JP3013953B2 - Acrylic resin manufacturing method - Google Patents
Acrylic resin manufacturing methodInfo
- Publication number
- JP3013953B2 JP3013953B2 JP4194460A JP19446092A JP3013953B2 JP 3013953 B2 JP3013953 B2 JP 3013953B2 JP 4194460 A JP4194460 A JP 4194460A JP 19446092 A JP19446092 A JP 19446092A JP 3013953 B2 JP3013953 B2 JP 3013953B2
- Authority
- JP
- Japan
- Prior art keywords
- polymerization
- solvent
- acrylic resin
- temperature
- polymerization reactor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F20/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
- C08F20/02—Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
- C08F20/10—Esters
- C08F20/12—Esters of monohydric alcohols or phenols
- C08F20/14—Methyl esters, e.g. methyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/04—Polymerisation in solution
- C08F2/06—Organic solvent
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polymerisation Methods In General (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、透明性に優れたプラス
チック材料として有用な、アクリル系樹脂の製造法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an acrylic resin useful as a plastic material having excellent transparency.
【0002】[0002]
【従来の技術及びその問題点】アクリル系樹脂は、透明
性、耐光性、機械的強度、成形性及び加工性に優れたプ
ラスチックで、看板、照明器具、車両用部品及び各種装
飾品等に使用されている。近年、レンズ、光ディスク、
光繊維等の光学分野での用途が拡大しており、分子量分
布が狭く、光学的性質に優れた高品質のアクリル系樹脂
を製造する方法が求められている。2. Description of the Related Art Acrylic resin is a plastic excellent in transparency, light resistance, mechanical strength, moldability and workability, and is used for signboards, lighting equipment, vehicle parts and various decorative articles. Have been. In recent years, lenses, optical disks,
Applications in the optical field such as optical fibers are expanding, and there is a need for a method for producing a high-quality acrylic resin having a narrow molecular weight distribution and excellent optical properties.
【0003】従来、成形材料に使用するアクリル系樹脂
を工業的に製造する方法として、懸濁重合法、塊状重合
法、溶液重合法等が知られている。懸濁重合法は、重合
反応の制御が容易であるため、比較的分子量分布の狭い
アクリル系樹脂を製造できるが、製造時に使用する分散
剤或いは分散安定剤等が樹脂中に残存し、光学的性質の
低下をきたすこと、バッチ生産が主で製造工程が煩雑と
なり、生産性が低いこと、大量の排水処理を必要とする
こと等の欠点がある。Conventionally, suspension polymerization, bulk polymerization, solution polymerization, and the like have been known as methods for industrially producing an acrylic resin used for a molding material. In the suspension polymerization method, since the polymerization reaction is easily controlled, an acrylic resin having a relatively narrow molecular weight distribution can be produced, but the dispersant or dispersion stabilizer used in the production remains in the resin, and the There are drawbacks such as deterioration of properties, batch production is mainly performed, the production process is complicated, productivity is low, and a large amount of wastewater treatment is required.
【0004】塊状重合法は、分散剤や分散安定剤を使用
しないこと、大量の排水処理が不要なこと、生産性の良
い連続化が比較的容易なこと、生産性の良い連続化が比
較的容易なこと等、懸濁重合法に比べて有利な点があ
る。しかし、モノマー転化率(以下、転化率という)が
高くなると、一般にゲル効果として知られている、重合
速度の加速現象が起こり、重合反応時に粘度及び温度が
急激に上昇するため、重合熱の除去が困難となり、工業
的規模では重合反応の制御が殆どできないこと、転化率
を60%以上に高くすることが難しいこと、生成するア
クリル系樹脂の分子量分布が広く、又、オリゴマーやゲ
ル化物等の不純物が副生し易くなり、光学的性質が低下
する等の欠点がある。[0004] The bulk polymerization method does not use a dispersant or a dispersion stabilizer, does not require a large amount of wastewater treatment, is relatively easy to maintain good productivity, and is relatively easy to achieve good productivity. There are advantages, such as easiness, as compared with the suspension polymerization method. However, when the monomer conversion rate (hereinafter, referred to as the conversion rate) increases, the phenomenon of acceleration of the polymerization rate, which is generally known as the gel effect, occurs, and the viscosity and the temperature rise rapidly during the polymerization reaction, so that the heat of polymerization is removed. It is difficult to control the polymerization reaction on an industrial scale, it is difficult to increase the conversion to 60% or more, the molecular weight distribution of the acrylic resin to be produced is wide, and oligomers and gelled products are difficult to control. There are drawbacks, such as easy formation of impurities as by-products and deterioration of optical properties.
【0005】塊状重合法のこれら欠点を改良する目的
で、特開昭49−37993号公報には、転化率が50
〜80%に達した後、トルエン等の粘度低減剤とラジカ
ル重合開始剤を追加添加し、転化率を85%以上にする
方法が提案されている。しかし、塊状重合法によって転
化率が50〜80%に達するまで重合反応を制御するこ
とは、通常、非常に困難であり、ラジカル重合開始剤の
使用量や重合温度を特定範囲に限定するなど、製造可能
条件範囲が非常に狭く、工業的規模で実施することは極
めて難しい。又、粘度低減剤の添加やラジカル重合開始
剤の追加添加添加は重合温度等の重合条件を変化させ、
得られるアクリル系樹脂の分子量分布を広くし、光学的
性質が低下する等の欠点がある。In order to improve these disadvantages of the bulk polymerization method, Japanese Patent Application Laid-Open No. 49-37993 discloses a conversion rate of 50%.
After reaching ~ 80%, a method has been proposed in which a viscosity reducing agent such as toluene and a radical polymerization initiator are additionally added to increase the conversion to 85% or more. However, it is usually very difficult to control the polymerization reaction until the conversion reaches 50 to 80% by the bulk polymerization method, and the amount of the radical polymerization initiator and the polymerization temperature are limited to specific ranges. The range of manufacturable conditions is very narrow and it is extremely difficult to implement on an industrial scale. Also, the addition of a viscosity reducing agent and the addition and addition of a radical polymerization initiator change polymerization conditions such as polymerization temperature,
There are drawbacks such as broadening the molecular weight distribution of the obtained acrylic resin and deteriorating the optical properties.
【0006】また、特開昭63−77909号公報に
は、メチルメタクリレート、ビニル芳香族、無水マレイ
ン酸及びアルキルアクリレートからなる特定のモノマー
混合物を溶剤の存在下又は不存在下に転化率60%にま
で重合した後、約15〜33重量%の溶剤を加え、転化
率80%以上にまで重合する製造法が提案されている。
しかし、通常、溶剤の不存在下でゲル効果を抑制して、
転化率60%まで重合反応を制御することは難しい。
又、転化率60%以上では重合反応液の粘度が非常に高
くなり、溶剤と均一に混合することが難しく、重合温度
が不均一になり、得られるアクリル系樹脂の分子量分布
が広くなる等の欠点がある。JP-A-63-77909 discloses that a specific monomer mixture consisting of methyl methacrylate, vinyl aromatic, maleic anhydride and alkyl acrylate is converted to a conversion of 60% in the presence or absence of a solvent. Production methods have been proposed in which about 15 to 33% by weight of a solvent is added after polymerization to a polymerization rate of 80% or more.
However, usually, the gel effect is suppressed in the absence of a solvent,
It is difficult to control the polymerization reaction up to a conversion of 60%.
On the other hand, if the conversion is 60% or more, the viscosity of the polymerization reaction solution becomes extremely high, it is difficult to uniformly mix the solvent with the solvent, the polymerization temperature becomes uneven, and the molecular weight distribution of the obtained acrylic resin becomes wide. There are drawbacks.
【0007】溶液重合法は溶剤の使用量が少ないとゲル
効果が起こり、得られるアクリル系樹脂の分子量分布が
広くなるが、モノマーと同等量以上の溶剤を使用しない
ため重合反応時の温度調節や分子量調節は比較的容易で
あり、分散剤等を使用しないため光学的性質が良く、分
子量分布の狭い樹脂の製造が可能である。しかし、良く
知られているように、モノマーと同等量以上の多量の溶
剤の使用は、重合速度、特に、重合初期の重合速度が遅
くなり、生産性が悪くなることや高分子量の重合体を得
ることが難しいこと等の欠点がある。In the solution polymerization method, when the amount of the solvent used is small, a gel effect occurs, and the molecular weight distribution of the obtained acrylic resin is widened. The molecular weight can be easily adjusted, and since no dispersant or the like is used, the optical properties are good and a resin having a narrow molecular weight distribution can be produced. However, as is well known, the use of a large amount of a solvent equal to or more than the amount of the monomer reduces the polymerization rate, particularly the polymerization rate at the initial stage of the polymerization, and lowers the productivity and increases the polymer of high molecular weight. There are drawbacks such as being difficult to obtain.
【0008】[0008]
【発明が解決しようとしている課題】本発明は、アクリ
ル系樹脂の重合に係る従来技術の欠点を排除し、重合反
応の制御が容易で、分子量分布の狭い、光学的性質の優
れたアクリル系樹脂を製造する方法を提供することを課
題とする。DISCLOSURE OF THE INVENTION The present invention eliminates the drawbacks of the prior art relating to the polymerization of acrylic resins, makes it easy to control the polymerization reaction, has a narrow molecular weight distribution, and has excellent optical properties. It is an object of the present invention to provide a method for producing a.
【0009】本発明は、2個以上の重合反応器を使用し
て、70重量%〜95重量%のメチルメタクリレート
と、共重合可能な他のビニル化合物とからなるモノマー
を、ラジカル重合開始剤の作用で重合してアクリル系樹
脂を製造するにあたり、(1)第1重合反応器でモノマ
ーと溶剤とを重量比で70〜95/30〜5の割合で混
合し、モノマーの転化率が10〜50%の範囲に重合
し、生成した重合体含有混合物を最終重合反応器を含む
後段の重合反応器へ移すこと、(2)後段の重合反応器
中で重合体含有混合物と溶剤とを重量比で30〜70/
70〜30の割合で混合すること、(3)後段の重合反
応器でモノマーの転化率が80%以上になるまで重合す
ること、(4)第1及び後段の重合反応器での重合温度
を同一とし、温度変化を±10℃の範囲内に維持するこ
と、(5)最終の重合反応器で得た重合体混合物から溶
剤、未反応モノマー及び低分子量重合体を除去するこ
と、を特徴とするアクリル系樹脂の製造法に関する。According to the present invention, a monomer comprising 70 % by weight to 95% by weight of methyl methacrylate and another copolymerizable vinyl compound is converted into a radical polymerization initiator using two or more polymerization reactors. (1) In the first polymerization reactor, a monomer and a solvent are mixed at a weight ratio of 70 to 95/30 to 5 to produce an acrylic resin, and the conversion of the monomer is 10 to 10. Polymerizing to a range of 50 %, and transferring the resulting polymer-containing mixture to a subsequent polymerization reactor including a final polymerization reactor; (2) mixing the polymer-containing mixture and the solvent by weight in the latter polymerization reactor; 30-70 /
Mixing at a ratio of 70 to 30; (3) polymerizing until the conversion of the monomer becomes 80% or more in the subsequent polymerization reactor; and (4) adjusting the polymerization temperature in the first and second polymerization reactors. (5) removing the solvent, unreacted monomer and low molecular weight polymer from the polymer mixture obtained in the final polymerization reactor, and keeping the temperature change within the range of ± 10 ° C. To a method for producing an acrylic resin.
【0010】メチルメタクリレートと共重合可能な他の
ビニル化合物としては、メチルアクリレート、エチルア
クリレート、ブチルアクリレート等のアルキルアクリレ
ート類、エチルメタクリレート、ブチルメタクリレー
ト、ラウリルメタクリレート等のアルキルメタクリレー
ト類、アクリロニトリル、メタクリロニトリル、α−ク
ロロアクリロニトリル等の不飽和ニトリル類、スチレ
ン、α−メチルスチレン等のスチレン系化合物類、アク
リルアミド、メタクリロアミド、アクリル酸、メタクリ
ル酸、塩化ビニル、塩化ビニリデン等が挙げられる。こ
れらは1種であってもよいし2種以上を混合して使用し
てもよい。Other vinyl compounds copolymerizable with methyl methacrylate include alkyl acrylates such as methyl acrylate, ethyl acrylate and butyl acrylate, alkyl methacrylates such as ethyl methacrylate, butyl methacrylate and lauryl methacrylate, acrylonitrile and methacrylonitrile. And unsaturated nitriles such as α-chloroacrylonitrile, styrene compounds such as styrene and α-methylstyrene, acrylamide, methacrylamide, acrylic acid, methacrylic acid, vinyl chloride, vinylidene chloride and the like. These may be used alone or in combination of two or more.
【0011】メチルメタクリレートはJIS K671
6に記載の製品品質を有し、溶存酸素を重合反応に影響
を与えない量、通常、100ppm以下にまで除去した
ものが使用できる。共重合可能な他のビニル化合物はメ
チルメタクリレートに準ずる品質のものであればよい。
メチルメタクリレートの使用量が70重量%未満の場合
は透明性、機械的強度等が低下し、アクリル系樹脂本来
の特性が失われるためめ好ましくない。Methyl methacrylate is JIS K671
A product having the product quality described in No. 6 and removing dissolved oxygen to an amount that does not affect the polymerization reaction, usually to 100 ppm or less can be used. The other copolymerizable vinyl compound may be of a quality equivalent to methyl methacrylate.
If the amount of methyl methacrylate is less than 70% by weight, the transparency, mechanical strength and the like are lowered, and the inherent properties of the acrylic resin are lost.
【0012】ラジカル重合開始剤としては有機過酸化物
或いはアゾ系化合物等を使用することができる。有機過
酸化物としては、ラウロイルパーオキサイド、ベンゾイ
ルパーオキサイド等のジアシルパーオキサイド類、1,
1−ビス(t−ブチルパーオキシ)シクロヘキサン、
1,1−ビス(t−ブチルパーオキシ)3,3,5−ト
リメチルシクロヘキサン等のパーオキシケタール類、ジ
イソプロピルパーオキシジカーボネート、ジ−2−エチ
ルヘキシルパーオキシジカーボネート等のパーオキシジ
カーボネート類、t−ブチルパーオキシ−2−エチルヘ
キサノエート、t−ブチルパーオキシイソブチレート等
のパーオキシエステル類等が挙げられ、アゾ系化合物と
しては、アゾビスイソブチロニトリル、1,1−アゾビ
スシクロヘキサン−t−カーボニトリル等が挙げられ
る。これらは1種であってもよいし、2種以上お混合し
て使用してもよい。ラジカル重合開始剤は、モノマー1
00重量部当たり0.0005〜1重量部、好ましくは
0.001〜0.5重量部の割合で使用される。As the radical polymerization initiator, an organic peroxide or an azo compound can be used. Examples of the organic peroxide include diacyl peroxides such as lauroyl peroxide and benzoyl peroxide;
1-bis (t-butylperoxy) cyclohexane,
Peroxyketals such as 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, peroxydicarbonates such as diisopropylperoxydicarbonate and di-2-ethylhexylperoxydicarbonate; Examples include peroxyesters such as t-butylperoxy-2-ethylhexanoate and t-butylperoxyisobutyrate. Examples of the azo compound include azobisisobutyronitrile and 1,1-azo Biscyclohexane-t-carbonitrile and the like can be mentioned. These may be used alone or in combination of two or more. The radical polymerization initiator is monomer 1
It is used in an amount of 0.0005 to 1 part by weight, preferably 0.001 to 0.5 part by weight, per 100 parts by weight.
【0013】溶剤はモノマー及び生成するアクリル系樹
脂に対して溶解性を有し、重合反応を実質的に阻害しな
いもので、沸点が40〜225℃程度、好ましくは60
〜150℃程度の範囲にあるものが使用できる。具体的
には、テトラヒドロフラン、メチルエチルケトン、ヘキ
サン、ヘプタン、オクタン、ベンゼン、メチルイソブチ
レート、トルエン、キシレン、シクロヘキサン、シクロ
ドデカン、イソオクタン、デカリン、ジメチルスルホキ
シド、エチレンカーボネート、ノルマルブタノール等を
例示できる。これら溶剤は、溶存酸素を重合反応に影響
を与えない量にまで除去してから使用される。The solvent has a solubility in the monomer and the acrylic resin to be formed and does not substantially inhibit the polymerization reaction, and has a boiling point of about 40 to 225 ° C., preferably 60 to 225 ° C.
What is in the range of about 150 ° C. can be used. Specific examples include tetrahydrofuran, methyl ethyl ketone, hexane, heptane, octane, benzene, methyl isobutyrate, toluene, xylene, cyclohexane, cyclododecane, isooctane, decalin, dimethyl sulfoxide, ethylene carbonate, and normal butanol. These solvents are used after the dissolved oxygen is removed to an amount that does not affect the polymerization reaction.
【0014】これらの溶剤は第1重合反応器では、モノ
マーとの重量比で(モノマー/溶剤)70〜95/30
〜5、好ましくは75〜90/25〜10の割合で使用
する。溶剤の使用量が上記下限より少ない場合は、重合
反応の進行につれて粘度が高くなり、転化率50%まで
の重合反応制御が困難となり好ましくない。後段の重合
反応器では、溶剤は、第1重合反応器で生成した重合体
含有混合物と、重量比が(重合体含有混合物/溶剤)3
0〜70/70〜30、好ましくは35〜60/65〜
40の範囲に調整され均一に混合される。溶剤の使用量
が上記下限より少ないとゲル効果により重合反応液の粘
度が高くなり、重合反応の制御が困難となり、分子量分
布が広くなるため好ましくない。逆に溶剤が上記上限よ
り多い場合は、重合反応の制御のし易さには差はない
が、製造した重合混合物から溶剤や未反応モノマー、低
分子量重合体等の除去に長時間を要し、生産性が悪くな
るため好ましくない。In the first polymerization reactor, these solvents are used in a weight ratio to the monomer (monomer / solvent) of 70 to 95/30.
-5, preferably 75-90 / 25-10. If the amount of the solvent is less than the above lower limit, the viscosity increases as the polymerization reaction proceeds, and it is difficult to control the polymerization reaction up to a conversion of 50%, which is not preferable. In the latter polymerization reactor, the solvent is a polymer-containing mixture produced in the first polymerization reactor and a weight ratio of (polymer-containing mixture / solvent) 3.
0-70 / 70-30, preferably 35-60 / 65-
It is adjusted to the range of 40 and mixed uniformly. If the amount of the solvent used is less than the above lower limit, the viscosity of the polymerization reaction liquid becomes high due to the gel effect, control of the polymerization reaction becomes difficult, and the molecular weight distribution becomes unfavorably wide. Conversely, when the amount of the solvent is larger than the upper limit, there is no difference in the ease of controlling the polymerization reaction, but it takes a long time to remove the solvent, the unreacted monomer, the low molecular weight polymer, and the like from the produced polymerization mixture. This is not preferable because productivity is deteriorated.
【0015】本発明では、第1重合反応器で重合体への
転化率を10〜50%、好ましくは20〜40%程度と
し、後段の重合反応器で高転化率まで重合する。第1重
合反応器での溶剤量は少ないため、従来の溶液重合法と
は異なり、第1重合反応器での重合速度は速く、又、溶
剤が存在するため転化率50%までゲル効果が防止でき
る。更に、転化率が50%を越えゲル効果を生じ易い後
段の重合反応器では、追加添加した溶剤の作用により重
合反応液の急激な粘度上昇は起こらず、重合発熱による
温度変化も小さくなるため、重合反応の制御は容易で、
分子量分布の狭いアクリル系樹脂が得られ、又、低分子
量重合体等の不純物の生成も抑制でできる。又、第1重
合反応器での重合反応液の粘度は低く、後段の重合反応
器での溶剤との混合は容易で重合反応に殆ど影響を与え
ない。更に、重合反応液の粘度が低いため、重合反応器
に塊状重合で使用されるような高価な特殊設備を必要と
しない。In the present invention, the conversion to a polymer is made 10 to 50%, preferably about 20 to 40% in the first polymerization reactor, and the polymerization is carried out to a high conversion in the subsequent polymerization reactor. Unlike the conventional solution polymerization method, the amount of solvent in the first polymerization reactor is small, so that the polymerization rate in the first polymerization reactor is high, and the presence of the solvent prevents the gel effect up to a conversion of 50%. it can. Furthermore, in the latter polymerization reactor where the conversion exceeds 50% and the gel effect is apt to occur, the viscosity of the polymerization reaction solution does not sharply increase due to the action of the added solvent, and the temperature change due to polymerization heat is small. Control of the polymerization reaction is easy,
An acrylic resin having a narrow molecular weight distribution can be obtained, and generation of impurities such as a low molecular weight polymer can be suppressed. Further, the viscosity of the polymerization reaction liquid in the first polymerization reactor is low, and mixing with a solvent in the subsequent polymerization reactor is easy and has little effect on the polymerization reaction. Furthermore, since the viscosity of the polymerization reaction solution is low, expensive special equipment such as used in bulk polymerization is not required in the polymerization reactor.
【0016】後段の重合反応器で転化率が80%未満で
は、未反応モノマーが多くなり、回収装置や操作が煩雑
となり好ましくない。従って、後段の重合反応器では転
化率を可能な限り高めることが好ましい。重合温度は第
1段及び後段の重合反応器何れに於いても、60〜18
0℃、好ましくは80〜150℃の範囲が好適である。
この際、各重合反応器の重合温度は同一に設定され、温
度の変動±10℃の範囲内、好ましくは±5℃の範囲内
に維持して重合させる。重合温度が50℃以下では重合
速度が遅く、又、多くのラジカル重合開始剤を必要とし
経済的でない。一方、180℃を越える温度では低分子
量重合体等の不純物の生成量が増加し好ましくない。
又、温度変化が±10℃以上になると重合速度の制御が
困難となり、分子量分布が広くなるので好ましくない。If the conversion is less than 80% in the latter polymerization reactor, the amount of unreacted monomer increases and the recovery apparatus and operation become complicated, which is not preferable. Therefore, it is preferable to increase the conversion in the latter polymerization reactor as much as possible. The polymerization temperature was 60 to 18 in both the first and second polymerization reactors.
A range of 0 ° C, preferably 80-150 ° C is suitable.
At this time, the polymerization temperature in each polymerization reactor is set to be the same, and polymerization is performed while maintaining the temperature fluctuation within a range of ± 10 ° C., preferably within a range of ± 5 ° C. When the polymerization temperature is 50 ° C. or lower, the polymerization rate is low, and a large amount of radical polymerization initiator is required, which is not economical. On the other hand, if the temperature exceeds 180 ° C., the amount of impurities such as a low molecular weight polymer increases, which is not preferable.
On the other hand, if the temperature change exceeds ± 10 ° C., it becomes difficult to control the polymerization rate, and the molecular weight distribution becomes unfavorable.
【0017】又、本発明では生成するアクリル系樹脂の
分子量調節、熱安定性の向上等を目的としてn−ブチル
メルカプタン、イソブチルメルカプタン、n−オクチル
メルカプタン、ラウリルメルカプタン等のメルカプタン
或いはオクチルチオグリコレート等のチオグリコール酸
エステル類等の連鎖移動剤を使用することができる。連
鎖移動剤の使用量は混合物100重量部当たり0.02
〜1.0重量部、好ましくは0.05〜0.8重量部の
範囲である。更に、本発明で使用する原料混合溶液は反
応開始時或いは反応途中で重合反応を阻害することのな
い添加剤、例えば、ジオクチルフタレート等の可塑剤、
ステアリルアルコール等の潤滑剤、アントラキノン・レ
ッド等の染料、フタロシアニン・ブルー、二酸化チタン
等の顔料、ヒンダードフェノール等の酸化防止剤或いは
レゾルシノール系化合物、ベンゾトリアジン、ベンゾト
リアゾール等の紫外線防止剤等を添加することもでき
る。In the present invention, mercaptans such as n-butyl mercaptan, isobutyl mercaptan, n-octyl mercaptan and lauryl mercaptan, and octyl thioglycolate are used for the purpose of controlling the molecular weight of the acrylic resin to be formed and improving the thermal stability. A chain transfer agent such as thioglycolic acid esters can be used. The amount of the chain transfer agent used is 0.02 per 100 parts by weight of the mixture.
To 1.0 part by weight, preferably 0.05 to 0.8 part by weight. Further, the raw material mixed solution used in the present invention is an additive that does not inhibit the polymerization reaction at the start of the reaction or during the reaction, for example, a plasticizer such as dioctyl phthalate,
Adds lubricants such as stearyl alcohol, dyes such as anthraquinone / red, pigments such as phthalocyanine blue and titanium dioxide, antioxidants such as hindered phenol or UV inhibitors such as resorcinol compounds, benzotriazine and benzotriazole. You can also.
【0018】本発明のアクリル系樹脂は2個乃至それ以
上の攪拌槽型重合反応器で製造できる。以下に本発明の
アクリル系樹脂の製造法の1例を重合反応器を2個用い
る図1に基づき詳述する。原料調整槽1で所定量のメチ
ルメタクリレート或いはメチルメタクリレートと共重合
可能な他のビニル化合物からなるモノマー混合物、ラジ
カル重合開始剤及び必要に応じて連鎖移動剤、各種の添
加剤からなる混合物と溶剤とを(混合物/溶剤=70〜
95/30〜5の重量比)約20℃の温度で均一に混合
する。この混合物を第1の定量ポンプ2によって抜き出
し、フィルター3で径が0.2μm以上の塵埃を除去
し、得られた重合反応原液の温度を第1の加熱機4で5
0〜180℃、好ましくは80〜150℃の範囲に昇温
し、同一温度に温調してある第1重合反応器5に供給す
る。第1重合反応器5で転化率10〜50%、好ましく
は20〜40%まで重合させる。転化率の変化は重合反
応時の重合反応原液の温度変化及び/又は粘度変化を測
定することによって知ることができる。The acrylic resin of the present invention can be produced in two or more stirred tank polymerization reactors. One example of the method for producing the acrylic resin of the present invention will be described in detail below with reference to FIG. 1 using two polymerization reactors. A mixture of a monomer mixture of a predetermined amount of methyl methacrylate or another vinyl compound copolymerizable with methyl methacrylate, a radical polymerization initiator and, if necessary, a chain transfer agent, a mixture of various additives, and a solvent in the raw material adjusting tank 1; (Mixture / solvent = 70-
Mix uniformly at a temperature of about 20 ° C. The mixture is withdrawn by a first metering pump 2, dust having a diameter of 0.2 μm or more is removed by a filter 3, and the temperature of the resulting polymerization reaction solution is reduced by a first heater 4 to 5 μm.
The temperature is raised to the range of 0 to 180 ° C., preferably 80 to 150 ° C., and is supplied to the first polymerization reactor 5 which has been adjusted to the same temperature. In the first polymerization reactor 5, polymerization is carried out to a conversion of 10 to 50%, preferably 20 to 40%. The change in the conversion can be known by measuring the temperature change and / or the viscosity change of the polymerization reaction solution during the polymerization reaction.
【0019】第1重合反応器5での重合反応終了後、生
成した重合体含有混合物及び沸点よりやや低い温度に加
熱した所定量の溶剤を、それぞれ第2の定量ポンプ7及
び溶剤用定量ポンプ8で第2重合反応器10に供給す
る。溶剤は、重合体含有混合物/溶剤=30〜70/7
0〜30の重量比になるよう供給される。又、必要であ
れば追加の共重合可能なビニル化合物や連鎖移動剤を追
加原料用ライン11から同反応器に供給する。第2重合
反応器10へ供給する重合体含有混合物及び溶剤の温度
は第2の加熱機9で調節する。第2重合反応器10での
重合温度は第1重合反応器と同一と同一とする。重合体
含有混合物と溶剤はスタティックミキサー等を用いて混
合しながら第2重合反応器10に供給してもよい。第2
重合反応器10での転化率は80%以上、好ましくは9
5%以上になるまで重合し、実質的にラジカル重合開始
剤の全てを消費する。重合反応液の温度は、蒸発した溶
剤がコンデンサー12で凝縮され第2重合反応器10へ
還流されること及び重合反応器のジャケットによる温度
調節とで制御され、±10℃、好ましくは±5℃の範囲
内に維持される。反応圧力は、第1段及び後段の重合反
応器共に、メチルメタクリレートの飽和蒸気圧よりやや
高めにすることが好ましい。After the completion of the polymerization reaction in the first polymerization reactor 5, the produced polymer-containing mixture and a predetermined amount of the solvent heated to a temperature slightly lower than the boiling point are supplied to a second metering pump 7 and a solvent metering pump 8, respectively. To the second polymerization reactor 10. The solvent is a polymer-containing mixture / solvent = 30 to 70/7.
It is supplied so as to have a weight ratio of 0 to 30. If necessary, an additional copolymerizable vinyl compound or chain transfer agent is supplied to the reactor from the additional raw material line 11. The temperature of the polymer-containing mixture and the solvent supplied to the second polymerization reactor 10 are adjusted by the second heater 9. The polymerization temperature in the second polymerization reactor 10 is the same as that in the first polymerization reactor. The polymer-containing mixture and the solvent may be supplied to the second polymerization reactor 10 while mixing using a static mixer or the like. Second
The conversion in the polymerization reactor 10 is 80% or more, preferably 9%.
The polymerization is carried out until it becomes 5% or more, and substantially all of the radical polymerization initiator is consumed. The temperature of the polymerization reaction solution is controlled by the fact that the evaporated solvent is condensed in the condenser 12 and refluxed to the second polymerization reactor 10 and the temperature is controlled by the jacket of the polymerization reactor, and is ± 10 ° C., preferably ± 5 ° C. Is maintained within the range. The reaction pressure in both the first and second polymerization reactors is preferably slightly higher than the saturated vapor pressure of methyl methacrylate.
【0020】第2重合反応器10での重合反応が終了
後、生成した重合反応混合物は定量ポンプ13により加
熱機14に送られ、加熱機14では可能な限り短時間で
220〜260℃程度の温度に昇温する。この時の圧力
は溶剤の飽和蒸気圧よりも若干高く設定し、反応混合物
の発泡などによる加熱機能の低下を防ぐ。昇温した重合
反応混合物はライン15の下部にあるニードルバルブを
通じて脱気装置16でフラッシュされ、温度220〜2
60℃、圧力10〜150mmHgの条件で重合反応混
合物から溶剤、未重合成分及び低沸点重合体等が除去さ
れる。温度が220℃以下ではフラッシュされた後のア
クリル系樹脂の温度が低下し、溶剤、未重合成分等の除
去が不充分となり好ましくない。又、270℃以上では
オリゴマー或いはゲル化物が生成したり、アクリル系樹
脂が熱分解により劣化するので好ましくない。除去され
た溶剤、未重合成分及び低沸点重合体等はライン17を
経てリサイクルラインへ送られる。この脱気により、ア
クリル系樹脂中の溶剤、低分子量重合体等の含有量は1
重量%以下、好ましくは0.1重量%以下とされ、重合
体は脱気装置16の下部から第4の定量ポンプ18で抜
き出され、ペレタイザー19によってペレットとされ
る。After the completion of the polymerization reaction in the second polymerization reactor 10, the resulting polymerization reaction mixture is sent to a heater 14 by a metering pump 13, and the heater 14 cools the mixture to about 220 to 260 ° C. in as short a time as possible. Raise the temperature. The pressure at this time is set slightly higher than the saturated vapor pressure of the solvent to prevent a decrease in the heating function due to foaming of the reaction mixture and the like. The heated polymerization reaction mixture is flushed by a deaerator 16 through a needle valve at the lower part of the line 15 and is cooled to a temperature of 220 to 2.
The solvent, unpolymerized components, low-boiling polymer and the like are removed from the polymerization reaction mixture under the conditions of 60 ° C. and a pressure of 10 to 150 mmHg. When the temperature is 220 ° C. or lower, the temperature of the acrylic resin after flashing is lowered, and the removal of the solvent, unpolymerized components, and the like becomes insufficient, which is not preferable. On the other hand, if the temperature is 270 ° C. or higher, an oligomer or a gel is formed, and the acrylic resin is deteriorated by thermal decomposition, which is not preferable. The removed solvent, unpolymerized components, low-boiling polymer and the like are sent to a recycling line via a line 17. Due to this deaeration, the content of the solvent, low molecular weight polymer, etc. in the acrylic resin becomes 1
The polymer is drawn out from the lower part of the deaerator 16 by a fourth metering pump 18 and pelletized by a pelletizer 19.
【0021】ここで、原料調整槽1と第1重合反応器3
は同一であってもよい。重合体含有混合物からの溶剤、
低分子量重合体等の除去は上気のフラッシュ型装置以外
に、高粘度用薄膜蒸発器(例えば、商品名”EXEV
A”、神鋼パンテック社製等)やベント付押出機を使用
してもよく、又、本発明の脱気装置とそれらを併用する
ことはより好ましい。ペレット化は脱気装置下部から溶
融したアクリル系樹脂を1軸或いは多軸の押出機に供給
して行うこともできる。本装置の原料調整槽、重合反応
器、ライン、定量ポンプはジャケットに熱媒や冷媒を通
すことにより全て温度調節が可能となっている。又、ア
クリル系樹脂混合物を移送するラインはできるだけ短
く、堆積物が発生しないように設計されている。原料調
整槽及び重合反応器は不活性ガスで充分に置換してから
使用し、又、重合反応時の重合反応器の空間部は不活性
ガス雰囲気が好ましい。以上、2個の重合反応器の例で
説明したが、本発明では3個以上の反応器を使用するこ
ともでき、又、連続して運転することも可能でおる。3
個以上の重合反応器を使用する場合、第2重合反応器以
降の各重合反応器での到達転化率を順次高く設定して運
転される。Here, the raw material adjusting tank 1 and the first polymerization reactor 3
May be the same. A solvent from the polymer-containing mixture,
For removal of low molecular weight polymers, etc., besides a flash-type device, a thin film evaporator for high viscosity (for example, trade name "EXEV")
A ″, manufactured by Shinko Pantech Co., Ltd.) or an extruder with a vent may be used, and it is more preferable to use them together with the deaerator of the present invention. Acrylic resin can be supplied to a single-screw or multi-screw extruder.The raw material adjustment tank, polymerization reactor, line and metering pump of this device are all temperature-controlled by passing a heating medium or refrigerant through the jacket. In addition, the line for transferring the acrylic resin mixture is designed to be as short as possible so that no sediment is generated.The raw material adjusting tank and the polymerization reactor are sufficiently replaced with an inert gas. In addition, the space in the polymerization reactor during the polymerization reaction is preferably an inert gas atmosphere.As described above, two polymerization reactors are used, but in the present invention, three or more reactors are used. Can also be continuous .3 Oru is also possible to operate Te
When two or more polymerization reactors are used, the operation is performed with the ultimate conversion set in each of the polymerization reactors subsequent to the second polymerization reactor being sequentially set higher.
【0022】[0022]
【実施例】以下に実施例、比較例によって本発明を更に
詳しく説明する。実施例のモノマー転化率、アクリル系
樹脂の全光線透過率及び分子量、分子量分布の測定は下
記の方法で行った。 (1)モノマー転化率 第1及び第2段の重合反応器より重合体含有混合物5〜
10gを試料として試験管に取り、液体窒素で冷却す
る。試料重量を測定した後、試料をクロロホルムに完全
に溶解し、その溶液を攪拌下、試料重量の約20倍量の
メタノール中に流し込みアクリル系樹脂を析出させる。
瀘別によりアクリル系樹脂を分離し、約60℃で16時
間減圧乾燥した後、得られたアクリル系樹脂の重量を測
定する。転化率は乾燥後のアクリル系樹脂の重量と試料
重量との割合から求めた。尚、重合体含有混合物中の溶
剤含有量はガスクロマトグラムにより定量して求めた。 (2)全光線透過率 製造したアクリル系樹脂を射出成形(樹脂温度230
℃、射出圧力750Kgf/cm2)により100mm
×100mm×3mm(厚さ)の板状体に成形し、その
板状体を試料に用いてASTM D1003に従って全
光線透過率を測定する。 (3)分子量、分子量分布 GPC装置(東ソー製HLC−8020型、カラムはS
hodex KF−80M)を使用し、製造したアクリ
ル系樹脂0.3gをテトラヒドロフラン100mlに溶
解した試料を測定し、標準ポリメチルメタクリレートで
作成した検量線に基づき数平均分子量、重量平均分子量
及び分子量分布を求める。The present invention will be described in more detail with reference to the following examples and comparative examples. The following methods were used to measure the monomer conversion, total light transmittance, molecular weight, and molecular weight distribution of the acrylic resin in the examples. (1) Monomer conversion ratio The polymer-containing mixture 5 from the first and second polymerization reactors was used.
10 g is taken as a sample in a test tube and cooled with liquid nitrogen. After measuring the weight of the sample, the sample is completely dissolved in chloroform, and the solution is poured into methanol of about 20 times the weight of the sample with stirring to precipitate the acrylic resin.
The acrylic resin is separated by filtration, dried under reduced pressure at about 60 ° C. for 16 hours, and the weight of the obtained acrylic resin is measured. The conversion was determined from the ratio between the weight of the acrylic resin after drying and the weight of the sample. The solvent content in the polymer-containing mixture was determined by gas chromatography. (2) Total light transmittance Injection molding of the produced acrylic resin (resin temperature 230
° C, injection pressure 750 Kgf / cm 2 )
It is formed into a plate having a size of 100 mm x 3 mm (thickness), and the total light transmittance is measured according to ASTM D1003 using the plate as a sample. (3) Molecular weight, molecular weight distribution GPC apparatus (Tosoh HLC-8020 type, column is S
(Hodex KF-80M), a sample prepared by dissolving 0.3 g of the produced acrylic resin in 100 ml of tetrahydrofuran was measured, and the number average molecular weight, weight average molecular weight and molecular weight distribution were determined based on a calibration curve prepared with standard polymethyl methacrylate. Ask.
【0023】実施例1 原料調整槽1でメチルメタクリレート4750g、メチ
ルアクリレート250g、トルエン882gを20℃で
混合し、この混合液に窒素ガスを流速150ml/分で
約10分間吹き込みみ、溶存酸素を除去した。この混合
液の溶存酸素はDOメーター(セントラル科学製、UC
−12−SOL型)で測定した結果5ppm以下であっ
た。この混合液にラウロイルパーオキサイド10gとラ
ウロイルメルカプタン15gを加え、均一に混合した
後、第1の定量ポンプ2により抜き出し、フィルター3
により径0.2μm以上の塵埃等を除去し、第1の加熱
機4で105℃に昇温し、105℃に温度調節した第1
重合反応器5に移液し、温度105℃、攪拌翼の150
rpmで90分間重合した。この時の転化率は32%で
あった。又、この間の温度変化は±2℃以内であった。
この重合体含有混合物を第2の定量ポンプ7で抜き出
し、105℃に温度調節した第2重合反応器10へ移液
した。次いで、溶剤用定量ポンプ8によって105℃に
加熱したトルエン3618gを第2重合反応器10に供
給し、混合して、回転数100rpmで攪拌しながら同
温度で3時間重合した。この時の転化率は91%であっ
た。この間の温度変化は±3.5℃以内であった。Example 1 4750 g of methyl methacrylate, 250 g of methyl acrylate, and 882 g of toluene were mixed at 20 ° C. in a raw material adjusting tank 1, and nitrogen gas was blown into the mixture at a flow rate of 150 ml / min for about 10 minutes to remove dissolved oxygen. did. The dissolved oxygen in this mixture is measured with a DO meter (Central Scientific, UC
-12-SOL type) was 5 ppm or less. To this mixture, 10 g of lauroyl peroxide and 15 g of lauroyl mercaptan were added and mixed uniformly.
To remove dust and the like having a diameter of 0.2 μm or more. The first heater 4 raised the temperature to 105 ° C. and adjusted the temperature to 105 ° C.
The solution was transferred to the polymerization reactor 5 at a temperature of 105 ° C. and 150
Polymerization was performed for 90 minutes at rpm. At this time, the conversion was 32%. The temperature change during this period was within ± 2 ° C.
The polymer-containing mixture was withdrawn by the second metering pump 7 and transferred to the second polymerization reactor 10 whose temperature was adjusted to 105 ° C. Subsequently, 3618 g of toluene heated to 105 ° C. by the solvent metering pump 8 was supplied to the second polymerization reactor 10, mixed, and polymerized at the same temperature for 3 hours while stirring at a rotation speed of 100 rpm. At this time, the conversion was 91%. The temperature change during this period was within ± 3.5 ° C.
【0024】重合体含有混合物を第3の定量ポンプ13
を通して第3の加熱器14に送り、加圧下に245℃に
加熱した後、温度240℃で50mmHg以下の減圧状
態にした脱気装置16にフラッシュし、溶剤、低分子量
重合体等を除去した。アクリル系樹脂は脱気装置16の
下部の第4の定量ポンプ18のノズルからストランドで
出し、ペレタイザー19の水槽で冷却後、カッターで切
断してペレットとした。製造したアクリル系樹脂の全光
線透過率は93%と良好であり、GPCで測定した数平
均分子量は39500、重量平均分子量は75840で
あり、分子量分布は1.92であった。The polymer-containing mixture is pumped to a third metering pump 13
And heated to 245 ° C. under pressure, and then flushed to a deaerator 16 at a temperature of 240 ° C. and a reduced pressure of 50 mmHg or less to remove a solvent, a low molecular weight polymer and the like. The acrylic resin was taken out from the nozzle of the fourth metering pump 18 below the deaerator 16 with a strand, cooled in a water tank of the pelletizer 19, and cut with a cutter to form pellets. The total light transmittance of the produced acrylic resin was as good as 93%, the number average molecular weight measured by GPC was 39500, the weight average molecular weight was 75840, and the molecular weight distribution was 1.92.
【0025】比較例1 原料調整槽1のメチルメタクリレート4750g、メチ
ルアクリレート250gの混合液にトルエン4500g
を添加し、第2重合反応器10でトルエンを添加しなか
った以外は実施例1と同様にして重合した。90分間重
合した時の添加率は7%、第2重合反応器10で3時間
重合した後の転化率が31%であり、実施例1に比べ重
合速度が遅く、実用的ではなかった。 比較例2 第1重合反応器5でトルエンを添加しない以外は実施例
1と同様にして重合した。しかし、60分間重合を続け
た頃から重合反応液の温度が上昇し始め、第1重合反応
器5のジャケットの熱媒の温度を下げたが、温度制御が
困難となり、重合開始後80分後には、重合反応液の温
度が153℃となったため、約10℃の温度のトルエン
4500gを添加混合し、重合反応液の温度を下げた。
冷却後直ちに同反応液をステンレス製容器に抜き取っ
た。この時の転化率は56%であった。トルエン、未反
応モノマー等を除去して得たアクリル系樹脂の数平均分
子量は38800、重量平均分子量は112700であ
り、分子量分布は2.9であり、分子量分布が広いもの
であった。又、全光線透過率は89%であった。Comparative Example 1 To a mixed solution of 4750 g of methyl methacrylate and 250 g of methyl acrylate in the raw material adjusting tank 1 was added 4500 g of toluene.
And the polymerization was carried out in the same manner as in Example 1 except that toluene was not added in the second polymerization reactor 10. The addition rate after polymerization for 90 minutes was 7%, and the conversion rate after polymerization for 3 hours in the second polymerization reactor 10 was 31%. The polymerization rate was lower than that in Example 1 and was not practical. Comparative Example 2 Polymerization was carried out in the same manner as in Example 1 except that toluene was not added in the first polymerization reactor 5. However, the temperature of the polymerization reaction liquid began to rise from the time when the polymerization was continued for 60 minutes, and the temperature of the heating medium in the jacket of the first polymerization reactor 5 was lowered. However, it became difficult to control the temperature, and 80 minutes after the start of the polymerization. Since the temperature of the polymerization reaction solution reached 153 ° C., 4500 g of toluene at a temperature of about 10 ° C. was added and mixed to lower the temperature of the polymerization reaction solution.
Immediately after cooling, the reaction solution was withdrawn into a stainless steel container. At this time, the conversion was 56%. The acrylic resin obtained by removing toluene, unreacted monomers, and the like had a number average molecular weight of 38,800, a weight average molecular weight of 112,700, a molecular weight distribution of 2.9, and a wide molecular weight distribution. The total light transmittance was 89%.
【0026】[0026]
【発明の効果】メチルメタクリレートを主成分とするア
クリル系樹脂を製造するに際し、多段重合とし、1段目
及び後段の重合反応器何れに於いても溶剤を加えて重合
し、溶剤の量が少ない1段目の転化率を10〜50%、
溶剤の量を増やした後段の転化率を80%以上とした
後、溶剤、低分子量成分等を除去することにより、 (1)80%以上の高転化率にしても粘度変化が小さ
く、重合反応の制御が容易である。 (2)全光線透過率が高く、分子量分布の狭い高品質の
アクリル系樹脂が得られる。 (3)重合反応液の粘度が低いため、安価な重合反応器
が使用できる。等の効果がある。According to the present invention, when producing an acrylic resin containing methyl methacrylate as a main component, the polymerization is carried out by adding a solvent in both the first and second polymerization reactors, and the amount of the solvent is small. 10 to 50% conversion of the first stage,
After increasing the amount of the solvent to a conversion rate of 80% or more after the removal, the solvent, low molecular weight components, etc. are removed. (1) Even at a high conversion rate of 80% or more, the change in viscosity is small, Is easy to control. (2) A high-quality acrylic resin having a high total light transmittance and a narrow molecular weight distribution can be obtained. (3) Since the viscosity of the polymerization reaction solution is low, an inexpensive polymerization reactor can be used. And so on.
【0027】[0027]
【図1】図1は本発明のアクリル系樹脂の製造方法に係
るフローシートである。FIG. 1 is a flow sheet according to a method for producing an acrylic resin of the present invention.
1 原料調整槽 2 第1の定量ポンプ 3 フィルター 4 第1の加熱機 5 第1重合反応器 6 第1のコンデンサー 7 第2の定量ポンプ 8 溶剤用定量ポンプ 9 第2の加熱機 10 第2の重合反応器 11 追加原料用ライン 12 第2のコンデンサー 13 第3の定量ポンプ 14 第3の加熱機 15 移液ライン 16 脱気装置 17 溶剤等除去ライン 18 第4の定量ポンプ 19 ペレタイザー REFERENCE SIGNS LIST 1 raw material adjusting tank 2 first metering pump 3 filter 4 first heater 5 first polymerization reactor 6 first condenser 7 second metering pump 8 solvent metering pump 9 second heater 10 second Polymerization reactor 11 Line for additional raw material 12 Second condenser 13 Third pump 14 Third heater 15 Liquid transfer line 16 Degassing device 17 Removal line for solvent etc. 18 Fourth constant pump 19 Pelletizer
Claims (1)
重量%〜95重量%のメチルメタクリレートと、共重合
可能な他のビニル化合物とからなるモノマーを、ラジカ
ル重合開始剤の作用で重合してアクリル系樹脂を製造す
るにあたり、(1)第1重合反応器でモノマーと溶剤と
を重量比で70〜95/30〜5の割合で混合し、モノ
マーの転化率が10〜50%の範囲に重合し、生成した
重合体含有混合物を最終重合反応器を含む後段の重合反
応器へ移すこと、(2)後段の重合反応器中で重合体含
有混合物と溶剤とを重量比で30〜70/70〜30の
割合で混合すること、(3)後段の重合反応器でモノマ
ーの転化率が80%以上になるまで重合すること、
(4)第1及び後段の重合反応器での重合温度を同一と
し、温度変化を±10℃の範囲内に維持すること、
(5)最終の重合反応器で得た重合体混合物から溶剤、
未反応モノマー及び低分子量重合体を除去すること、を
特徴とするアクリル系樹脂の製造法。1. The method of claim 1 wherein two or more polymerization reactors are used.
In producing an acrylic resin by polymerizing a monomer composed of methyl methacrylate by weight to 95% by weight and another vinyl compound copolymerizable by the action of a radical polymerization initiator, (1) a first polymerization reaction In a vessel, the monomer and the solvent are mixed at a weight ratio of 70 to 95/30 to 5, and the conversion of the monomer is polymerized to a range of 10 to 50%. (2) mixing the polymer-containing mixture and the solvent in the latter polymerization reactor at a weight ratio of 30 to 70/70 to 30; and (3) mixing the latter in the latter polymerization reactor. Polymerizing in a polymerization reactor until the conversion of the monomer is 80% or more;
(4) keeping the polymerization temperature in the first and second polymerization reactors the same, and keeping the temperature change within a range of ± 10 ° C .;
(5) Solvent from the polymer mixture obtained in the final polymerization reactor,
A method for producing an acrylic resin, comprising removing unreacted monomers and a low molecular weight polymer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4194460A JP3013953B2 (en) | 1992-06-12 | 1992-06-12 | Acrylic resin manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4194460A JP3013953B2 (en) | 1992-06-12 | 1992-06-12 | Acrylic resin manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05339305A JPH05339305A (en) | 1993-12-21 |
JP3013953B2 true JP3013953B2 (en) | 2000-02-28 |
Family
ID=16324936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4194460A Expired - Fee Related JP3013953B2 (en) | 1992-06-12 | 1992-06-12 | Acrylic resin manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3013953B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100258294B1 (en) * | 1995-11-07 | 2000-06-01 | 우노 인코 | Viscosity index improver, process for preparing the same and lubricating oil composition |
-
1992
- 1992-06-12 JP JP4194460A patent/JP3013953B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05339305A (en) | 1993-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6632907B1 (en) | Process for producing methacrylic polymer | |
JP3395291B2 (en) | Method for producing methacrylic polymer | |
US5530080A (en) | Polymethacrylate molding compound with high heat deflection temperature and stability against thermal degradation | |
JP3293702B2 (en) | Method for producing methyl methacrylate polymer | |
US5980790A (en) | Process for producing a copolymer | |
JP3013951B2 (en) | Acrylic resin manufacturing method | |
KR100689598B1 (en) | Method for preparing methacrylic resin having good stability and fluidity | |
CA1330472C (en) | Polyacrylic process | |
JP3937111B2 (en) | Method for producing polymer | |
JP3906848B2 (en) | Method for producing methacrylic resin | |
JP3013953B2 (en) | Acrylic resin manufacturing method | |
JP3858948B2 (en) | Method for producing styrene-methyl methacrylate polymer | |
JP4257469B2 (en) | Method for producing methyl syrup methacrylate | |
JP2003096105A (en) | Process for manufacturing methacrylic polymer | |
KR100763951B1 (en) | Process for Methacrylic Resin Having Good Optical Properties | |
JPS6357613A (en) | Methacrylate resin and its production | |
JPH08253507A (en) | Production of methacrylic resin | |
JP3319485B2 (en) | Method for producing methacrylic resin having thermal decomposition resistance | |
JP4296363B2 (en) | Acrylic syrup manufacturing method | |
JP2001233912A (en) | Manufacturing method of methacrylic polymer | |
JP3319484B2 (en) | Method for producing methacrylic resin having thermal decomposition resistance | |
JP3901700B2 (en) | Method for producing methacrylic resin | |
JP3319483B2 (en) | Methacrylic resin having thermal decomposition resistance and method for producing the same | |
JPH0812722A (en) | Production of heat-resistant resin | |
KR100682240B1 (en) | Method for the Continuous Preparation of High-purity Methacrylate Polymer Using Bulk Polymerization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |