JPH0771943A - Shape measuring system - Google Patents

Shape measuring system

Info

Publication number
JPH0771943A
JPH0771943A JP24383893A JP24383893A JPH0771943A JP H0771943 A JPH0771943 A JP H0771943A JP 24383893 A JP24383893 A JP 24383893A JP 24383893 A JP24383893 A JP 24383893A JP H0771943 A JPH0771943 A JP H0771943A
Authority
JP
Japan
Prior art keywords
measured
light beam
capsule
light
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24383893A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yamamoto
裕之 山本
Shinji Uchiyama
晋二 内山
Toshiichi Oshima
登志一 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP24383893A priority Critical patent/JPH0771943A/en
Priority to DE69419291T priority patent/DE69419291T2/en
Priority to EP94306489A priority patent/EP0641993B1/en
Priority to US08/300,997 priority patent/US5748865A/en
Publication of JPH0771943A publication Critical patent/JPH0771943A/en
Priority to US08/778,572 priority patent/US5862252A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To accurately measure the shape of an object to be measured in all directions by varying the position of application of a light beam to the object to be measured which is supported by a supporting member inside a transmissive capsule, and detecting the light beam reflected from the object to be measured. CONSTITUTION:A laser beam from a laser oscillator 1 undergoes intensity modulation by a light modulator 2 and is split by a beam splitter 4 into two light beams, a reference light beam La and a measuring light beam Lb. The measuring light beam Lb transmitted through the splitter 4 passes through an opening in a reflecting member 5 and illuminates by way of a capsule 7 one point of an object 6 to be measured. The capsule 7 is driven by a drive means 16 in a predetermined direction so that the light beam is made incident on the object 6 in all directions. The light beam reflected and scattered by the object 6 is made incident on the member 5, again by way of the capsule 7. The light beam reflected by the member 5 is introduced into a photodiode 10 via a lens 8. A phase measuring instrument 11 measures the phase difference between the reference light beam La and the measuring light beam Lb which are made incident on the respective photodiodes 9, 10, and this measurement is inputted to an information processing means 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は形状測定装置に関し、特
に光透過性材料より成るカプセル内に保持した被測定物
体をレーザからの光束で照射し、該被測定物体からの反
射光束を利用して、該被測定物体の形状を求める様にし
た、例えば体積の測定やCADの入力の際に好適なもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shape measuring apparatus, and more particularly, it irradiates an object to be measured held in a capsule made of a light transmissive material with a light beam from a laser and utilizes a light beam reflected from the object to be measured. Thus, the shape of the object to be measured is obtained, which is suitable for, for example, volume measurement or CAD input.

【0002】[0002]

【従来の技術】従来より、対象とする物体(被測定物
体)に光束を照射し、該物体からの反射光束を利用して
該物体までの距離を求め、これを物体全体に亘って2次
元的に光走査することにより、該物体に関する距離情報
を得るようにした、所謂レンジファインダが種々と提案
されている。
2. Description of the Related Art Conventionally, an object (object to be measured) is irradiated with a light beam, and a reflected light beam from the object is used to obtain a distance to the object. Various so-called range finders have been proposed in which distance information regarding the object is obtained by optically scanning the object.

【0003】該レンジファインダにおいて、物体までの
距離を計測する方法としては、光パルスを物体に当て、
物体で反射して戻るまでの時間を計測して距離を求める
方法や、光束の強度を正弦波状に変調して、発射し対象
物体に入射させ、該物体から反射してくる光束と元の光
束との位相差を検出することによって距離を求める方法
等がある。
In the range finder, a method for measuring the distance to an object is to apply an optical pulse to the object,
A method of obtaining the distance by measuring the time until the object reflects and returns, or a method in which the intensity of the light flux is modulated into a sine wave, emitted and made incident on the target object, and the light flux reflected from the object and the original light flux. There is a method of obtaining the distance by detecting the phase difference between

【0004】これらは近年、半導体レーザや高周波回路
技術の発達により1mm以下の分解能で距離が測れる様
に成り、近距離の物体の位置計測や、物体の識別等に用
いられている。
In recent years, with the development of semiconductor lasers and high-frequency circuit technology, distances can be measured with a resolution of 1 mm or less, and they are used for position measurement of short-distance objects, identification of objects, and the like.

【0005】また、同様に光源からの光束を反射鏡を介
して物体上に照射し、このとき該反射鏡を駆動手段によ
り駆動して、物体を該光束で2次元的に走査し該物体か
らの反射光束を利用して光路長の変位を検出し、これよ
り該物体の形状を測定する形状測定装置が提案されてい
る(参考文献:オプトエレクトロニクス(1985),No.1
2,pp,59 , 井口征士ほか)。
Similarly, a light beam from a light source is irradiated onto an object via a reflecting mirror, and at this time, the reflecting mirror is driven by a driving means to scan the object two-dimensionally with the light beam and A shape measuring device has been proposed which detects the displacement of the optical path length by using the reflected light flux of the object and measures the shape of the object from this (Reference: Optoelectronics (1985), No. 1).
2, pp, 59, Seiji Iguchi and others).

【0006】[0006]

【発明が解決しようとする課題】上述の形状測定装置は
被測定物体を空間的に保持又は載置している。この為、
限られた方向から2次元的に光走査する必要があり、物
体の裏面や上面、下面等の測定が行えないという問題点
があった。
The above-mentioned shape measuring apparatus spatially holds or places an object to be measured. Therefore,
There is a problem in that it is necessary to perform two-dimensional optical scanning from a limited direction, and it is not possible to measure the back surface, top surface, bottom surface, etc. of the object.

【0007】本発明は光源からの光束を被測定物体に照
射し、このとき該被測定物体からの反射光束を検出して
該被測定物体の形状を測定する際、被測定物体を適切な
る形状のカプセル内に収納することにより、被測定物体
の全方位の形状を精度良く測定することができる形状測
定装置の提供を目的とする。
The present invention irradiates a light beam from a light source onto an object to be measured, detects the reflected light beam from the object to be measured at this time, and measures the shape of the object to be measured. It is an object of the present invention to provide a shape measuring device capable of accurately measuring the omnidirectional shape of an object to be measured by housing it in the capsule.

【0008】[0008]

【課題を解決するための手段】本発明の形状測定装置は
被測定物体を支持部材により、光透過性材料より成るカ
プセル内に支持し、該カプセル外に設けた光源からの光
束を該カプセルを介して該被測定物体に照射する際、該
カプセルに設けた駆動手段により、該カプセルを該光束
の入射方向に対して相対的に変移させて、該光束の該被
測定物体への照射位置を種々と変え、このとき該被測定
物体からの反射光束を検出手段で検出し、該検出手段か
らの信号を利用して該被測定物体の形状を測定している
ことを特徴としている。
The shape measuring apparatus of the present invention supports an object to be measured in a capsule made of a light transmissive material by a supporting member, and causes a light beam from a light source provided outside the capsule to guide the object. When irradiating the object to be measured through the capsule, the capsule is relatively displaced with respect to the incident direction of the light beam by the driving means provided in the capsule, and the irradiation position of the light beam to the object to be measured is changed. Variously, variously, at this time, the reflected light flux from the measured object is detected by the detection means, and the shape of the measured object is measured by using the signal from the detection means.

【0009】[0009]

【実施例】図1は本発明の実施例1の構成概略図、図2
は図1の一部分の拡大説明図である。図中、1は光源と
してのレーザ発振器であり、レーザ光を射出している。
Embodiment 1 FIG. 1 is a schematic configuration diagram of Embodiment 1 of the present invention, and FIG.
FIG. 2 is an enlarged explanatory view of a part of FIG. 1. In the figure, 1 is a laser oscillator as a light source, which emits laser light.

【0010】2は光変調器であり、レーザ発振器1から
のレーザ光を強度変調している。3は光変調器2を駆動
する為の発振器である。
Reference numeral 2 is an optical modulator for intensity-modulating the laser light from the laser oscillator 1. Reference numeral 3 is an oscillator for driving the optical modulator 2.

【0011】4はビーム分割器であり、レーザ発振器1
からのレーザ光を参照光Laと測定光Lbとに分割して
いる。9はフォトダイオードであり、ビーム分割器4で
分割した参照光Laの強度を検出している。
Reference numeral 4 denotes a beam splitter, which is a laser oscillator 1
The laser light from is divided into a reference light La and a measurement light Lb. A photodiode 9 detects the intensity of the reference light La split by the beam splitter 4.

【0012】5は中央部に開口5aを有する反射部材で
ある。ビーム分割器4からの測定光Lbは反射部材5の
開口5aを通過して被測定物体6に入射している。
Reference numeral 5 is a reflecting member having an opening 5a at the center. The measurement light Lb from the beam splitter 4 passes through the opening 5a of the reflecting member 5 and is incident on the measured object 6.

【0013】被測定物体6は光透過性の材質(例えばガ
ラス)より成る球形のカプセル7内に支持されている。
13,14は各々モータであり、カプセル7を駆動する
駆動手段16の一要素を構成している。
The object 6 to be measured is supported in a spherical capsule 7 made of a light-transmissive material (eg glass).
Reference numerals 13 and 14 denote motors, respectively, which form an element of drive means 16 for driving the capsule 7.

【0014】8は集光レンズであり、被測定物体6で反
射し、反射部材5で反射した測定光Lbを集光してフォ
トダイオード10に導光している。
A condenser lens 8 condenses the measurement light Lb reflected by the object 6 to be measured and reflected by the reflecting member 5 and guides it to the photodiode 10.

【0015】フォトダイオード10は後述するように被
測定物体6からの反射光束に基づく測定光Lbの強度を
検出している。
The photodiode 10 detects the intensity of the measuring light Lb based on the reflected light flux from the object 6 to be measured, as will be described later.

【0016】11は位相測定器であり、フォトダイオー
ド9,10で検出した参照光Laと測定光Lbとの位相
差を求めている。12は情報処理手段であり、駆動手段
16を駆動制御し、被測定物体6への測定光Lbの入射
位置を種々と変移させると共に該測定光Lbの入射位置
毎の位相測定器11からの信号に基づく光路長差より被
測定物体6の形状を演算し求めている。
Reference numeral 11 denotes a phase measuring device, which calculates the phase difference between the reference light La detected by the photodiodes 9 and 10 and the measurement light Lb. Reference numeral 12 denotes an information processing means, which drives and controls the driving means 16 to change variously the incident position of the measurement light Lb on the measured object 6 and a signal from the phase measuring device 11 for each incident position of the measurement light Lb. The shape of the measured object 6 is calculated and obtained from the optical path length difference based on

【0017】本実施例では上記構成に於て、レーザ発振
器1からのレーザ光を光変調器2で強度変調し、ビーム
分割器4によって参照光Laと測定光Lbとの2つの光
束に分割している。
In this embodiment, in the above structure, the laser light from the laser oscillator 1 is intensity-modulated by the light modulator 2 and is split by the beam splitter 4 into two light fluxes of the reference light La and the measurement light Lb. ing.

【0018】このうちビーム分割器4を透過した測定光
Lbは図2に示すように反射部材5の開口5aを通過
し、カプセル7を介して被測定物体6の一点6aを照射
している。該被測定物体6で反射・散乱した反射光束は
再びカプセル7を介した後、反射部材5に入射してい
る。そして反射部材5で反射した光束は集光レンズ8を
介してフォトダイオード10に導光される。
Of these, the measuring light Lb which has passed through the beam splitter 4 passes through the opening 5a of the reflecting member 5 and irradiates a point 6a of the measured object 6 via the capsule 7 as shown in FIG. The reflected light beam reflected and scattered by the object 6 to be measured passes through the capsule 7 again, and then enters the reflecting member 5. Then, the light flux reflected by the reflecting member 5 is guided to the photodiode 10 via the condenser lens 8.

【0019】一方、ビーム分割器4で反射分割された参
照光Lbはフォトダイオード9に入射している。
On the other hand, the reference light Lb reflected and split by the beam splitter 4 is incident on the photodiode 9.

【0020】位相測定器11はフォトダイオード9,1
0に入射した参照光Laと測定光Lbとの位相差を測定
し、該測定結果を情報処理手段12に入力している。情
報処理手段12は該位相差情報と光変調器2の変調周波
数から参照光Laと測定光Lbとの光路差を求めてい
る。
The phase measuring device 11 includes photodiodes 9 and 1
The phase difference between the reference light La and the measurement light Lb incident on 0 is measured, and the measurement result is input to the information processing means 12. The information processing means 12 obtains the optical path difference between the reference light La and the measurement light Lb from the phase difference information and the modulation frequency of the optical modulator 2.

【0021】このとき駆動手段16によりカプセル7を
後述する所定方向に駆動して光束が被測定物体の全方位
に入射するようにしている。そして光路差を被測定物体
の全方位について求めこれより、公知の方法により被測
定物体の形状を求めている。
At this time, the driving means 16 drives the capsule 7 in a predetermined direction, which will be described later, so that the light beam enters all directions of the object to be measured. Then, the optical path difference is obtained in all directions of the object to be measured, and from this, the shape of the object to be measured is obtained by a known method.

【0022】図3(A)(B)は本実施例における被測
定物体6の支持機構の要部説明図とA−A断面の一部分
の説明図である。同図に於て15aはカプセル7に穿設
したネジ穴、15bはこれと螺合するネジ(支持部材)
である。
3 (A) and 3 (B) are an explanatory view of a main part of a support mechanism of the object 6 to be measured in this embodiment and an explanatory view of a part of the AA cross section. In the figure, 15a is a screw hole formed in the capsule 7, and 15b is a screw (supporting member) screwed into this hole.
Is.

【0023】本実施例では被測定物体6を支持部材15
bにより4点で支持しており、カプセル7に格納した被
測定物体6を各支持部材15bのカプセル7内に突出す
る長さを調節してカプセル7の略中央に固定している。
固定後、該カプセル7の外部に出た部分は切り取ってい
る。
In this embodiment, the object 6 to be measured is attached to the support member 15
The object to be measured 6 stored in the capsule 7 is fixed at approximately the center of the capsule 7 by adjusting the length of each supporting member 15b projecting into the capsule 7.
After fixing, the portion of the capsule 7 that is exposed to the outside is cut off.

【0024】図4は図1の駆動手段によるカプセル7の
回転方向及び回転角を求める測地ドームのデータ構造の
説明図であり、図4(A)は測地ドームの外観図、図4
(B)はそれの展開図である。
FIG. 4 is an explanatory view of the data structure of the geodesic dome for obtaining the rotation direction and the rotation angle of the capsule 7 by the driving means of FIG. 1, and FIG. 4A is an external view of the geodesic dome.
(B) is a development view thereof.

【0025】情報処理手段12は被測定物体を全方位か
ら一様な密度で計測する為に図4に示す測地ドームの各
頂点の緯度又は経度の情報を算出し、カプセル7の対応
する点に測定光Lbが照射されるように、モータ13,
14を駆動制御する。
The information processing means 12 calculates the latitude or longitude information of each vertex of the geodesic dome shown in FIG. The motor 13, so that the measurement light Lb is emitted,
14 is driven and controlled.

【0026】このときの頂点位置(i,j,k)と緯度
・経度(θ,φ)の関係(但し、0≦θ≦π,0≦φ≦
2π)は、κ=2π/5,τ=atan(2)とすると
The relationship between the vertex position (i, j, k) and the latitude / longitude (θ, φ) at this time (where 0 ≦ θ ≦ π, 0 ≦ φ ≦
2π) is κ = 2π / 5, τ = atan (2)

【0027】[0027]

【数1】 で表される(C.H.Chen and A.C.Kak,"A robot vision s
ystem for recognizing3-D object in low-order polyn
omial time,"IEEE Transaction on Systems, Man,and C
ybernetics,Vol.19 No.6,pp.1535-1563,1989.)。
[Equation 1] Represented by (CHChen and ACKak, "A robot vision s
ystem for recognizing3-D object in low-order polyn
omial time, "IEEE Transaction on Systems, Man, and C
ybernetics, Vol.19 No.6, pp.1535-1563,1989.).

【0028】尚、支持部材15bが被測定物体6に接し
ている部分の形状は近傍の値から内挿している。
The shape of the portion where the support member 15b is in contact with the object 6 to be measured is interpolated from the neighboring values.

【0029】本実施例では球形のカプセル7に被測定物
体6を格納し、それを光源からの光束の入射方向に対し
て図4に示す測地ドームから求めた回転方向及び回転角
づつ回転して、被測定物体を光走査するように構成した
がこれに限らず以下のように構成しても良い。 (1) 直方体の透明カプセルに被測定物体を格納し、
それを光源からの光束の入射方向に対して90度づつ直
方体の各面が直面するよう回転して、被測定物体を2次
元的に光走査し形状を測定する。 (2) 直方体透明カプセルに被測定物体を格納し、そ
れを光源からの光束の入射方向に対して90度づつ回転
して2次元のパターン光、又はスリット光を数回照射し
て形状を測定する。 (3) 球形透明カプセルに被測定物体を格納し、それ
を回転すると共に2次元のパターン光又はスリット光を
数回照射して形状を測定する。
In this embodiment, the object 6 to be measured is stored in a spherical capsule 7 and is rotated by the rotation direction and the rotation angle obtained from the geodesic dome shown in FIG. 4 with respect to the incident direction of the light beam from the light source. Although the object to be measured is configured to be optically scanned, the configuration is not limited to this, and the following configuration may be used. (1) Store the object to be measured in a rectangular parallelepiped transparent capsule,
It is rotated 90 degrees with respect to the incident direction of the light flux from the light source so that each surface of the rectangular parallelepiped faces, and the object to be measured is two-dimensionally optically scanned to measure the shape. (2) The object to be measured is stored in a rectangular parallelepiped transparent capsule, which is rotated by 90 degrees with respect to the incident direction of the light flux from the light source, and the shape is measured by irradiating two-dimensional pattern light or slit light several times. To do. (3) The object to be measured is stored in a spherical transparent capsule, and the shape is measured by rotating the object and irradiating it with two-dimensional pattern light or slit light several times.

【0030】尚、本実施例に於てカプセル7は必ずしも
密閉される必要は無く、被測定物体を包囲し、駆動手段
により所望の角度に回転され得るものであれば良い。こ
のとき、カプセル7が各方位からの光束を均質に透過す
るもので無くても良い。
In this embodiment, the capsule 7 does not necessarily have to be hermetically sealed, but may be any one that surrounds the object to be measured and can be rotated at a desired angle by the driving means. At this time, the capsule 7 does not have to uniformly transmit the light flux from each direction.

【0031】[0031]

【発明の効果】本発明によれば被測定物体を光走査して
形状を測定する際、前述の如く各要素を構成することに
より、全方位の形状を高精度に測定することができる形
状測定装置を達成することができる。
According to the present invention, when the object to be measured is optically scanned to measure its shape, by configuring each element as described above, it is possible to measure the shape in all directions with high accuracy. A device can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の形状測定装置の概略構成
FIG. 1 is a schematic configuration diagram of a shape measuring apparatus according to an embodiment of the present invention.

【図2】 図1の一部分の拡大説明図FIG. 2 is an enlarged explanatory view of a part of FIG.

【図3】 被測定物体の支持機構の説明図FIG. 3 is an explanatory view of a support mechanism for an object to be measured.

【図4】 測地ドームのデータ構造の説明図FIG. 4 is an explanatory diagram of the data structure of the geodesic dome.

【符号の説明】[Explanation of symbols]

1 レーザ発振器 2 光変調器 3 発振器 4 ビーム分割器 5 反射部材 6 被測定物体 7 カプセル 8 集光レンズ 9,10 フォトダイオード 11 位相測定器 12 情報処理手段 13,14 モータ 15a ネジ穴 15b 支持部材 16 駆動手段 1 Laser oscillator 2 Optical modulator 3 Oscillator 4 Beam splitter 5 Reflecting member 6 Object to be measured 7 Capsule 8 Condensing lens 9,10 Photodiode 11 Phase measuring device 12 Information processing means 13, 14 Motor 15a Screw hole 15b Supporting member 16 Drive means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被測定物体を支持部材により、光透過性
材料より成るカプセル内に支持し、該カプセル外に設け
た光源からの光束を該カプセルを介して該被測定物体に
照射する際、該カプセルに設けた駆動手段により、該カ
プセルを該光束の入射方向に対して相対的に変移させ
て、該光束の該被測定物体への照射位置を種々と変え、
このとき該被測定物体からの反射光束を検出手段で検出
し、該検出手段からの信号を利用して該被測定物体の形
状を測定していることを特徴とする形状測定装置。
1. An object to be measured is supported by a supporting member in a capsule made of a light transmissive material, and when a light beam from a light source provided outside the capsule is applied to the object to be measured through the capsule, By driving means provided on the capsule, the capsule is relatively displaced with respect to the incident direction of the light beam, and the irradiation position of the light beam on the object to be measured is changed variously.
At this time, the shape measuring device is characterized in that the reflected light beam from the object to be measured is detected by the detecting means, and the shape of the object to be measured is measured using the signal from the detecting means.
JP24383893A 1993-09-03 1993-09-03 Shape measuring system Pending JPH0771943A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP24383893A JPH0771943A (en) 1993-09-03 1993-09-03 Shape measuring system
DE69419291T DE69419291T2 (en) 1993-09-03 1994-09-02 Form measuring apparatus
EP94306489A EP0641993B1 (en) 1993-09-03 1994-09-02 Shape measuring apparatus
US08/300,997 US5748865A (en) 1993-09-03 1994-09-06 Range image shape measurement using hierarchical ordering of multiresolution mesh data from delaunay triangulation
US08/778,572 US5862252A (en) 1993-09-03 1997-01-03 Shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24383893A JPH0771943A (en) 1993-09-03 1993-09-03 Shape measuring system

Publications (1)

Publication Number Publication Date
JPH0771943A true JPH0771943A (en) 1995-03-17

Family

ID=17109702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24383893A Pending JPH0771943A (en) 1993-09-03 1993-09-03 Shape measuring system

Country Status (1)

Country Link
JP (1) JPH0771943A (en)

Similar Documents

Publication Publication Date Title
US3847485A (en) Optical noncontacting surface sensor for measuring distance and angle of a test surface
US3768910A (en) Detecting the position of a surface by focus modulating the illuminating beam
JP2651093B2 (en) Shape detection method and device
JPH09297014A (en) Laser radar 3-d form measurement device
JPH0771943A (en) Shape measuring system
EP0449337A2 (en) Range finding array camera
JPH0954158A (en) Wide angle optical wave distance-measuring apparatus
JP2987540B2 (en) 3D scanner
JPH10267624A (en) Measuring apparatus for three-dimensional shape
JPS6161070B2 (en)
JPH10239589A (en) Interference microscope
JPH08261734A (en) Shape measuring apparatus
JP3546126B2 (en) 3D shape measuring device
JPS62168007A (en) Shape recognizing device
JPS6371675A (en) Laser distance measuring instrument
JP3582853B2 (en) Target reflector detection device
JPH09189545A (en) Distance measuring device
JPS6379082A (en) Laser distance measuring apparatus
JPH0128987B2 (en)
JP2000258339A (en) Birefringence-measuring device
JPH06137827A (en) Optical level difference measuring apparatus
JPH01203918A (en) Optical distance measurement between measuring apparatus and object
JPH01237406A (en) Remote displacement measuring apparatus
JP2755762B2 (en) Remote displacement measuring device
JPH02276908A (en) Three-dimensional position recognizing device