JPH0762721B2 - Optical material - Google Patents

Optical material

Info

Publication number
JPH0762721B2
JPH0762721B2 JP61200119A JP20011986A JPH0762721B2 JP H0762721 B2 JPH0762721 B2 JP H0762721B2 JP 61200119 A JP61200119 A JP 61200119A JP 20011986 A JP20011986 A JP 20011986A JP H0762721 B2 JPH0762721 B2 JP H0762721B2
Authority
JP
Japan
Prior art keywords
less
weight
polymerization
ppm
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61200119A
Other languages
Japanese (ja)
Other versions
JPS6357613A (en
Inventor
勝昭 前田
郁二 大谷
Original Assignee
旭化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成工業株式会社 filed Critical 旭化成工業株式会社
Priority to JP61200119A priority Critical patent/JPH0762721B2/en
Publication of JPS6357613A publication Critical patent/JPS6357613A/en
Publication of JPH0762721B2 publication Critical patent/JPH0762721B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、メタクリル系樹脂から成る光学材料、さらに
詳しくいえば、本発明は、レンズ、光ディスク、光ファ
イバーなどの素材として好適な、分子の均質性に優れ、
高い光学純度をもつ無色透明のメタクリル系樹脂から成
る光学材料に関するものである。
TECHNICAL FIELD The present invention relates to an optical material composed of a methacrylic resin, and more specifically, the present invention relates to molecular homogeneity suitable as a material for lenses, optical disks, optical fibers and the like. Excellent,
The present invention relates to an optical material made of a colorless and transparent methacrylic resin having high optical purity.

従来の技術 メタクリル系樹脂はその卓越した透明性、良好な機械的
性質、加工性並びに成形品における外観の美麗さなどに
よつて、例えば証明器具、看板、各種装飾品及び銘板な
どに広く用いられているほか、自動車部品、テーブルウ
エアー、などにも用いられている。
BACKGROUND OF THE INVENTION Methacrylic resins are widely used in, for example, certifying devices, signboards, various ornaments and nameplates because of their excellent transparency, good mechanical properties, processability and the beautiful appearance of molded products. Besides, it is also used for automobile parts, tableware, etc.

ところで、このメタクリル系樹脂は、最近レンズ、光デ
イスク、光ファイバーなどの光学材料として用いられは
じめており、そのため、前記特性に加えて、光学純度の
向上のため例えば微小異物の低減、残存モノマーなどの
揮発成分の低減、高分子量ゲルの極少化などが要求され
ている。
By the way, this methacrylic resin has recently begun to be used as an optical material for lenses, optical discs, optical fibers and the like. Therefore, in addition to the above-mentioned characteristics, for example, reduction of minute foreign matters and volatilization of residual monomers in order to improve optical purity. There are demands for reduction of components and minimization of high molecular weight gel.

従来、メタクリル系樹脂は成形材料として、通常メタク
リル酸メチル又はこれと共重合可能な成分とを水懸濁法
又は水性エマルジヨン法により重合することによつて製
造されている。しかしながら、このような方法によつて
得られるメタクリル系樹脂は、不純物、重合助剤、異物
などの混入は避けられず、さらにはペレツト化工程にお
いて、ヤケやコゲなどが発生しやすく、必ずしも光学純
度に優れているとはいえず、その上、分子的に不均質で
あるため、その成形品にくもりやにごりが発生するなど
の欠点を有している。
Conventionally, a methacrylic resin is usually produced as a molding material by polymerizing methyl methacrylate or a component copolymerizable therewith by an aqueous suspension method or an aqueous emulsion method. However, the methacrylic resin obtained by such a method cannot avoid the inclusion of impurities, polymerization aids, foreign substances, and the like, and moreover, in the pelletizing step, burns and kogation are likely to occur, and the optical purity is not always required. However, since it is molecularly inhomogeneous, it has the drawback that cloudiness or turbidity occurs in the molded product.

そこで、このような欠点を改良する方法として、例えば
連続塊状重合法(連続バルク重合法)や連続溶液重合法
が試みられたが、これまで連続重合法によつて得られた
メタクリル系樹脂は、分子の均質性については改善され
ているとしても光学純度の向上については必ずしも満足
しうる結果が得られていなかつた。
Therefore, as a method for improving such a defect, for example, a continuous bulk polymerization method (continuous bulk polymerization method) and a continuous solution polymerization method have been tried, but the methacrylic resin obtained by the continuous polymerization method has been Even if the homogeneity of the molecule is improved, satisfactory results have not always been obtained for the improvement of optical purity.

ところで、塊状重合や溶液重合によつて製造した反応組
成物から、未反応単量体、溶剤、副生成物などの揮発成
分を除去して純度の高い成形材料とする方法は、これま
で主としてスチレン系樹脂を中心に検討が進められてお
り(特公昭35−8557号公報、同38−120号公報、同44−2
0097号公報、同45−31678号公報、特開昭47−27872号公
報など)、メタクリル系樹脂については、わずかに2,3
が知られているにすぎない(特公昭52−17555号公報、
特開昭50−88197号公報など)。しかしながら、これら
のメタクリル系樹脂についての方法においては、得られ
た樹脂が高温長時間滞留による劣化や着色が著しい上
に、副反応生成物が多いなどの問題があり、光学純度に
優れたものは得られない。
By the way, from the reaction composition produced by bulk polymerization or solution polymerization, volatile components such as unreacted monomers, solvents and by-products are removed to obtain a highly pure molding material. Studies are being conducted mainly for resin (Japanese Patent Publication Nos. 35-8557, 38-120 and 44-2).
No. 97, No. 45-31678, JP-A No. 47-27872, etc.), and methacrylic resin is only a few
Is only known (Japanese Patent Publication No. 52-17555,
JP-A-50-88197, etc.). However, in the methods for these methacrylic resins, there is a problem that the obtained resin is significantly deteriorated and colored due to long-term residence at high temperature, and there are many side reaction products. I can't get it.

発明が解決しようとする問題点 本発明者らは、先に光学純度に優れたメタクリル系樹脂
光フアイバーの製造法を見出したが、この方法は揮発成
分の低減及び黄色性の改良については、必ずしも満足し
うるものではなかつた。
Problems to be Solved by the Invention The present inventors have previously found a method for producing a methacrylic resin optical fiber having excellent optical purity, but this method is not necessarily used for reducing volatile components and improving yellowness. It wasn't satisfactory.

本発明の目的は、このような事情のもとで、分子の均質
性に優れ、かつ微小異物や揮発成分、高分子量ゲルなど
が少なくて光学純度が高く、無色透明な優れたメタクリ
ル系樹脂から成る光学材料を提供することにある。
Under these circumstances, the object of the present invention is to obtain an excellent methacrylic resin that is excellent in molecular homogeneity, has a small amount of fine foreign matters, volatile components, high molecular weight gel, etc., and has high optical purity, and is colorless and transparent. To provide an optical material.

問題点を解決するための手段 本発明者らは分子の均質性及び光学純度に優れたメタク
リル系樹脂を開発すべく鋭意研究を重ねた結果、特定組
成の単量体溶液を特定の手段により処理して、該溶液中
の溶存酸素量を1ppm以下にし、かつ微小異物を取り除い
たのち、この単量体溶液を反応帯域に連続的に供給し、
該反応帯域中の重合体濃度が所定の値になるように重合
を行い、次いで得られた反応組成物を特定の条件で加熱
処理して、揮発成分を除去することにより、その目的を
達成しうることを見出し、この知見に基づいて本発明を
完成するに至つた。
Means for Solving the Problems The inventors of the present invention have conducted diligent research to develop a methacrylic resin having excellent molecular homogeneity and optical purity, and as a result, treat a monomer solution having a specific composition with a specific means. Then, the dissolved oxygen amount in the solution to 1ppm or less, and after removing the fine foreign matter, continuously supply this monomer solution to the reaction zone,
Polymerization is carried out so that the polymer concentration in the reaction zone becomes a predetermined value, and then the obtained reaction composition is heat-treated under specific conditions to remove volatile components, thereby achieving the object. Based on this finding, the present invention has been completed.

すなわち、本発明は、メタクリル酸メチル単独重合体及
び15重量%以下のアクリル酸メチル単位又はアクリル酸
エチル単位を含有するメタクリル酸メチル共重合体の中
から選ばれ、(1)GPCで測定した分子量(Mw)7万〜1
5万、(2)揮発成分としてダイマー1000ppm以下及び残
存単量体2500ppm以下、(3)熱分解指数α3.0以下、
(4)微粒子カウンターで測定した0.5〜25μの微小異
物1万個/gポリマー以下及び(5)色差計で測定したΔ
YI6.00以下を有することを特徴とするメタクリル系樹脂
から成る光学材料を提供するものであり、このものは、
例えば遊離基発生触媒と連鎖移動触媒の存在下、メタク
リル酸メチル単量体単独あるいは、メタクリル酸メチル
85重量%以上とアクリル酸メチル又はアクリル酸エチル
15重量%以下との単量体混合物及び全反応混合物の重量
に基づき10〜25重量%の不活性溶媒から成る単量体溶液
に、不活性ガスを導入して該溶液中の溶存酸素量を1ppm
以下にしたのち、この溶液を0.5μ以下のフイルターで
ろ過後、反応帯域に連続的に供給して、単量体の重合転
化率が40〜65%の範囲内で実質的に一定になるように、
120〜160℃の温度において重合を行い、次いで得られた
反応組成物を200〜290℃の温度に加熱して減圧帯域に導
入し、ダイマー含有量1000ppm以下及び残存単量体含有
量2500ppm以下になるまで脱揮することにより、製造す
ることができる。
That is, the present invention is selected from a methyl methacrylate homopolymer and a methyl methacrylate copolymer containing 15% by weight or less of a methyl acrylate unit or an ethyl acrylate unit, and (1) a molecular weight measured by GPC. (Mw) 70,000-1
50,000, (2) Dimer 1000ppm or less as volatile component and residual monomer 2500ppm or less, (3) Thermal decomposition index α3.0 or less,
(4) 0.5 to 25μ fine foreign matter measured by a fine particle counter 10,000 or less / g polymer and (5) Δ measured by a color difference meter
An optical material comprising a methacrylic resin having a YI of 6.00 or less is provided.
For example, in the presence of a free radical generating catalyst and a chain transfer catalyst, methyl methacrylate monomer alone or methyl methacrylate
85% by weight or more and methyl acrylate or ethyl acrylate
To a monomer solution consisting of 10 to 25% by weight of an inert solvent based on the weight of the monomer mixture with 15% by weight or less and the total reaction mixture, an inert gas was introduced to adjust the amount of dissolved oxygen in the solution. 1 ppm
After making the following, after filtering this solution with a filter of 0.5μ or less, it is continuously fed to the reaction zone, so that the polymerization conversion rate of the monomer becomes substantially constant within the range of 40 ~ 65%. To
Polymerization is carried out at a temperature of 120 to 160 ° C., then the resulting reaction composition is heated to a temperature of 200 to 290 ° C. and introduced into the reduced pressure zone, and the dimer content is 1000 ppm or less and the residual monomer content is 2500 ppm or less. It can be manufactured by devolatilizing until it becomes.

以下、本発明をさらに詳細に説明する。Hereinafter, the present invention will be described in more detail.

本発明の光学材料として用いるメタクリル系樹脂は、メ
タクリル酸メチル単独重合体及び15重量%以下のアクリ
ル酸メチル単位又はアクリル酸エチル単位を含有するメ
タクリル酸メチル共重合体の中から選ばれるが、好まし
いものは、メタクリル酸メチル単位88〜99重量%とアク
リル酸メチル単位又はアクリル酸エチル単位12〜1重量
%とを含有するメタクリル酸メチル共重合体である。こ
の共重合体においては、メタクリル酸メチル単位とアク
リル酸メチル単位若しくはアクリル酸エチル単位とはラ
ンダムな結合で構成されており、該メタクリル酸メチル
単位は、耐熱性や機械強度特性を向上させるものであ
り、一方、アクリル酸メチル単位やアクリル酸エチル単
位は、この樹脂の成形加工時の流動性及び熱分解性を向
上させるものである。
The methacrylic resin used as the optical material of the present invention is selected from methyl methacrylate homopolymers and methyl methacrylate copolymers containing 15% by weight or less of methyl acrylate units or ethyl acrylate units, but preferred. What is a methyl methacrylate copolymer containing 88 to 99% by weight of methyl methacrylate units and 12 to 1% by weight of methyl acrylate units or ethyl acrylate units. In this copolymer, the methyl methacrylate unit and the methyl acrylate unit or the ethyl acrylate unit are composed of random bonds, and the methyl methacrylate unit improves heat resistance and mechanical strength characteristics. On the other hand, the methyl acrylate unit and the ethyl acrylate unit improve the fluidity and thermal decomposability of the resin during molding.

これらのメタクリル酸メチル単独重合体又は共重合体
は、GPC(ゲルパーミエーシヨンクロマトグラフイー)
法で測定した重量平均分子量(Mw)が7万〜15万、好ま
しくは8万〜12万の範囲にあることが必要である。この
分子量が7万未満のものでは、その成形品は脆弱で工業
的使用に耐えないし、一方、15万を超えるものでは、溶
融時の流動性が著しく低下し、成形品の複屈折が増大し
て好ましくない。
These methyl methacrylate homopolymers or copolymers are GPC (Gel Permeation Chromatography)
It is necessary that the weight average molecular weight (Mw) measured by the method is in the range of 70,000 to 150,000, preferably 80,000 to 120,000. If the molecular weight is less than 70,000, the molded product is fragile and cannot withstand industrial use. On the other hand, if it has a molecular weight of more than 150,000, the fluidity at the time of melting is significantly lowered and the birefringence of the molded product is increased. Is not preferable.

また、樹脂中の揮発成分含有量は、重合副生物のダイマ
ーが1000ppm以下、及び未反応単量体や熱分解生成単量
体などの残存単量体が2500ppm以下であることが必要で
ある。該ダイマー含有量が1000ppmを超えると得られる
成形品の耐熱変形性が低下し、実用使用範囲が狭くなり
好ましくない。また、残存単量体が2500ppmを超えると
高温で成形加工する場合、得られる成形品の表面に銀条
(シルバーストリーク)が発生するなど、該表面が損な
われ、実用に耐えなくなる。この単量体やダイマーは、
一般に重合体を溶融状態で減圧処理して除去する場合、
その蒸気圧が比較的高いために除去が困難であり、さら
に加熱溶融することにより、メタクリル系樹脂が熱分解
して単量体を生成するという好ましくない傾向がある
が、本発明光学材料は、該揮発成分を前記の範囲に低減
したものである。本発明光学材料においては、樹脂中の
ダイマー及び残存単量体の含有量は、通常それぞれ10〜
1000ppm及び500〜2500ppmの範囲にある。
Further, the content of volatile components in the resin is required to be 1000 ppm or less for the dimer of the polymerization by-product and 2500 ppm or less for the residual monomer such as unreacted monomer or thermal decomposition product monomer. If the content of the dimer exceeds 1000 ppm, the heat-deformation resistance of the obtained molded article is deteriorated and the practical use range is narrowed, which is not preferable. Further, when the residual monomer content exceeds 2500 ppm, when molding is carried out at a high temperature, the surface of the obtained molded product is damaged, such as silver streaks, and the surface becomes impractical. This monomer or dimer
Generally, when removing a polymer by depressurizing it in a molten state,
Since its vapor pressure is relatively high, it is difficult to remove it, and by heating and melting, there is an unfavorable tendency that the methacrylic resin is thermally decomposed to produce a monomer, but the optical material of the present invention is The volatile component is reduced to the above range. In the optical material of the present invention, the content of dimer and residual monomer in the resin is usually 10 ~
It is in the range of 1000 ppm and 500 to 2500 ppm.

さらに、本発明光学材料の耐熱分解性については、熱分
解指数αで3.0以下であることが必要である。この値が
3.0を超えると耐熱分解性に劣るようになり、高温射出
成形時にガス発生が激しく、樹脂の用途範囲が著しく制
限されるのを免れないという問題が生じる。特に、デイ
スク円盤に用いる場合には、発生したガスによつて記録
信号の転写が阻害されデイスクの品質を著しく低下させ
好ましくない。
Furthermore, regarding the thermal decomposition resistance of the optical material of the present invention, it is necessary that the thermal decomposition index α is 3.0 or less. This value is
If it exceeds 3.0, the thermal decomposition resistance becomes inferior, gas is generated strongly during high temperature injection molding, and there is a problem that the application range of the resin is unavoidably restricted. In particular, when it is used for a disc, it is not preferable because the generated gas hinders the transfer of the recording signal and remarkably deteriorates the quality of the disc.

本発明光学材料の微小異物の含有量については、微粒子
カウンターで測定した0.5〜25μの微小異物が1万個/g
ポリマー以下であることが必要であり、1万個/gポリマ
ーを超える場合には、光の透過損失が大きくなり使用に
耐えない。
Regarding the content of fine foreign matter in the optical material of the present invention, the fine foreign matter of 0.5 to 25 μ measured with a fine particle counter is 10,000 pieces / g.
It is necessary that the amount is not more than the polymer, and if it exceeds 10,000 pieces / g polymer, light transmission loss becomes large and it cannot be used.

また、本発明光学材料は無色透明性に優れたものであ
り、色差計で測定した△YI(空気を基準にしたイエロー
インデツクス)が6.0以下である。この値が6.0を超える
と樹脂の黄色性が強まり、光線透過率が著しく低下す
る。
Further, the optical material of the present invention is excellent in colorless transparency and has a ΔYI (yellow index based on air) measured by a color difference meter of 6.0 or less. If this value exceeds 6.0, the yellowness of the resin will be increased and the light transmittance will be significantly reduced.

本発明樹脂を好適に製造する方法としては、例えば遊離
基発生触媒と連鎖移動触媒の存在下、メタクリル酸メチ
ル単量体単独あるいはメタクリル酸メチル85重量%以上
とアクリル酸メチル又はアクリル酸エチル15重量%以下
との単量体混合物及び全反応混合物の重量に基づき10〜
25重量%の不活性重合溶媒から成る単量体溶液を用いて
行う連続溶液重合法がある。
Suitable methods for producing the resin of the present invention include, for example, in the presence of a free radical generating catalyst and a chain transfer catalyst, methyl methacrylate monomer alone or methyl methacrylate 85% by weight or more and methyl acrylate or ethyl acrylate 15% by weight. 10% or less based on the weight of the monomer mixture and the total reaction mixture
There is a continuous solution polymerization method carried out using a monomer solution consisting of 25% by weight of an inert polymerization solvent.

前記不活性重合溶媒としては、生成する樹脂の分子量を
7万〜15万の範囲に調整可能な溶媒が用いられる。好ま
しい溶媒としてはエチルベンゼン、メチルイソブチルケ
トンなどが挙げられるが、特に好ましいものはエチルベ
ンゼンである。この溶媒の使用量は全反応混合物の重量
に基づき10〜25重量%の範囲で選ばれる。この量が10重
量%未満では重合反応系の粘度が高くて、重合反応の制
御が困難であり、また25重量%を超えると脱揮工程への
負荷が急激に増大し、工業的に好ましくない。
As the inert polymerization solvent, a solvent that can adjust the molecular weight of the produced resin to a range of 70,000 to 150,000 is used. Preferred solvents include ethylbenzene and methyl isobutyl ketone, with ethylbenzene being particularly preferred. The amount of this solvent used is selected in the range of 10 to 25% by weight, based on the weight of the total reaction mixture. If this amount is less than 10% by weight, the viscosity of the polymerization reaction system is high, and it is difficult to control the polymerization reaction. If it exceeds 25% by weight, the load on the devolatilization step increases sharply, which is industrially undesirable. .

前記の遊離基発生触媒は、遊離基を発生する重合開始剤
のことであり、このようなものとしては、有機過酸化
物、例えばベンゾイルパーオキシド、クメンハイドロパ
ーオキシド、1,1−ビス(t−ブチルパーオキシ)−3,
3,5−トリメチルシクロヘキサンなどを、またアゾ系開
始剤、例えば1,1−アゾビス(1−シクロヘキサンカル
ボニトリル)、2,2−アゾビス(2,4,4−トリメチルペン
タン)などを用いることができるが、特に3,3,5−トリ
メチルシクロヘキサン−ジ−t−ブチルパーオキシドが
好ましい。これらの遊離基発生触媒の使用量は全反応混
合物の重量に基づき0.001〜0.03重量%の範囲で選ばれ
る。
The above-mentioned free radical generating catalyst is a polymerization initiator that generates free radicals, and examples thereof include organic peroxides such as benzoyl peroxide, cumene hydroperoxide, and 1,1-bis (t). -Butylperoxy) -3,
It is possible to use 3,5-trimethylcyclohexane and the like, and azo-based initiators such as 1,1-azobis (1-cyclohexanecarbonitrile) and 2,2-azobis (2,4,4-trimethylpentane). However, 3,3,5-trimethylcyclohexane-di-t-butyl peroxide is particularly preferable. The amount of these free radical generating catalysts used is selected in the range of 0.001 to 0.03% by weight, based on the weight of the total reaction mixture.

一方、連鎖移動触媒としては、メルカプタン類、特にブ
チルメルカプタン、オクチルメルカプタン、ドデシルメ
ルカプタンなどを好ましく用いることができる。
On the other hand, as the chain transfer catalyst, mercaptans, especially butyl mercaptan, octyl mercaptan, dodecyl mercaptan and the like can be preferably used.

次に、このようにして調製された単量体溶液に、不活性
ガスを導入して該溶液中の溶存酸素量を1ppm以下にす
る。溶存酸素量が1ppmを超えると得られる樹脂の無色透
明性が損なわれる。単量体溶液中の溶存酸素量を1ppm以
下に減少させる方法については特に制限はないが、好ま
しくは向流接触塔へ該溶液を連続的に供給して、窒素ガ
スなどの不活性ガスを向流接触させることにより、溶存
酸素を気液平衡を利用して不活性ガス気流中に追い出
し、効果的に取り除く方法を用いることが望ましい。通
常実施されているフイードタンク中での不活性ガスバブ
リング法などでは、溶存酸素を1ppm以下に低減すること
は困難であつて、10〜20ppm程度が限界であるので、好
ましくない。
Next, an inert gas is introduced into the thus-prepared monomer solution to reduce the dissolved oxygen content in the solution to 1 ppm or less. When the amount of dissolved oxygen exceeds 1 ppm, the colorless transparency of the resin obtained is impaired. There is no particular limitation on the method for reducing the amount of dissolved oxygen in the monomer solution to 1 ppm or less, but preferably the solution is continuously supplied to a countercurrent contact tower to direct an inert gas such as nitrogen gas. It is desirable to use a method in which the dissolved oxygen is expelled into the inert gas stream by utilizing gas-liquid equilibrium and is effectively removed by the flow contact. It is difficult to reduce the dissolved oxygen to 1 ppm or less by a commonly used inert gas bubbling method in a feed tank, etc., and the limit is about 10 to 20 ppm, which is not preferable.

本発明光学材料の調製に際しては、このようにして単量
体溶液中の溶存酸素量を1ppm以下に低減させたのち、該
溶液を0.5μ以下のフイルターでろ過することが必要で
ある。該フイルターとしては、例えばポール社製のエン
フロンフイルター(MCY4463FRE)が好ましく用いられ
る。このようなろ過処理によつて、得られる重合体にお
ける微粒子カウンターで測定した0.5〜25μの微小異物
の含有量は1万個/gポリマー以下となる。
In the preparation of the optical material of the present invention, it is necessary to reduce the dissolved oxygen amount in the monomer solution to 1 ppm or less in this way, and then filter the solution with a filter of 0.5 μ or less. As the filter, for example, Enflon filter (MCY4463FRE) manufactured by Pall Ltd. is preferably used. By such a filtration treatment, the content of fine foreign matters of 0.5 to 25 μm measured by a fine particle counter in the obtained polymer becomes 10,000 or less / g polymer.

次に、前記の溶存酸素除去処理及び微小異物除去処理を
施した単量体溶液を、反応帯域に連続的に供給して、単
量体の重合転化率が40〜65%の範囲内で実質的に一定に
なるように、120〜160℃の範囲の温度において重合を行
う。該転化率が40%未満では揮発成分による脱揮工程の
負荷が大きく、特に予備加熱器の伝熱面積の制約から脱
揮不十分になる場合があり、一方65%を超えると重合反
応器から予備加熱器までの配管圧力損失が大きくなつ
て、反応組成物の輸送が困難となり、好ましくない。重
合温度が120℃未満では反応速度が遅すぎて実用的でな
く、また160℃を超えると反応速度が速すぎて、重合転
化率の調節が困難となり、かつ副反応が生じたり、製品
が着色するので好ましくない。
Next, the monomer solution that has been subjected to the above-mentioned dissolved oxygen removal treatment and minute foreign matter removal treatment is continuously supplied to the reaction zone, and the polymerization conversion rate of the monomer is substantially within the range of 40 to 65%. Polymerization is carried out at a temperature in the range of 120 to 160 ° C. so that the temperature becomes constant. If the conversion rate is less than 40%, the load of the devolatilization process due to volatile components is large, and the devolatilization may be insufficient due to the restriction of the heat transfer area of the preheater. Since the pressure loss of the pipe to the preheater becomes large, it becomes difficult to transport the reaction composition, which is not preferable. If the polymerization temperature is less than 120 ° C, the reaction rate is too slow to be practical, and if it exceeds 160 ° C, the reaction rate is too fast, making it difficult to control the polymerization conversion rate, and causing a side reaction or coloring the product. Is not preferred.

重合圧力については特に制限はなく、常圧下で反応を行
つてもよいし、あるいは加圧下で反応を行つてもよい
が、加圧下で反応を行う場合は4.0Kg/cm2以下の圧力が
好ましい。また、反応液のかきまぜについては、重合反
応器の形状や寸法、反応液の粘度などにもよるが、ダブ
ルヘリカルリボン、ピツチドパドル型のかくはん翼を用
いてかきまぜるのが好ましい。
The polymerization pressure is not particularly limited, and the reaction may be carried out under normal pressure or may be carried out under pressure, but when the reaction is carried out under pressure, a pressure of 4.0 Kg / cm 2 or less is preferable. . The stirring of the reaction solution depends on the shape and size of the polymerization reactor, the viscosity of the reaction solution, and the like, but it is preferable to use a double helical ribbon or a pitched paddle type stirring blade.

本発明光学材料の調製に際し、このような重合反応によ
つて得られた反応組成物中の揮発成分を除去するには、
該反応組成物を200〜290℃の温度に加熱し、揮発成分を
除去したのち、上部に十分な空間を有し、かつ減圧下の
脱揮タンクにフイードして、揮発成分をさらに低減させ
ることによつて行うことができる。
In the preparation of the optical material of the present invention, in order to remove the volatile components in the reaction composition obtained by such a polymerization reaction,
The reaction composition is heated to a temperature of 200 to 290 ° C. to remove volatile components, and then fed to a devolatilization tank under a reduced pressure with a sufficient space above to further reduce the volatile components. Can be done by

ところで、従来未反応モノマー、溶剤及び重合反応副生
物などの揮発成分を反応組成物から除去し、重合体製品
を得る基本的な方法は、反応組成物を高温に加熱した状
態で真空雰囲気中に導き揮発分離する方法である。揮発
成分が10重量%未満程度の場合には、多段ベント付き二
軸押出機などによつて効率的に分離可能であり、最終的
に得られたメタクリル系樹脂中に残存する揮発成分は1.
0重量%以下であり、物性の良好なメタクリル系樹脂成
形材料、あるいは押出板を得ることができる。
By the way, a conventional method for removing a volatile component such as an unreacted monomer, a solvent and a by-product of a polymerization reaction from a reaction composition to obtain a polymer product is to heat the reaction composition at a high temperature in a vacuum atmosphere. It is a method of conducting volatile separation. When the volatile component is less than 10% by weight, it can be efficiently separated by a twin-screw extruder with a multistage vent, etc., and the volatile component remaining in the finally obtained methacrylic resin is 1.
It is 0% by weight or less, and a methacrylic resin molding material having good physical properties or an extruded plate can be obtained.

揮発成分が10重量%を超える多量の場合には、多段ベン
ト付き押出機を用いる場合、揮発成分のガス化に伴う樹
脂の発泡が激しく、ベント孔が発泡したポリマーにより
閉塞するというトラブルがしばしば起こり、得られた樹
脂の無色透明性が著しく損なわれ、特に黄色性が強ま
り、しかも長時間安定運転をすることが困難である。
When the amount of volatile components exceeds 10% by weight, when using an extruder with a multi-stage vent, resin foaming is severe due to gasification of the volatile components, and the vent holes often cause blockage due to foamed polymer. The colorless transparency of the obtained resin is remarkably impaired, the yellowness is particularly strengthened, and it is difficult to carry out stable operation for a long time.

また多段ベント付き押出機を用いない場合においては、
重合体組成物を昇温することが困難である上に、揮発成
分を除去したのちの高粘度流体の搬送方法、さらに高
温、長時間滞留によるポリマーの劣化、副反応生成物な
どの問題を生じる。
When not using a multi-vented extruder,
It is difficult to raise the temperature of the polymer composition, and there are problems such as a method of transporting a high-viscosity fluid after removing volatile components, deterioration of the polymer due to high temperature and long-term retention, and side reaction products. .

高温長時間滞留によるポリマーの劣化、着色及び副反応
生成物は、本発明の目的である光学純度に優れたメタク
リル系樹脂に対して致命的な欠点となる。
Deterioration of the polymer due to long-term residence at high temperature, coloring, and side reaction products are fatal defects for the methacrylic resin excellent in optical purity, which is the object of the present invention.

前記した方法によると、揮発成分を多量に含有する反応
組成物を効率的に加熱し、かつ安定な流動状態を与えな
がら真空フラツシングを行い、効率的に揮発成分を除去
することができる。
According to the above-mentioned method, the reaction composition containing a large amount of volatile components can be efficiently heated, and vacuum flushing can be performed while providing a stable fluidized state to efficiently remove the volatile components.

本発明光学材料の調製に際しては、反応組成物を200〜2
90℃、好ましくは220〜270℃の範囲の温度で加熱すると
同時に、揮発成分を除去するが、この際、フラツトプレ
ート型予備加熱板を用いることが好ましい。加熱温度が
200℃未満では反応組成物の流動性が低くて揮発成分の
除去が十分でなく、また290℃を超えるとポリマーの熱
劣化が生じる。
When preparing the optical material of the present invention, the reaction composition was adjusted to 200 to 2
At the same time as heating at a temperature of 90 ° C., preferably in the range of 220 to 270 ° C., the volatile components are removed at the same time. At this time, it is preferable to use a flat plate type preheating plate. Heating temperature
If the temperature is less than 200 ° C, the fluidity of the reaction composition is low and the volatile components are not sufficiently removed. If the temperature exceeds 290 ° C, the polymer is thermally deteriorated.

このように昇温された反応組成物は、加熱板と加熱板な
どとの間隙に形成された狭い出口を通して、高真空状態
に保持された上部に十分な空間を有する脱揮タンクに導
入される。狭く絞られた出口の機能としては、第1に重
合反応領域と脱揮領域の境界として必要な圧力損失を生
じさせることが挙げられ、第2に放出される反応組成物
の流速を速くすることが挙げられる。
The reaction composition thus heated is introduced into a devolatilization tank having a sufficient space in the upper part held in a high vacuum state through a narrow outlet formed in a gap between heating plates. . The function of the narrowed outlet is, firstly, to cause a pressure loss required at the boundary between the polymerization reaction region and the devolatilization region, and secondly to increase the flow rate of the reaction composition released. Is mentioned.

本発明光学材料の調製に際しては、脱揮条件が樹脂の色
調の点から特に重要であり、高温、長時間の条件をでき
るだけ避ける必要がある。
In the preparation of the optical material of the present invention, devolatilization conditions are particularly important from the viewpoint of the color tone of the resin, and it is necessary to avoid conditions of high temperature and long time as much as possible.

高真空状態に保持された脱揮タンクに導入された反応組
成物は、揮発成分の瞬間的な揮発とそれによる発泡を生
じて、極めて大きな蒸発面積を形成し、効率的に短時間
で揮発成分が除去される。
The reaction composition introduced into the devolatilization tank maintained in a high vacuum state causes the instantaneous volatilization of the volatile components and the resulting foaming, forming an extremely large evaporation area, and efficiently volatile components in a short time. Are removed.

この脱揮タンクにおける条件としては、反応組成物中の
残存揮発成分を所望の含有量まで低減できるような加熱
温度及び真空度が必要であり、最適条件として、温度は
220〜250℃、真空度は20〜100トールの範囲で選ばれ
る。
As the conditions in this devolatilization tank, a heating temperature and a degree of vacuum that can reduce the residual volatile components in the reaction composition to a desired content are necessary.
220-250 ℃, vacuum degree is selected in the range of 20-100 Torr.

脱揮タンクにおいては、該組成物は、その粘度が数千ポ
イズから数万ポイズに変化し、極めて粘調になるが、滞
留時間は通常1〜20分程度である。この滞留時間が長く
なると得られる樹脂は着色劣化が生じやすく、本発明目
的の光学純度に優れたものが得にくくなる。
In the devolatilization tank, the viscosity of the composition changes from several thousand poises to tens of thousands poises and becomes extremely viscous, but the residence time is usually about 1 to 20 minutes. When the residence time becomes long, the resulting resin is liable to be colored and deteriorated, and it becomes difficult to obtain a resin having excellent optical purity for the purpose of the present invention.

脱揮された重合体は、該脱揮タンクの下部に設置された
ギアポンプによつて排出される。このような脱揮処理に
より、重合体は揮発成分として、1000ppm以下のダイマ
ー及び2500ppm以下の残存単量体を含有するものにな
る。
The devolatilized polymer is discharged by a gear pump installed below the devolatilization tank. By such a devolatilization treatment, the polymer contains, as volatile components, 1000 ppm or less of dimer and 2500 ppm or less of residual monomer.

以上説明したような製造方法によつて、(1)GPCで測
定した分子量(Mw)が7万〜15万、(2)揮発成分とし
てダイマーが1000ppm以下及び残存単量体が2500ppm以
下、(3)熱分解指数αが3.0以下、(4)微粒子カウ
ンターで測定した0.5〜25μの微小異物が1万個/gポリ
マー以下及び(5)色差計で測定した△YIが6.00以下の
メタクリル系樹脂が容易に得られる。
According to the production method as described above, (1) the molecular weight (Mw) measured by GPC is 70,000 to 150,000, (2) the dimer as a volatile component is 1000 ppm or less, and the residual monomer is 2500 ppm or less, (3 ) A methacrylic resin having a thermal decomposition index α of 3.0 or less, (4) 10,000 or less fine foreign matters of 0.5 to 25 μm measured by a fine particle counter and (5) ΔYI of 6.00 or less measured by a color difference meter Easily obtained.

発明の効果 本発明光学材料は、メタクリル酸メチル単独重合体又は
メタクリル酸メチルとアクリル酸メチル若しくはアクリ
ル酸エチルとの共重合体であつて、分子の均質性に優
れ、かつ光学純度が高く、無色透明であるなど、優れた
特徴を有し、特にレンズ、光デイスク、光ファイバーな
どの素材として好適に用いられる。
EFFECTS OF THE INVENTION The optical material of the present invention is a methyl methacrylate homopolymer or a copolymer of methyl methacrylate and methyl acrylate or ethyl acrylate, which has excellent molecular homogeneity and high optical purity, and is colorless. It has excellent characteristics such as transparency, and is particularly preferably used as a material for lenses, optical discs, optical fibers and the like.

実施例 次に実施例により本発明をさらに詳細に説明するが、本
発明はこれらの例によつてなんら限定されるものではな
い。
EXAMPLES Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

なお、重合体の各性質は次のようにして求めた。The properties of the polymer were determined as follows.

(1) GPCによる分子量測定 「ゲルクロマトグラフイ(基礎編)」(講談社発行)第
97〜122ページに記載の方法に従つて測定した。
(1) GPC molecular weight measurement “Gel Chromatography (Basic)” (Published by Kodansha)
It was measured according to the method described on pages 97-122.

すなわち、カラムとしてHSG−20、50(島津製作所
(株)製)2本を使用し、プレツシヤケミカル社製の標
準ポリスチレンを用いて検量線を作り、重合体75mgをメ
チルエチルケトン30mlに溶解した試料溶液を用いて得ら
れた溶出曲線を等分割し、分割点における高さを測定し
次式によりMwを求めた。
That is, a sample in which two HSG-20, 50 (manufactured by Shimadzu Corporation) were used as columns, a calibration curve was prepared using standard polystyrene manufactured by Plessia Chemical Co., and 75 mg of the polymer was dissolved in 30 ml of methyl ethyl ketone. The elution curve obtained using the solution was equally divided, the height at the division point was measured, and Mw was calculated by the following equation.

ただしHiは分割点における溶出曲線の高さ、Mi(p)は
分割点iにおける標準ポリスチレンの分子量、Qm、Qpは
共重合体とポリスチレンのQ因子であり、それぞれ40と
41とした。
Where Hi is the height of the elution curve at the dividing point, Mi (p) is the molecular weight of standard polystyrene at the dividing point i, Qm and Qp are the Q factor of the copolymer and polystyrene, respectively 40 and
41.

(2) 熱分解指数αの測定 熱分解ガスクロマトグラフイーを用い、450℃で重合体
をN2雰囲気下で分解させ、60分間に分解する全分解ガス
を検出積算しこれをXとし、270℃で30分間に分解発生
するガスを積算しこれをYとし、熱分解指数α=(Y/
X)×100としてαを計算した。
(2) Measurement of thermal decomposition index α Using thermal decomposition gas chromatography, the polymer is decomposed at 450 ° C under N2 atmosphere, and the total decomposition gas decomposed in 60 minutes is detected and integrated, and this is defined as X, and at 270 ° C The amount of gas decomposed and generated in 30 minutes is integrated, and this is defined as Y.
X was calculated as X) × 100.

(3) 微小異物の測定(HIAC−ROYCO使用) 重合体5gを秤量し、ジクロロエタン30mlに溶解し、レー
ザー光の散乱をあらかじめこう正されたカウンターによ
り検知することにより、0.5〜25μの微粒子を測定し
た。
(3) Measurement of minute foreign matter (using HIAC-ROYCO) Weigh 5 g of polymer, dissolve in 30 ml of dichloroethane, and measure the scattering of laser light with a counter that has been calibrated beforehand to measure 0.5 to 25μ particles. did.

(4) 色差計による△YIの測定 樹脂5オンスを射出成形機を用いて成形し、15×225×3
mmの試片をえた。この試片を日本分光社製色差計にセツ
トし長光路(225mm)方向のYI値を測定した。
(4) Measurement of ΔYI by color difference meter 5 ounces of resin was molded using an injection molding machine and 15 × 225 × 3
I got a mm piece. This sample was set in a color difference meter manufactured by JASCO Corporation, and the YI value in the long optical path (225 mm) direction was measured.

実施例1 重合フイード液として、メタクリル酸メチル78重量%、
アクリル酸メチル2重量%、エチルベンゼン20重量%、
1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチ
ルシクロヘキサン150ppm、オクチルメルカプタン2500pp
mを含有するものを用い、この液を連続的に、窒素−フ
イード液向流接触塔(窒素−フイード比=1/50重量%)
に供給し、原料フイード液中に溶存する酸素濃度を0.55
ppmとしたのち、ボール社製フイルター(0.5μ以上の粒
子カツト率85%)を使用し、フイード液中の0.5−25μ
の微粒子を300個/(フイード液1ml)に低減し、高純度
フイード液を得た。
Example 1 As a polymerization feed liquid, 78% by weight of methyl methacrylate,
2% by weight of methyl acrylate, 20% by weight of ethylbenzene,
1,1-bis (t-butylperoxy) -3,3,5-trimethylcyclohexane 150ppm, octyl mercaptan 2500pp
Using a liquid containing m, this liquid is continuously fed into a nitrogen-feed liquid countercurrent contact tower (nitrogen-feed ratio = 1/50% by weight).
The oxygen concentration of 0.55
After adjusting to ppm, use a filter manufactured by Ball Co. (85% particle cut rate of 0.5μ or more) to 0.5-25μ in the feed solution.
The number of fine particles was reduced to 300 / (feed solution 1 ml) to obtain a high-purity feed solution.

添付図面は、この高純度フイード液の重合及び脱揮処理
を行うのに用いた装置のフローシートである。
The attached drawing is a flow sheet of an apparatus used for polymerizing and devolatilizing this high-purity feed liquid.

すなわち、この図において該高純度フイード液を重合反
応槽1に供給して、重合温度135℃、重合圧力1.3Kg/c
m2、単量体の重合転化率62.5%、重合系の固体成分含有
量50重量%の条件で重合を行い、GPCで測定した重量平
均分子量(Mw)が10万のメタクリル系樹脂50重量%と、
未反応単量体、開始剤、連鎖移動剤の残留物、分解物、
溶剤50重量%とを含む反応組成物を得た。
That is, in this figure, the high-purity feed liquid was supplied to the polymerization reaction tank 1, and the polymerization temperature was 135 ° C. and the polymerization pressure was 1.3 Kg / c.
50% by weight of methacrylic resin with a weight average molecular weight (Mw) of 100,000 measured by GPC was carried out under the conditions of m 2 , polymerization conversion rate of monomer 62.5%, and solid content of polymerization system 50% by weight. When,
Unreacted monomer, initiator, residue of chain transfer agent, decomposition product,
A reaction composition containing 50% by weight of solvent was obtained.

次いで、この反応組成物を定量ポンプ2により定常的に
取り出して、加熱板3で260℃に加熱し、加熱板間の間
隙を通して脱揮タンク4に流延落下せしめた。脱揮タン
クは30トール、200℃に維持し残存揮発成分を除去し
た。重合体中の残存ダイマーは22ppm、残存単量体10ppm
であつた。この重合体を押出ダイス5より押し出した。
得られたペレツトの残存単量体は2500ppm、残存ダイマ
ーは20ppmであつた。次に、このペレツトを3オンス射
出成形機で成形し、試験片を作成した。このものの外観
は無色透明であり、ポリマー1g当りの微小異物は4000
個、色差計で測定した△YIは4.52、熱分解性指数αは2.
1であつた。
Next, the reaction composition was constantly taken out by the metering pump 2, heated to 260 ° C. by the heating plate 3, and cast and dropped into the devolatilization tank 4 through the gap between the heating plates. The devolatilization tank was maintained at 30 Torr and 200 ° C. to remove residual volatile components. 22ppm residual dimer in the polymer, 10ppm residual monomer
It was. This polymer was extruded through an extrusion die 5.
The residual monomer of the obtained pellet was 2500 ppm, and the residual dimer was 20 ppm. Next, this pellet was molded by a 3 ounce injection molding machine to prepare a test piece. The appearance of this product is colorless and transparent, and the minute foreign matter per 1 g of polymer is 4000
Individually, △ YI measured with a color difference meter is 4.52, thermal decomposition index α is 2.
It was 1.

実施例2〜6 実施例1における条件を次表に示すように変えた以外
は、実施例1と全く同様な操作を行つた。その結果を次
表に示す。
Examples 2 to 6 The same operations as in Example 1 were performed except that the conditions in Example 1 were changed as shown in the following table. The results are shown in the table below.

実施例7 実施例1において、溶存酸素濃度を1ppmに変えた以外
は、実施例1と全く同様な操作を行つた。得られた試験
片の△YIは5.55、熱分解指数αは2.12であつた。
Example 7 The same operation as in Example 1 was performed except that the dissolved oxygen concentration was changed to 1 ppm. The ΔYI of the obtained test piece was 5.55 and the thermal decomposition index α was 2.12.

比較例1 実施例1において、溶存酸素濃度を40ppmに変えた以外
は、実施例1と全く同様な操作を行つた。得られた試験
片の△YIは13.55、熱分解指数αは3.66であつた。
Comparative Example 1 The procedure of Example 1 was repeated, except that the dissolved oxygen concentration was changed to 40 ppm. The ΔYI of the obtained test piece was 13.55 and the thermal decomposition index α was 3.66.

比較例2 実施例1において得られた反応組成物を定量ポンプ2に
より定常的に取り出して、二軸脱揮押出機に供給した。
押出温度は260℃−280℃で、反応組成物からのガス発生
量が非常に多く、第一ベント、第二ベント部はポリマー
詰りが発生し、安定した脱揮押出は困難であつた。
Comparative Example 2 The reaction composition obtained in Example 1 was constantly taken out by the metering pump 2 and supplied to the twin-screw devolatilizing extruder.
The extrusion temperature was 260 ° C to 280 ° C, the amount of gas generated from the reaction composition was very large, polymer clogging occurred in the first vent and the second vent, and stable devolatilization extrusion was difficult.

実施例8 実施例1において、単量体の重合転化率を65重量%とし
た以外は、実施例1と全く同様な操作を行つた。ペレツ
ト作成前の重合体の残存ダイマーは35ppm、残存単量体
は10ppmであり、ペレツトの残存ダイマーは15ppm、残存
単量体は2300ppmであつた。また、試験片の外観は無色
透明であり、ポリマー1g当りの微小異物は4100個、色差
計で測定した△YIは4.55、熱分解指数αは2.0であつ
た。
Example 8 The same operation as in Example 1 was carried out except that the polymerization conversion rate of the monomer was changed to 65% by weight. The residual dimer of the polymer before making the pellet was 35 ppm, the residual monomer was 10 ppm, the residual dimer of the pellet was 15 ppm, and the residual monomer was 2300 ppm. The appearance of the test piece was colorless and transparent, and 4100 fine foreign matters per 1 g of the polymer, ΔYI of 4.55 measured by a color difference meter, and thermal decomposition index α of 2.0.

比較例3 実施例1において、単量体の重合転化率を75重量%とし
た以外は、実施例1と同様な操作を行つたところ、反応
組成物を定量ポンプで定常的に抜き出すのが困難であ
り、抜き出し量が絶えず変化し、その結果得られた試験
片は無色透明性が損なわれ、△YIは23.0であつた。
Comparative Example 3 When the same operation as in Example 1 was performed except that the polymerization conversion rate of the monomer was changed to 75% by weight in Example 1, it was difficult to constantly extract the reaction composition with a metering pump. The amount of withdrawal constantly changed, and as a result, the colorless and transparent test piece was impaired, and ΔYI was 23.0.

【図面の簡単な説明】[Brief description of drawings]

図は本発明光学材料を製造する際の重合及び脱揮工程の
1例を示すフローシートであつて、図中符号1は重合反
応槽、2は定量ポンプ、3は加熱板、4は脱揮タンク、
5は押出ダイスである。
The figure is a flow sheet showing an example of the polymerization and devolatilization step in the production of the optical material of the present invention. In the figure, reference numeral 1 is a polymerization reaction tank, 2 is a metering pump, 3 is a heating plate, 4 is devolatilization. tank,
5 is an extrusion die.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】メタクリル酸メチル単独重合体及び15重量
%以下のアクリル酸メチル単位又はアクリル酸エチル単
位を含有するメタクリル酸メチル共重合体の中から選ば
れ、(1)GPCで測定した分子量(Mw)7万〜15万、
(2)揮発成分としてダイマー1000ppm以下及び残存単
量体2500ppm以下、(3)熱分解指数α3.0以下、(4)
微粒子カウンターで測定した0.5〜25μの微小異物1万
個/gポリマー以下及び(5)色差計で測定したΔYI6.00
以下を有することを特徴とするメタクリル系樹脂から成
る光学材料。
1. A methyl methacrylate homopolymer and a methyl methacrylate copolymer containing 15% by weight or less of methyl acrylate units or ethyl acrylate units, and (1) the molecular weight measured by GPC ( Mw) 70,000-150,000,
(2) Dimer 1000ppm or less and residual monomer 2500ppm or less as volatile components, (3) Thermal decomposition index α3.0 or less, (4)
0.5-25μ fine foreign particles measured by a particle counter 10,000 or less / g polymer and (5) ΔYI6.00 measured by a color difference meter
An optical material comprising a methacrylic resin having the following:
JP61200119A 1986-08-28 1986-08-28 Optical material Expired - Lifetime JPH0762721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61200119A JPH0762721B2 (en) 1986-08-28 1986-08-28 Optical material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61200119A JPH0762721B2 (en) 1986-08-28 1986-08-28 Optical material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5210113A Division JPH0772213B2 (en) 1993-08-25 1993-08-25 Method for producing methacrylic resin

Publications (2)

Publication Number Publication Date
JPS6357613A JPS6357613A (en) 1988-03-12
JPH0762721B2 true JPH0762721B2 (en) 1995-07-05

Family

ID=16419140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61200119A Expired - Lifetime JPH0762721B2 (en) 1986-08-28 1986-08-28 Optical material

Country Status (1)

Country Link
JP (1) JPH0762721B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02120701A (en) * 1988-10-31 1990-05-08 Mitsubishi Rayon Co Ltd Distributed refractive index light transmission body
JPH0794506B2 (en) * 1989-01-18 1995-10-11 株式会社クラレ Methacrylic resin having excellent transparency, resin composition thereof and method for producing the same
JPH02208308A (en) * 1989-02-07 1990-08-17 Asahi Chem Ind Co Ltd Methacrylic resin and its production
JPH0819193B2 (en) * 1990-04-11 1996-02-28 三菱レイヨン株式会社 Optically superior methacrylic resin
JP3400589B2 (en) * 1995-02-22 2003-04-28 旭化成株式会社 Method for producing methacrylic resin light guide plate
WO1999017917A1 (en) * 1997-10-02 1999-04-15 Novartis Ag Ophthalmic lens production process
WO2012165918A2 (en) * 2011-06-01 2012-12-06 주식회사 엘지화학 Resin composition for optical film and optical film using the same
JP6258195B2 (en) * 2012-04-27 2018-01-10 株式会社クラレ Method for producing (meth) acrylic resin composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5550484B2 (en) * 1973-08-22 1980-12-18
JPS5938216A (en) * 1982-08-27 1984-03-02 Asahi Chem Ind Co Ltd Purification of polymethyl methacrylate
JPS61151212A (en) * 1984-12-24 1986-07-09 Kuraray Co Ltd Methacrylate copolymer and its production

Also Published As

Publication number Publication date
JPS6357613A (en) 1988-03-12

Similar Documents

Publication Publication Date Title
US6632907B1 (en) Process for producing methacrylic polymer
US5719242A (en) Process for preparing methyl methacrylate polymer
US4883846A (en) Anionic polymerization of purified monovinylidene aromatic monomer feed stock
JPH0445802B2 (en)
US3383448A (en) Polymerization process
US5096968A (en) Methacrylimide-containing polymer and resin composition containing said polymer
JPH0762721B2 (en) Optical material
NL8105718A (en) METHOD FOR THE POLYMERIZATION OF MIXTURES OF BIS (ALLYL CARBONATE) MONOMERS WITH POLYMERS AND THE POLYMER MIXTURES PREPARED THEREFORE.
US3474081A (en) Methyl methacrylate polymer and process for making same
JP3342766B2 (en) Graft propylene copolymer
EP0376749B1 (en) Methacrylimide-containing polymer
JPH0772213B2 (en) Method for producing methacrylic resin
US3207205A (en) Extrusion-devolatilization process
JP5023519B2 (en) Method for producing hydrogenated polymer
US7446152B2 (en) Method of producing hydrogenated polymers
JPH0714967B2 (en) Method for producing methacrylic resin
US3806556A (en) Process for polymerizing vinyl monomers
JP5812001B2 (en) Thermoplastic transparent resin composition
EP0995768A3 (en) Process for production of aromatic polycarbonate resin and molded article of aromatic polycarbonate resin
GB2279351A (en) Methacrylic resin composition
EP0554142B1 (en) Method for the continuous production of vinyl aromatic block copolymers
EP0729998A1 (en) Styrenic resin sheet and molding
JPH02208308A (en) Methacrylic resin and its production
JP2019099593A (en) Methacrylic resin, methacrylic resin composition, molded body, optical member and automobile component
TW553966B (en) Polymers based on vinylcyclohexane

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term