学純度に優れたものは得られない。
By the way, a method of removing volatile components such as unreacted monomers, solvents and by-products from a reaction composition produced by bulk polymerization or solution polymerization to obtain a highly pure molding material has hitherto been mainly used. Studies are proceeding mainly on styrene-based resins (Japanese Patent Publication No. 35-8557 and No. 38, 38).
-120 gazette, the same 44-20097 gazette, the same 45-
No. 31678, No. 47-27872, etc.) and a few methacrylic resins are known (Japanese Patent Publication No. 52-17555 and No. 50-88197). Gazette). However, in the methods for these methacrylic resins, there is a problem that the obtained resin is significantly deteriorated and colored due to long-term residence at high temperature, and there are many side reaction products. I can't get it.

【0007】[0007]

【発明が解決しようとする課題】本発明者らは、先に光
学純度に優れたメタクリル系樹脂光ファイバーの製造法
を見出したが、この方法は揮発成分の低減及び黄色性の
改良については、必ずしも満足しうるものではなかっ
た。
The present inventors have previously found a method for producing a methacrylic resin optical fiber having excellent optical purity. However, this method does not always reduce volatile components and improve yellowness. It wasn't satisfactory.

【0008】本発明の目的は、このような事情のもと
で、分子の均質性に優れ、かつ微小異物や揮発成分、高
分子量ゲルなどが少なくて光学純度が高く、無色透明な
優れたメタクリル系樹脂を製造する方法を提供すること
にある。
Under these circumstances, the object of the present invention is to provide an excellent methacrylic compound which is excellent in the homogeneity of molecules, has a small amount of fine foreign matters, volatile components, high molecular weight gels, etc., and has a high optical purity, and is colorless and transparent. It is to provide a method for producing a resin.

【0009】[0009]

【課題を解決するための手段】本発明者らは分子の均質
性及び光学純度に優れたメタクリル系樹脂を開発すべく
鋭意研究を重ねた結果、特定組成の単量体溶液を特定の
手段により処理して、該溶液中の溶存酸素量を1ppm
以下にし、かつ微小異物を取り除いたのち、この単量体
溶液を反応帯域に連続的に供給し、該反応帯域中の重合
体濃度が所定の値になるように重合を行い、次いで得ら
れた反応組成物を特定の条件で加熱処理して、揮発成分
を除去することにより、その目的を達成しうることを見
出し、この知見に基づいて本発明を完成するに至った。
Means for Solving the Problems As a result of intensive studies to develop a methacrylic resin having excellent molecular homogeneity and optical purity, the present inventors have found that a monomer solution having a specific composition can be obtained by a specific means. Treatment to reduce the amount of dissolved oxygen in the solution to 1 ppm
After the following, and after removing the fine foreign matter, this monomer solution was continuously supplied to the reaction zone, polymerization was carried out so that the polymer concentration in the reaction zone was a predetermined value, and then obtained It was found that the object can be achieved by heating the reaction composition under a specific condition to remove volatile components, and the present invention has been completed based on this finding.

【0010】すなわち、本発明は、遊離基発生触媒と連
鎖移動触媒の存在下、メタクリル酸メチル単量体単独あ
るいはメタクリル酸メチル85重量%以上とアクリル酸
メチル又はアクリル酸エチル15重量%以下との単量体
混合物、及び全反応混合物の重量に基づき10〜25重
量%の不活性重合溶媒から成る単量体溶液に、不活性ガ
スを導入して該溶液中の溶存酸素量を1ppm以下にし
たのち、この溶液を0.5μ以下のフィルターでろ過
後、反応帯域に連続的に供給して、単量体の重合転化率
が40〜65%の範囲内で実質的に一定になるように、
120〜160℃の温度において重合を行い、次いで得
られた反応組成物を200〜290℃の温度に加熱して
減圧帯域に導入し、脱揮することを特徴とする、GPC
で測定した分子量(Mw)が7万〜15万、熱分解指数
が3.0以下、微粒子カウンターで測定した0.5〜2
5μの微小異物が1万個/gポリマー以下及び色差計で
測定したΔYIが6.00以下である、メタクリル酸メ
チル単独重合体又はメタクリル酸メチル共重合体の製造
方法を提供するものである。
That is, in the present invention, methyl methacrylate monomer alone or 85% by weight or more of methyl methacrylate and 15% by weight or less of methyl acrylate or ethyl acrylate are used in the presence of a free radical generating catalyst and a chain transfer catalyst. An inert gas was introduced into a monomer solution composed of the monomer mixture and 10 to 25% by weight based on the weight of the entire reaction mixture of an inert polymerization solvent to reduce the amount of dissolved oxygen in the solution to 1 ppm or less. Then, this solution is filtered through a filter of 0.5 μm or less, and then continuously fed to the reaction zone so that the polymerization conversion rate of the monomer becomes substantially constant within the range of 40 to 65%.
GPC, characterized in that polymerization is carried out at a temperature of 120 to 160 ° C., then the obtained reaction composition is heated to a temperature of 200 to 290 ° C., introduced into a reduced pressure zone, and devolatilized.
The molecular weight (Mw) measured by 70,000 to 150,000, the thermal decomposition index is 3.0 or less, and 0.5 to 2 measured by a fine particle counter.
It is intended to provide a method for producing a methyl methacrylate homopolymer or a methyl methacrylate copolymer having 5 μm of minute foreign matters of 10,000 / g polymer or less and ΔYI of 6.00 or less measured by a color difference meter.

【0011】以下、本発明をさらに詳細に説明する。本
発明方法により得られるメタクリル系樹脂は、メタクリ
ル酸メチル単独重合体あるいは15重量%以下のアクリ
ル酸メチル単位又はアクリル酸エチル単位を含有するメ
タクリル酸メチル共重合体であるが、好ましいものは、
メタクリル酸メチル単位88〜99重量%とアクリル酸
メチル単位又はアクリル酸エチル単位12〜1重量%と
を含有するメタクリル酸メチル共重合体である。この共
重合体においては、メタクリル酸メチル単位とアクリル
酸メチル単位若しくはアクリル酸エチル単位とはランダ
ムな結合で構成されており、該メタクリル酸メチル単位
は、耐熱性や機械強度特性を向上させるものであり、一
方、アクリル酸メチル単位やアクリル酸エチル単位は、
この樹脂の成形加工時の流動性及び熱分解性を向上させ
るものである。
The present invention will be described in more detail below. The methacrylic resin obtained by the method of the present invention is a methyl methacrylate homopolymer or a methyl methacrylate copolymer containing 15% by weight or less of methyl acrylate units or ethyl acrylate units.
It is a methyl methacrylate copolymer containing 88 to 99% by weight of a methyl methacrylate unit and 12 to 1% by weight of a methyl acrylate unit or an ethyl acrylate unit. In this copolymer, the methyl methacrylate unit and the methyl acrylate unit or the ethyl acrylate unit are composed of random bonds, and the methyl methacrylate unit improves heat resistance and mechanical strength properties. Yes, on the other hand, methyl acrylate units and ethyl acrylate units are
It is intended to improve the fluidity and thermal decomposability of this resin during molding.

【0012】このメタクリル酸メチル単独重合体又は共
重合体は、GPC(ゲルパーミエーションクロマトグラ
フィー)法で測定した重量平均分子量(Mw)が7万〜
15万、好ましくは8万〜12万の範囲にあることが必
要である。この分子量が7万未満のものでは、その成形
品は脆弱で工業的使用に耐えないし、一方、15万を超
えるものでは、溶融時の流動性が著しく低下し、成形品
の複屈折が増大して好ましくない。
This methyl methacrylate homopolymer or copolymer has a weight average molecular weight (Mw) of 70,000 to GPC (gel permeation chromatography).
It must be in the range of 150,000, preferably 80,000 to 120,000. If the molecular weight is less than 70,000, the molded product is fragile and cannot withstand industrial use. On the other hand, if it has a molecular weight of more than 150,000, the fluidity at the time of melting is significantly lowered and the birefringence of the molded product is increased. Is not preferable.

【0013】また、樹脂中の揮発成分含有量は、重合副
生物のダイマーが好ましくは1000ppm以下、及び
未反応単量体や熱分解生成単量体などの残存単量体が好
ましくは2500ppm以下であることが必要である。
該ダイマー含有量が1000ppmを超えると得られる
成形品の耐熱変形性が低下し、実用使用範囲が狭くなり
好ましくない。また、残存単量体が2500ppmを超
えると高温で成形加工する場合、得られる成形品の表面
に銀条(シルバーストリーク)が発生するなど、該表面
が損なわれ、実用に耐えなくなる。この単量体やダイマ
ーは、一般に重合体を溶融状態で減圧処理して除去する
場合、その蒸気圧が比較的高いために除去が困難であ
り、さらに加熱溶融することにより、メタクリル系樹脂
が熱分解して単量体を生成するという好ましくない傾向
があるが、この樹脂は、該揮発成分を前記の範囲に低減
するのが好ましい。このような樹脂においては、樹脂中
のダイマー及び残存単量体の含有量は、通常それぞれ1
0〜1000ppm及び500〜2500ppmの範囲
にある。
The content of volatile components in the resin is preferably 1000 ppm or less for dimers of polymerization by-products, and 2500 ppm or less for residual monomers such as unreacted monomers and thermal decomposition products. It is necessary to be.
If the content of the dimer exceeds 1000 ppm, the heat-deformation resistance of the obtained molded article is lowered, and the practical use range is narrowed, which is not preferable. Further, when the residual monomer content exceeds 2500 ppm, when molding is carried out at a high temperature, the surface of the obtained molded product is damaged, such as the occurrence of silver streaks, which makes it impractical. This monomer or dimer is generally difficult to remove because the vapor pressure is relatively high when the polymer is removed by decompression treatment in a molten state. Although there is an unfavorable tendency to decompose to form a monomer, this resin preferably reduces the volatile components to the above range. In such a resin, the content of dimer and residual monomer in the resin is usually 1
It is in the range of 0 to 1000 ppm and 500 to 2500 ppm.

【0014】さらに、本発明方法により得られる樹脂の
耐熱分解性については、熱分解指数αで3.0以下であ
ることが必要である。この値が3.0を超えると耐熱分
解性に劣るようになり、高温射出成形時にガス発生が激
しく、樹脂の用途範囲が著しく制限されるのを免れない
という問題が生じる。特に、ディスク円盤に用いる場合
には、発生したガスによって記録信号の転写が阻害され
ディスクの品質を著しく低下させ好ましくない。
Further, regarding the thermal decomposition resistance of the resin obtained by the method of the present invention, it is necessary that the thermal decomposition index α is 3.0 or less. If this value exceeds 3.0, the thermal decomposition resistance becomes inferior, gas is generated strongly during high temperature injection molding, and there is a problem that the application range of the resin is unavoidably limited. In particular, when it is used for a disc, it is not preferable because the generated gas hinders the transfer of the recording signal and remarkably deteriorates the quality of the disc.

【0015】本発明方法により得られる樹脂中の微小異
物の含有量については、微粒子カウンターで測定した
0.5〜25μの微小異物が1万個/gポリマー以下で
あることが必要であり、1万個/gポリマーを超える場
合には、光の透過損失が大きくなり使用に耐えない。
Regarding the content of fine foreign matter in the resin obtained by the method of the present invention, it is necessary that the fine foreign matter of 0.5 to 25 μm measured by a fine particle counter is 10,000 or less / g polymer. If it exceeds 10,000 units / g polymer, the transmission loss of light becomes large and it cannot be used.

【0016】また、本発明方法により得られる樹脂は無
色透明性に優れたものであり、色差計で測定したΔYI
(空気を基準にしたイエローインデックス)が6.0以
下である。この値が6.0を超えると樹脂の黄色性が強
まり、光線透過率が著しく低下する。
The resin obtained by the method of the present invention is excellent in colorless transparency and has a ΔYI measured by a color difference meter.
(Yellow index based on air) is 6.0 or less. If this value exceeds 6.0, the yellowness of the resin will be increased and the light transmittance will be significantly reduced.

【0017】本発明方法の好適な実施態様においては、
まず遊離基発生触媒と連鎖移動触媒の存在下、メタクリ
ル酸メチル単量体単独あるいはメタクリル酸メチル85
重量%以上とアクリル酸メチル又はアクリル酸エチル1
5重量%以下との単量体混合物、及び全反応混合物の重
量に基づき10〜25重量%の不活性重合溶媒から成る
単量体溶液を調製する。
In a preferred embodiment of the method of the present invention,
First, in the presence of a free radical generating catalyst and a chain transfer catalyst, methyl methacrylate monomer alone or methyl methacrylate 85
More than weight% and methyl acrylate or ethyl acrylate 1
A monomer solution is prepared consisting of up to 5% by weight of the monomer mixture and 10-25% by weight of the inert polymerization solvent, based on the weight of the total reaction mixture.

【0018】前記不活性重合溶媒としては、生成する樹
脂の分子量を7万〜15万の範囲に調製可能な溶媒が用
いられる。好ましい溶媒としてはエチルベンゼン、メチ
ルイソブチルケトンなどが挙げられるが、特に好ましい
ものはエチルベンゼンである。この溶媒の使用量は全反
応混合物の重量に基づき10〜25重量%の範囲で選ば
れる。この量が10重量%未満では重量反応系の粘度が
高くて、重量反応の制御が困難であり、また25重量%
を超えると脱揮工程への負荷が急激に増大し、工業的に
好ましくない。
As the above-mentioned inert polymerization solvent, a solvent which can adjust the molecular weight of the resin to be produced in the range of 70,000 to 150,000 is used. Preferred solvents include ethylbenzene and methyl isobutyl ketone, with ethylbenzene being particularly preferred. The amount of this solvent used is selected in the range of 10 to 25% by weight based on the weight of the total reaction mixture. If this amount is less than 10% by weight, the viscosity of the weight reaction system is high and it is difficult to control the weight reaction.
If it exceeds, the load on the devolatilization step increases sharply, which is not industrially preferable.

【0019】前記の遊離基発生触媒は、遊離基を発生す
る重合開始剤のことであり、このようなものとしては、
有機過酸化物、例えベンゾイルパーオキシド、クメンハ
イドロパーオキシド、1,1‐ビス(t‐ブチルパーオ
キシ)‐3,3,5‐トリメチルシクロヘキサンなど
を、またアゾ系開始剤、例えば1,1‐アゾビス(1‐
シクロヘキサンカルボニトリル)、2,2‐アゾビス
(2,4,4‐トリメチルペンタン)などを用いること
ができるが、特に3,3,5‐トリメチルシクロヘキサ
ン‐ジ‐t‐ブチルパーオキシドが好ましい。これらの
遊離基発生触媒の使用量は全反応混合物の重量に基づき
0.001〜0.03重量%の範囲が好ましい。
The above-mentioned free radical generating catalyst is a polymerization initiator which generates a free radical.
Organic peroxides such as benzoyl peroxide, cumene hydroperoxide, 1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, and azo initiators such as 1,1- Azobis (1-
Cyclohexanecarbonitrile), 2,2-azobis (2,4,4-trimethylpentane) and the like can be used, but 3,3,5-trimethylcyclohexane-di-t-butyl peroxide is particularly preferable. The amount of these free radical generating catalysts used is preferably in the range of 0.001 to 0.03% by weight based on the weight of the entire reaction mixture.

【0020】一方、連鎖移動触媒としては、メルカプタ
ン類、特にブチルメルカプタン、オクチルメルカプタ
ン、ドデシルメルカプタンなどを好ましく、これらの連
鎖移動触媒の使用量は、通常全反応混合物の重量に基づ
き0.1〜0.5重量%の範囲内で選ばれる。
On the other hand, as the chain transfer catalyst, mercaptans, particularly butyl mercaptan, octyl mercaptan, dodecyl mercaptan and the like are preferable, and the amount of these chain transfer catalysts is usually 0.1 to 0 based on the weight of the whole reaction mixture. It is selected within the range of 0.5% by weight.

【0021】次に、このようにして調製された単量体溶
液に、不活性ガスを導入して該溶液中の溶存酸素量を1
ppm以下にする。溶存酸素量が1ppmを超えると得
られる樹脂の無色透明性が損なわれる。単量体溶液中の
溶存酸素量を1ppm以下に減少させる方法については
特に制限はないが、好ましくは向流接触塔へ該溶液を連
続的に供給して、窒素ガスなどの不活性ガスを向流接触
させることにより、溶存酸素を気液平衡を利用して不活
性ガス気流中に追い出し、効果的に取り除く方法を用い
ることが望ましい。通常実施されているフィードタンク
中での不活性ガスバブリング法などでは、溶存酸素を1
ppm以下に低減することは困難であって、10〜20
ppm程度が限界であるので、好ましくない。
Next, an inert gas is introduced into the thus-prepared monomer solution to adjust the amount of dissolved oxygen in the solution to 1
Keep it below ppm. When the amount of dissolved oxygen exceeds 1 ppm, the colorless transparency of the resin obtained is impaired. There is no particular limitation on the method for reducing the amount of dissolved oxygen in the monomer solution to 1 ppm or less, but it is preferable to continuously supply the solution to a countercurrent contact tower to feed an inert gas such as nitrogen gas. It is desirable to use a method in which the dissolved oxygen is expelled into the inert gas stream by utilizing gas-liquid equilibrium and is effectively removed by the flow contact. Dissolved oxygen is reduced to 1 by the inert gas bubbling method in the feed tank that is usually performed.
It is difficult to reduce to below ppm,
Since the limit is about ppm, it is not preferable.

【0022】本発明においては、このようにして単量体
溶液中の溶存酸素量を1ppm以下に低減させたのち、
該溶液を0.5μ以下のフィルターでろ過することが必
要である。該フィルターとしては、例えばポール社製の
エンフロンフィルター(MCY 4463FRE)が好
ましく用いられる。このようなろ過処理によって、得ら
れる重合体における微粒子カウンターで測定した0.5
〜25μの微小異物の含有量は1万個/gポリマー以下
となる。
In the present invention, after the amount of dissolved oxygen in the monomer solution is reduced to 1 ppm or less in this way,
It is necessary to filter the solution with a filter of 0.5 μ or less. As the filter, for example, an Enflon filter (MCY 4463FRE) manufactured by Pall Ltd. is preferably used. The polymer obtained by such filtration treatment has a particle count of 0.5 measured by a fine particle counter.
The content of minute foreign matter of ˜25 μ is 10,000 pieces / g polymer or less.

【0023】次に、前記の溶存酸素除去処理及び微小異
物除去処理を施した単量体溶液を、反応帯域に連続的に
供給して、単量体の重合転化率が40〜65%の範囲内
で実質的に一定になるように、120〜160℃の範囲
の温度において重合を行う。該転化率が40%未満では
揮発成分による脱揮工程の負荷が大きく、特に予備加熱
器の伝熱面積の制約から脱揮不十分になる場合があり、
一方65%を超えると重合反応器から予備加熱器までの
配管圧力損失が大きくなって、反応組成物の輸送が困難
となり、好ましくない。重合温度が120℃未満では反
応速度が遅すぎて実用的でなく、また160℃を超える
と反応速度が速すぎて、重合転化率の調節が困難とな
り、かつ副反応が生じたり、製品が着色するので好まし
くない。
Next, the monomer solution which has been subjected to the above-mentioned dissolved oxygen removal treatment and minute foreign matter removal treatment is continuously supplied to the reaction zone, and the polymerization conversion rate of the monomer is in the range of 40 to 65%. Polymerization is carried out at a temperature in the range of 120 to 160 ° C. so that it is substantially constant within. When the conversion rate is less than 40%, the load of the devolatilization step due to volatile components is large, and in particular, volatilization may be insufficient due to the restriction of the heat transfer area of the preheater,
On the other hand, when it exceeds 65%, the pressure loss of the piping from the polymerization reactor to the preheater becomes large, and it becomes difficult to transport the reaction composition, which is not preferable. If the polymerization temperature is less than 120 ° C, the reaction rate is too slow to be practical, and if it exceeds 160 ° C, the reaction rate is too fast, and it becomes difficult to control the polymerization conversion rate, and side reactions occur, or the product is colored. Is not preferred.

【0024】重合圧力については特に制限はなく、常圧
下で反応を行ってもよいし、あるいは加圧下で反応を行
ってもよいが、加圧下で反応を行う場合は4.0kg/
cm2以下の圧力が好ましい。また、反応液のかきまぜ
については、重合反応器の形状や寸法、反応液の粘度な
どにもよるが、ダブルヘリカルリボン、ピッチドパドル
型のかくはん翼を用いてかきまぜるのが好ましい。
The polymerization pressure is not particularly limited, and the reaction may be carried out under normal pressure or under pressure, but when the reaction is carried out under pressure, 4.0 kg /
A pressure of cm 2 or less is preferred. The stirring of the reaction solution depends on the shape and size of the polymerization reactor, the viscosity of the reaction solution, etc., but it is preferable to use a double helical ribbon or a pitched paddle type stirring blade.

【0025】本発明方法において、このような重合反応
によって得られた反応組成物中の揮発成分を除去するに
は、該反応組成物を200〜290℃の温度に加熱し、
揮発成分を除去したのち、上部に十分な空間を有し、か
つ減圧下の脱揮タンクにフィードして揮発成分をさらに
低減させることによって行うことができる。
In the method of the present invention, in order to remove the volatile components in the reaction composition obtained by such a polymerization reaction, the reaction composition is heated to a temperature of 200 to 290 ° C.
After removing the volatile components, the volatile components can be further reduced by feeding them to a devolatilization tank under a reduced pressure with a sufficient space above.

【0026】ところで、従来未反応モノマー、溶剤及び
重合反応副生物などの揮発成分を反応組成物から除去
し、重合体製品を得る基本的な方法は、反応組成物を高
温に加熱した状態で真空雰囲気中に導き揮発分離する方
法である。揮発成分が10重量%未満程度の場合には、
多段ペント付き二軸押出機などによって効率的に分離可
能であり、最終的に得られたメタクリル系樹脂中に残存
する揮発成分は1.0重量%以下であり、物性の良好な
メタクリル系樹脂成形材料、あるいは押出板を得ること
ができる。
By the way, a conventional method for obtaining a polymer product by removing volatile components such as unreacted monomer, solvent and by-products of polymerization reaction from the reaction composition is to vacuum the reaction composition while heating it to a high temperature. It is a method of introducing into the atmosphere and performing volatilization separation. If the volatile component is less than 10% by weight,
It can be efficiently separated by a twin-screw extruder with multi-stage pent, and the volatile component remaining in the finally obtained methacrylic resin is 1.0 wt% or less, and methacrylic resin molding with good physical properties. The material or extruded plate can be obtained.

【0027】揮発成分が10重量%を超える多量の場合
には、多段ベント付き押出機を用いる場合、揮発成分の
ガス化に伴う樹脂の発泡が激しく、ベント孔が発泡した
ポリマーにより閉塞するというトラブルがしばしば起こ
り、得られた樹脂の無色透明性が著しく損なわれ、特に
黄色性が強まり、しかも長時間安定運転をすることが困
難である。
When the amount of volatile components is more than 10% by weight, when a multi-stage vented extruder is used, the foaming of the resin is severe due to the gasification of the volatile components and the vent holes are clogged with the foamed polymer. Often occurs, the colorless and transparent properties of the obtained resin are significantly impaired, the yellowness is particularly increased, and it is difficult to perform stable operation for a long time.

【0028】また多段ベント付き押出機を用いない場合
においては、重合体組成物を昇温することが困難である
上に、揮発成分を除去したのちの高粘度流体の搬送方
法、さらに高温、長時間滞留によるポリマーの劣化、副
反応生成物などの問題を生じる。
When a multi-stage vented extruder is not used, it is difficult to raise the temperature of the polymer composition and, in addition, a method for conveying a high-viscosity fluid after removing volatile components, and further, a high temperature and long time Problems such as polymer deterioration and side reaction products due to retention over time occur.

【0029】高温長時間滞留によるポリマーの劣化、着
色及び副反応生成物は、本発明の目的である光学純度に
優れたメタクリル系樹脂に対して致命的な欠点となる。
Degradation of the polymer due to long-term residence at high temperature, coloring, and side reaction products are fatal defects for the methacrylic resin excellent in optical purity which is the object of the present invention.

【0030】本発明方法によると、揮発成分を多量に含
有する反応組成物を効率的に加熱し、かつ安定な流動状
態を与えながら真空フラッシングを行い、効率的に揮発
成分を除去することができる。
According to the method of the present invention, the reaction composition containing a large amount of volatile components can be efficiently heated, and vacuum flushing can be performed while giving a stable flow state, whereby the volatile components can be efficiently removed. .

【0031】本発明方法においては、反応組成物を20
0〜290℃、好ましくは220〜270℃の範囲の温
度で加熱すると同時に、揮発成分を除去するが、この
際、フラットプレート型予備加熱板を用いることが好ま
しい。加熱温度が200℃未満では反応組成物の流動性
が低くて揮発成分の除去が十分でなく、また290℃を
超えるとポリマーの熱劣化が生じる。
In the method of the present invention, 20 parts of the reaction composition are used.
The volatile components are removed simultaneously with heating at a temperature in the range of 0 to 290 ° C, preferably 220 to 270 ° C. At this time, it is preferable to use a flat plate type preheating plate. If the heating temperature is lower than 200 ° C, the fluidity of the reaction composition is low and the volatile components are not sufficiently removed. If the heating temperature exceeds 290 ° C, the polymer is thermally deteriorated.

【0032】このように昇温された反応組成物は、加熱
板と加熱板などとの間隙に形成された狭い出口を通し
て、高真空状態に保持された上部に十分な空間を有する
脱揮タンクに導入される。狭く絞られた出口の機能とし
ては、第1に重合反応領域と脱揮領域の境界として必要
な圧力損失を生じさせることが挙げられ、第2に放出さ
れる反応組成物の流速を速くすることが挙げられる。
The reaction composition thus heated is passed through a narrow outlet formed in the gap between the heating plates to a devolatilization tank having a sufficient space in the upper part thereof which is maintained in a high vacuum state. be introduced. The function of the narrowed outlet is, firstly, to cause a pressure loss required at the boundary between the polymerization reaction region and the devolatilization region, and secondly to increase the flow rate of the reaction composition released. Is mentioned.

【0033】本発明方法においては、脱揮条件が樹脂の
色調の点から特に重要であり、高温、長時間の条件をで
きるだけ避ける必要がある。
In the method of the present invention, the devolatilization condition is particularly important from the viewpoint of the color tone of the resin, and it is necessary to avoid conditions of high temperature and long time as much as possible.

【0034】高真空状態に保持された脱揮タンクに導入
された反応組成物は、揮発成分の瞬間的な揮発とそれに
よる発泡を生じて、極めて大きな蒸発面積を形成し、効
率的に短時間で揮発成分が除去される。
The reaction composition introduced into the devolatilization tank kept in a high vacuum state causes an instantaneous volatilization of the volatile components and thereby foaming to form an extremely large evaporation area and efficiently and in a short time. The volatile components are removed at.

【0035】この脱揮タンクにおける条件としては、反
応組成物中の残存揮発成分を所望の含有量まで低減でき
るような加熱温度及び真空度が必要であり、最適条件と
して、温度は220〜250℃、真空度は20〜100
トールの範囲で選ばれる。
As the conditions in this devolatilization tank, a heating temperature and a vacuum degree are required so that the residual volatile components in the reaction composition can be reduced to a desired content, and the optimum conditions are a temperature of 220 to 250 ° C. , Vacuum degree is 20-100
It is selected in the Toll range.

【0036】脱揮タンクにおいては、該組成物は、その
粘度が数千ポイズから数万ポイズに変化し、極めて粘調
になるが、滞留時間は通常1〜20分程度である。この
滞留時間が長くなると得られる樹脂は着色劣化が生じや
すく、本発明目的の光学純度に優れたものが得にくくな
る。
In the devolatilization tank, the viscosity of the composition changes from several thousand poises to tens of thousands poises and becomes extremely viscous, but the residence time is usually about 1 to 20 minutes. When the residence time becomes long, the resulting resin is liable to be colored and deteriorated, and it becomes difficult to obtain a resin having excellent optical purity for the purpose of the present invention.

【0037】脱揮された重合体は、該脱揮タンクの下部
に設置されたギアポンプによって排出される。このよう
な脱揮処理により、重合体は揮発成分として、1000
ppm以下のダイマー及び2500ppm以下の残存単
量体を含有するものになる。
The devolatilized polymer is discharged by a gear pump installed below the devolatilization tank. As a result of such devolatilization treatment, the polymer becomes 1000
It will contain less than ppm dimer and less than 2500 ppm residual monomer.

【0038】以上説明したような製造方法によって、
(1)GPCで測定した分子量(Mw)が7万〜15
万、(2)揮発成分としてダイマーが1000ppm以
下及び残存単量体が2500ppm以下、(3)熱分解
指数αが3.0以下、(4)微粒子カウンターで測定し
た0.5〜25μの微小異物が1万個/gポリマー以下
及び(5)色差計で測定したΔYIが6.00以下のメ
タクリル系樹脂が容易に得られる。
By the manufacturing method as described above,
(1) The molecular weight (Mw) measured by GPC is 70,000 to 15
(2) 1000 ppm or less of dimer as a volatile component and 2500 ppm or less of residual monomer, (3) Pyrolysis index α of 3.0 or less, (4) 0.5-25 μm fine foreign matter measured by a fine particle counter. Of less than 10,000 / g polymer and (5) ΔYI of 6.00 or less measured by a color difference meter can be easily obtained.

【0039】[0039]

【発明の効果】本発明方法により得られるメタクリル系
樹脂はメタクリル酸メチル単独重合体又はメタクリル酸
メチルとアクリル酸メチル若しくはアクリル酸エチルと
の共重合体であって、分子の均質性に優れ、かつ光学純
度が高く、無色透明であるなど、優れた特徴を有し、特
にレンズ、光ディスク、光繊維などの光学分野において
好適に用いられる。
The methacrylic resin obtained by the method of the present invention is a methyl methacrylate homopolymer or a copolymer of methyl methacrylate and methyl acrylate or ethyl acrylate, and has excellent molecular homogeneity, and It has excellent characteristics such as high optical purity and being colorless and transparent, and is preferably used particularly in the optical field of lenses, optical disks, optical fibers and the like.

【0040】[0040]

【実施例】次に実施例により本発明をさらに詳細に説明
するが、本発明はこれらの例によってなんら限定される
ものではない。なお、重合体の各性質は次のようにして
求めた。
EXAMPLES The present invention will be described in more detail by way of examples, which should not be construed as limiting the invention thereto. The properties of the polymer were determined as follows.

【0041】(1)GPCによる分子量測定 「ゲルクロマトグラフィ(基礎編)」(講談社発行)第
97〜122ページに記載の方法に従って測定した。す
なわち、カラムとしてHSG−20、50[島津製作所
(株)製]2本を使用し、プレツシヤケミカル社製の標
準ポリスチレンを用いて検量線を作り、重合体75mg
をメチルエチルケトン30mlに溶解した試料溶液を用
いて得られた溶出曲線を等分割し、分割点における高さ
を測定し次式によりMwを求めた。
(1) Measurement of molecular weight by GPC Measurement was carried out according to the method described on pages 97 to 122 of "Gel chromatography (basic edition)" (published by Kodansha). That is, two HSG-20, 50 [manufactured by Shimadzu Corporation] were used as columns, and a calibration curve was prepared using standard polystyrene manufactured by Plessia Chemical Co., Ltd.
Was dissolved in 30 ml of methyl ethyl ketone, the elution curve obtained was equally divided, the height at the divided point was measured, and Mw was calculated by the following equation.

【0042】[0042]

【数1】 [Equation 1]

【0043】ただしHiは分割点における溶出曲線の高
さ、Mi(p)は分割点iにおける標準ポリスチレンの
分子量、Qm、Qpは共重合体とポリスチレンのQ因子
であり、それぞれ40と41とした。
However, Hi is the height of the elution curve at the dividing point, Mi (p) is the molecular weight of standard polystyrene at the dividing point i, and Qm and Qp are the Q factors of the copolymer and polystyrene, which are 40 and 41, respectively. .

【0044】(2)熱分解指数αの測定 熱分解ガスクロマトグラフィーを用い、450℃で重合
体をN2雰囲気下で分解させ、60分間に分解する全分
解ガスを検出積算しこれをXとし、270℃で30分間
に分解発生するガスを積算しこれをYとし、熱分解指数
α=(Y/X)×100としてαを計算した。
(2) Measurement of Pyrolysis Index α Using pyrolysis gas chromatography, the polymer is decomposed at 450 ° C. under N 2 atmosphere, and the total decomposition gas decomposed in 60 minutes is detected and integrated, which is designated as X, The gas decomposed and generated at 270 ° C. for 30 minutes was integrated, and this was defined as Y, and α was calculated with the thermal decomposition index α = (Y / X) × 100.

【0045】 (3)微小異物の測定(HIAC−ROYCO使用) 重合体5gを秤量し、ジクロロエタン30mlに溶解
し、レーザー光の散乱をあらかじめこう正されたカウン
ターにより検知することにより、0.5〜25μの微粒
子を測定した。
(3) Measurement of minute foreign matter (using HIAC-ROYCO) 5 g of the polymer was weighed and dissolved in 30 ml of dichloroethane, and the scattering of laser light was detected by a counter previously calibrated to give 0.5 to 25μ particles were measured.

【0046】(4)色差計によるΔYIの測定 樹脂5オンスを射出成形機を用いて成形し、15×22
5×3mmの試片をえた。この試片を日本分光社製色差
計にセットし長光路(225mm)方向のYI値を測定
した。
(4) Measurement of ΔYI by color difference meter 5 ounces of resin was molded using an injection molding machine, and 15 × 22
A test piece of 5 × 3 mm was obtained. The test piece was set in a color difference meter manufactured by JASCO Corporation, and the YI value in the long optical path (225 mm) direction was measured.

【0047】実施例1 重合フィード液として、メタクリル酸メチル78重量
%、アクリル酸メチル2重量%、エチルベンゼン20重
量%、1,1‐ビス(t‐ブチルパーオキシ)‐3,
3,5‐トリメチルシクロヘキサン150ppm、オク
チルメルカプタン2500ppmを含有するものを用
い、この液を連続的に、窒素‐フィード液向流接触塔
(窒素‐フィード比=1/50重量%)に供給し、原料
フィード液中に溶存する酸素濃度を0.55ppmとし
たのち、ポール社製フィルター(0.5μ以上の粒子カ
ット率85%)を使用し、フィード液中の0.5−25
μの微粒子を300個/(フィード液1ml)に低減
し、高純度フィード液を得た。
Example 1 As a polymerization feed liquid, 78% by weight of methyl methacrylate, 2% by weight of methyl acrylate, 20% by weight of ethylbenzene, 1,1-bis (t-butylperoxy) -3,
A material containing 150 ppm of 3,5-trimethylcyclohexane and 2500 ppm of octyl mercaptan was used, and this solution was continuously supplied to a nitrogen-feed liquid countercurrent contact tower (nitrogen-feed ratio = 1/50 wt%) to obtain a raw material. After adjusting the concentration of oxygen dissolved in the feed liquid to 0.55 ppm, a filter manufactured by Pall Co., Ltd. (particle cut rate of 0.5 μm or more: 85%) was used to measure 0.5-25 ppm in the feed liquid.
The fine particles of μ were reduced to 300 particles / (feed liquid 1 ml) to obtain a high-purity feed liquid.

【0048】添付図面は、この高純度フィード液の重合
及び脱揮処理を行うのに用いた装置のフローシートであ
る。すなわち、この図において該高純度フィード液を重
合反応槽1に供給して、重合温度135℃、重合圧力
1.3kg/cm2、単量体の重合転化率62.5%、
重合系の固体成分含有量50重量%の条件で重合を行
い、GPCで測定した重量平均分子量(Mw)が10万
のメタクリル系樹脂50重量%と、未反応単量体、開始
剤、連鎖移動剤の残留物、分解物、溶剤50重量%とを
含む反応組成物を得た。
The attached drawing is a flow sheet of an apparatus used for polymerizing and devolatilizing this high-purity feed liquid. That is, in this figure, the high-purity feed liquid was supplied to the polymerization reaction tank 1, the polymerization temperature was 135 ° C., the polymerization pressure was 1.3 kg / cm 2 , the monomer conversion rate was 62.5%,
Polymerization was carried out under the condition that the solid component content of the polymerization system was 50% by weight, and 50% by weight of methacrylic resin having a weight average molecular weight (Mw) of 100,000 measured by GPC, unreacted monomer, initiator and chain transfer. A reaction composition containing the residue of the agent, the decomposed product, and 50% by weight of the solvent was obtained.

【0049】次いで、この反応組成物を定量ポンプ2に
より定常的に取り出して、加熱板3で260℃に加熱
し、加熱板間の間隙を通して脱揮タンク4に流延落下せ
しめた。脱揮タンクは30トール、200℃に維持し残
存揮発成分を除去した。重合体中の残存ダイマーは22
ppm、残存単量体10ppmであった。この重合体を
押出ダイス5より押し出した。得られたペレットの残存
単量体は2500ppm、残存ダイマーは20ppmで
あった。次に、このペレットを3オンス射出成形機で成
形し、試験片を作成した。このものの外観は無色透明で
あり、ポリマー1g当りの微小異物は4000個、色差
計で測定したΔYIは4.52、熱分解性指数αは2.
1であった。
Then, the reaction composition was constantly taken out by the metering pump 2, heated to 260 ° C. by the heating plate 3 and cast into the devolatilization tank 4 through the gap between the heating plates. The devolatilization tank was maintained at 30 Torr and 200 ° C. to remove residual volatile components. 22 residual dimers in the polymer
ppm and residual monomer 10 ppm. This polymer was extruded through an extrusion die 5. The residual monomer of the obtained pellet was 2500 ppm, and the residual dimer was 20 ppm. Next, this pellet was molded by a 3 ounce injection molding machine to prepare a test piece. The appearance of this product is colorless and transparent, 4000 fine foreign matters per gram of polymer, ΔYI of 4.52 measured by a color difference meter, and thermal decomposition index α of 2.
It was 1.

【0050】実施例2〜6 実施例1における条件を次表に示すように変えた以外
は、実施例1と全く同様な操作を行った。その結果を次
表に示す。
Examples 2 to 6 The same operation as in Example 1 was carried out except that the conditions in Example 1 were changed as shown in the following table. The results are shown in the table below.

【0051】[0051]

【表1】 [Table 1]

【0052】実施例7 実施例1において、溶存酸素濃度を1ppmに変えた以
外は、実施例1と全く同様な操作を行った。得られた試
験片のΔYIは5.55、熱分解指数αは2.12であ
った。
Example 7 The same operation as in Example 1 was carried out except that the dissolved oxygen concentration was changed to 1 ppm. The ΔYI of the obtained test piece was 5.55 and the thermal decomposition index α was 2.12.

【0053】比較例1 実施例1において、溶存酸素濃度を40ppmに変えた
以外は、実施例1と全く同様な操作を行った。得られた
試験片のΔYIは13.55、熱分解指数αは3.66
であった。
Comparative Example 1 The procedure of Example 1 was repeated except that the concentration of dissolved oxygen was changed to 40 ppm. The obtained test piece has a ΔYI of 13.55 and a thermal decomposition index α of 3.66.
Met.

【0054】比較例2 実施例1において得られた反応組成物を定量ポンプ2に
より定常的に取り出して、2軸脱揮押出機に供給した。
押出温度は260℃−280℃で、反応組成物からのガ
ス発生量が非常に多く、第一ベント、第二ベント部はポ
リマー詰りが発生し、安定した脱揮押出は困難であっ
た。
Comparative Example 2 The reaction composition obtained in Example 1 was constantly taken out by a metering pump 2 and supplied to a twin-screw devolatilizing extruder.
The extrusion temperature was 260 ° C to 280 ° C, the amount of gas generated from the reaction composition was very large, polymer clogging occurred in the first vent and the second vent, and stable devolatilization extrusion was difficult.

【0055】実施例8 実施例1において、単量体の重合転化率を65重量%と
した以外は、実施例1と全く同様な操作を行った。ペレ
ット作成前の重合体の残存ダイマーは35ppm、残存
単量体は10ppmであり、ペレットの残存ダイマーは
15ppm、残存単量体は2300ppmであった。ま
た、試験片の外観は無色透明であり、ポリマー1g当り
の微小異物は4100個、色差計で測定したΔYIは
4.55、熱分解指数αは2.0であった。
Example 8 The same operation as in Example 1 was carried out except that the polymerization conversion rate of the monomer in Example 1 was changed to 65% by weight. The residual dimer of the polymer before forming the pellet was 35 ppm, the residual monomer was 10 ppm, the residual dimer of the pellet was 15 ppm, and the residual monomer was 2300 ppm. Further, the appearance of the test piece was colorless and transparent, and 4100 fine foreign matters per 1 g of the polymer, ΔYI measured by a color difference meter were 4.55, and thermal decomposition index α was 2.0.

【0056】比較例3 実施例1において、単量体の重合転化率を75重量%と
した以外は、実施例1と同様な操作を行ったところ、反
応組成物を定量ポンプで定常的に抜き出すのが困難であ
り、抜き出し量が絶えず変化し、その結果得られた試験
片は無色透明性が損なわれ、ΔYIは23.0であっ
た。
Comparative Example 3 The same operation as in Example 1 was carried out except that the polymerization conversion rate of the monomer was changed to 75% by weight in Example 1, and the reaction composition was constantly extracted with a metering pump. Was difficult to obtain, the amount of withdrawal was constantly changing, and the colorless and transparent test piece obtained as a result was impaired, and ΔYI was 23.0.

【0057】比較例4 実施例1において、フィルターを使用した微粒子の低減
操作を行わないこと以外は、実施例1と同様な操作を行
った。得られたポリマー1g当りの微小異物は3400
0個であった。
Comparative Example 4 The same operation as in Example 1 was carried out except that the operation for reducing fine particles using a filter was not carried out in Example 1. The amount of fine foreign matter per 1 g of the obtained polymer is 3,400.
It was 0.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明方法によりメタクリル系樹脂を製造す
る際の重合及び脱揮工程の1例を示すフローシート
FIG. 1 is a flow sheet showing an example of a polymerization and devolatilization step in producing a methacrylic resin by the method of the present invention.

【符号の説明】[Explanation of symbols]

1 重合反応槽 2 定量ポンプ 3 加熱板 4 脱揮タンク 5 押出ダイス 1 polymerization reaction tank 2 metering pump 3 heating plate 4 devolatilization tank 5 extrusion die

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 メタクリル酸メチル単量体単独あるいは
メタクリル酸メチル単量体とアクリル酸メチル単量体又
はアクリル酸エチル単量体とを連続的に重合させるに当
り、遊離基発生触媒と連鎖移動触媒の存在下、メタクリ
ル酸メチル単量体単独あるいはメタクリル酸メチル85
重量%以上とアクリル酸メチル又はアクリル酸エチル1
5重量%以下との単量体混合物、及び全反応混合物の重
量に基づき10〜25重量%の不活性重合溶媒から成る
単量体溶液に、不活性ガスを導入して該溶液中の溶存酸
素量を1ppm以下にしたのち、この溶液を0.5μ以
下のフィルターでろ過後、反応帯域に連続的に供給し
て、単量体の重合転化率が40〜65%の範囲内で実質
的に一定になるように、120〜160℃の温度におい
て重合を行い、次いで得られた反応組成物を200〜2
90℃の温度に加熱して減圧帯域に導入し、脱揮するこ
とを特徴とする、GPCで測定した分子量(Mw)が7
万〜15万、熱分解指数αが3.0以下、微粒子カウン
ターで測定した0.5〜25μの微小異物が1万個/g
ポリマー以下及び色差計で測定したΔYIが6.00以
下である、メタクリル酸メチル単独重合体又はメタクリ
ル酸メチル共重合体の製造方法。
1. A free radical generating catalyst and chain transfer in continuously polymerizing methyl methacrylate monomer alone or methyl methacrylate monomer and methyl acrylate monomer or ethyl acrylate monomer. In the presence of a catalyst, methyl methacrylate monomer alone or methyl methacrylate 85
More than weight% and methyl acrylate or ethyl acrylate 1
5% by weight or less of the monomer mixture, and 10 to 25% by weight based on the weight of the total reaction mixture of a monomer solution of an inert polymerization solvent, an inert gas is introduced into the solution, and dissolved oxygen in the solution is introduced. After adjusting the amount to 1 ppm or less, this solution was filtered through a filter of 0.5 μ or less and continuously supplied to the reaction zone, and the polymerization conversion rate of the monomer was substantially within the range of 40 to 65%. Polymerization was carried out at a temperature of 120 to 160 ° C. so as to be constant, and then the obtained reaction composition was added to 200 to 2
The molecular weight (Mw) measured by GPC is 7 which is characterized in that it is heated to a temperature of 90 ° C., introduced into a reduced pressure zone, and devolatilized.
10,000 to 150,000, thermal decomposition index α is 3.0 or less, and 0.5 to 25μ fine foreign matter measured by a fine particle counter is 10,000 / g
A method for producing a methyl methacrylate homopolymer or a methyl methacrylate copolymer having a polymer or less and a ΔYI measured by a color difference meter of 6.00 or less.
JP5210113A 1993-08-25 1993-08-25 Method for producing methacrylic resin Expired - Lifetime JPH0772213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5210113A JPH0772213B2 (en) 1993-08-25 1993-08-25 Method for producing methacrylic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5210113A JPH0772213B2 (en) 1993-08-25 1993-08-25 Method for producing methacrylic resin

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP61200119A Division JPH0762721B2 (en) 1986-08-28 1986-08-28 Optical material

Publications (2)

Publication Number Publication Date
JPH06239938A JPH06239938A (en) 1994-08-30
JPH0772213B2 true JPH0772213B2 (en) 1995-08-02

Family

ID=16584023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5210113A Expired - Lifetime JPH0772213B2 (en) 1993-08-25 1993-08-25 Method for producing methacrylic resin

Country Status (1)

Country Link
JP (1) JPH0772213B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3628518B2 (en) * 1998-07-14 2005-03-16 三菱レイヨン株式会社 Methacrylic polymer and process for producing the same
JP2001131472A (en) * 1999-11-01 2001-05-15 Kansai Paint Co Ltd Resin composition for cationic electrodeposition coating
CN101316872B (en) 2005-11-24 2011-11-30 旭化成化学株式会社 Methacrylic resin and method for producing same
JP5840355B2 (en) * 2009-10-22 2016-01-06 旭化成ケミカルズ株式会社 Acrylic resin and molded body
JP6967913B2 (en) * 2017-08-14 2021-11-17 旭化成株式会社 Manufacturing method of methacrylic resin

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232665A (en) * 1975-09-08 1977-03-12 Toshiba Corp Manufacturing process of fluorescent display tube
JPS557845A (en) * 1978-06-30 1980-01-21 Sumitomo Chem Co Ltd Purification of washing liquid
JPS5949209A (en) * 1982-09-14 1984-03-21 Asahi Chem Ind Co Ltd Method for continuous polymerization
JPS6018964A (en) * 1983-07-12 1985-01-31 Seiko Epson Corp Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5232665A (en) * 1975-09-08 1977-03-12 Toshiba Corp Manufacturing process of fluorescent display tube
JPS557845A (en) * 1978-06-30 1980-01-21 Sumitomo Chem Co Ltd Purification of washing liquid
JPS5949209A (en) * 1982-09-14 1984-03-21 Asahi Chem Ind Co Ltd Method for continuous polymerization
JPS6018964A (en) * 1983-07-12 1985-01-31 Seiko Epson Corp Semiconductor device

Also Published As

Publication number Publication date
JPH06239938A (en) 1994-08-30

Similar Documents

Publication Publication Date Title
JP5597550B2 (en) Optical molded body, light guide plate and light diffuser using the same
EP0652237B1 (en) Process for preparing Methyl Methacrylate Polymer
EP0863167A1 (en) Process for producing a copolymer
EP0376747B1 (en) Methacrylimide-containing polymer and resin composition containing said polymer
CN110615864B (en) Methyl methacrylate polymer and preparation method thereof
JPH0762721B2 (en) Optical material
EP0376749B1 (en) Methacrylimide-containing polymer
JPH0772213B2 (en) Method for producing methacrylic resin
KR100689598B1 (en) Method for preparing methacrylic resin having good stability and fluidity
KR101346528B1 (en) Method of Preparing Hydrogenated Polymer
JP3937111B2 (en) Method for producing polymer
US5708133A (en) Process for purifying polymer
JP3013951B2 (en) Acrylic resin manufacturing method
JPH0714967B2 (en) Method for producing methacrylic resin
JP3906848B2 (en) Method for producing methacrylic resin
JP3858948B2 (en) Method for producing styrene-methyl methacrylate polymer
JP2001342263A (en) Resin molding for optical material and light guide plate comprising the same
KR100763951B1 (en) Process for Methacrylic Resin Having Good Optical Properties
KR100324986B1 (en) Purification Method of Polymer
JP3319485B2 (en) Method for producing methacrylic resin having thermal decomposition resistance
JPH08253507A (en) Production of methacrylic resin
JPH06128327A (en) High-purity methacrylic resin
JP2009215367A (en) Method for producing methacrylic polymer
JPH02208308A (en) Methacrylic resin and its production
JP3013953B2 (en) Acrylic resin manufacturing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970901

EXPY Cancellation because of completion of term