JP3582853B2 - Target reflector detection device - Google Patents

Target reflector detection device Download PDF

Info

Publication number
JP3582853B2
JP3582853B2 JP16610594A JP16610594A JP3582853B2 JP 3582853 B2 JP3582853 B2 JP 3582853B2 JP 16610594 A JP16610594 A JP 16610594A JP 16610594 A JP16610594 A JP 16610594A JP 3582853 B2 JP3582853 B2 JP 3582853B2
Authority
JP
Japan
Prior art keywords
light beam
target reflector
reflector
irradiation
polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16610594A
Other languages
Japanese (ja)
Other versions
JPH0814891A (en
Inventor
文夫 大友
健一郎 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP16610594A priority Critical patent/JP3582853B2/en
Priority to US08/302,051 priority patent/US5612781A/en
Priority to DE69411102T priority patent/DE69411102T2/en
Priority to EP97203395A priority patent/EP0829702B1/en
Priority to DE69433327T priority patent/DE69433327T2/en
Priority to EP94306605A priority patent/EP0643283B1/en
Priority to CN94115159.XA priority patent/CN1092793C/en
Priority to CNB991107764A priority patent/CN100397039C/en
Publication of JPH0814891A publication Critical patent/JPH0814891A/en
Priority to US08/627,430 priority patent/US5774211A/en
Application granted granted Critical
Publication of JP3582853B2 publication Critical patent/JP3582853B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、偏光照射光束を本体より対象反射体に向けて照射し、該対象反射体よって反射された偏光反射光束を検出することで対象反射体を検出する対象反射体検出装置に関するものである。
【0002】
【従来の技術】
土木、建築の分野で高さの基準を決定する為に、偏光照射光束を水平面内で回転走査するレーザ回転照射装置が使用される様になっている。
【0003】
近年、可視半導体レーザが実用化され、該可視半導体レーザを使用したレーザ回転照射装置も出現し、目視による作業ができる様になった。斯かるレーザ回転照射装置では作業者の安全性を確保するという観点から、レーザ出力が制限されている。この為、偏光照射光束の反射の目視確認を要する作業、測定では作業距離が比較的短くなっている。
【0004】
この為、偏光照射光束を往復走査し、偏光反射光束の見掛上の輝度を上げ、作業距離を長くしたレーザ回転照射装置が実用化されている。適正な範囲を往復走査する為には走査位置を知る必要があり、この為作業地点に対象反射体を設置し、該対象反射体からの偏光反射光束を検知して対象反射体の位置を検知する対象反射体検出装置がある。
【0005】
斯かる対象反射体検出装置に於いて、対象反射体であることを識別する為に、出射光は偏光とし、対象反射体からの反射光の偏光は出射光の偏光方向とは変化する様にしておく。ガラス面等の不要反射体は偏光方向を保存した状態で反射する性質がある為、それと識別する為である。
【0006】
【発明が解決しようとする課題】
上記したレーザ回転照射装置に於いては、対象反射体からの偏光に対応する検出手段によって反射光を検出しているが、土木・建築等の現場には多くの不要反射物体が存在し、反射の態様が一定でなく、色々な偏光成分を含むことがある。
【0007】
この為レーザ回転照射装置からのレーザ光が、光沢面を有する不要反射物体に直角に当たった場合の様な強い反射光が本体検出部に入射した時、或は光学的に対象反射体に類似する反射物体により反射された反射光が本体検出部に入射した時等、誤って対象反射体であると検知され、間違った位置で往復走査を起こすことがあった。
【0008】
本発明は斯かる実情に鑑み、対象反射体からの反射光束と対象反射体に光学的に類似した非対象反射体からの反射光束を確実に識別することができる対象反射体検出装置を提供しようとするものである。
【0009】
【課題を解決するための手段】
本発明は、偏光照射光束を本体部より対象反射体に向けて照射し、該対象反射体によって反射された偏光反射光束を上記本体部で受光して、対象反射体を検出する対象反射体検出装置に於いて、前記本体部が、対象反射体からの偏光反射光束を検出する第1検出手段と、対象反射体からの偏光反射光束と異なった偏光光束を検出する第2検出手段と、第1検出手段の出力と第2検出手段の出力の比較から対象反射体を識別する反射光束検出回路とを具備し、前記対象反射体の反射面は少なくとも2分割され、少なくとも1面は前記偏光照射光束の偏光方向を保存した偏光反射光束として反射する反射部であり、少なくとも1面は前記偏光照射光束の偏光方向を変換した偏光反射光束として反射する偏光変換反射部である対象反射体検出装置に係り、或は対象反射体の幅を反射光束検出回路からの出力より受光時間を検出する手段を具備した対象反射体検出装置に係り、或は対象反射体の偏光変換反射部と反射部の幅を検出する検出部と、偏光変換反射部と反射部の幅比から偏光照射光束が対象反射体に当たっている位置を判別する判別部を具備し、該判別部からの照射位置信号を基に偏光照射光束の射出方向を制御する様構成した対象反射体検出装置に係り、或は更に対象反射体の偏光変換反射部と反射部の幅を検出する検出部と、検出部の出力に基づいて対象反射体の距離を算出し距離信号を得、該距離信号に基づいてフォーカス機構を作動させるフォーカス制御部とを具備した対象反射体検出装置に係るものである。
【0010】
【作用】
対象反射体を偏光変換反射部と反射部とに分割し、両反射部からの反射光束をそれぞれ検出し、比較することで不要反射体からの反射光束と対象反射体からの反射光束とを区別し、対象反射体の誤認を防止し、該対象反射体を中心として所要角度で往復走査し、又対象反射体の幅を検出して対象反射体の中心に対して正確に偏光照射光束射出し、更に対象反射体の幅を基にオートフォーカスを行う。
【0011】
【実施例】
以下、図面を参照しつつ本発明の一実施例を説明する。
【0012】
図1は本発明に係る対象反射体検出装置を具備したレーザ回転照射装置を示している。該レーザ回転照射装置は回転照射装置本体1と該回転照射装置本体1から離れて配置される対象反射体2から構成される。
【0013】
先ず回転照射装置本体1を説明する。
【0014】
回転照射装置本体1は発光部3、回動部4、反射光検出部5、回動制御部6、発光素子駆動部7から構成される。
【0015】
前記発光部3を説明する。
【0016】
直線偏光の偏光照射光束を射出するレーザダイオード10の光軸上に、該レーザダイオード10側からコリメータレンズ11、第1λ/4複屈折部材12、孔開きミラー13が順次配設され、前記レーザダイオード10から射出される直線偏光の偏光照射光束は前記コリメータレンズ11により平行光束とされ、前記第1λ/4複屈折部材12で円偏光に変換される。円偏光の偏光照射光束は前記孔開きミラー13を通って回動部4へと射出される。
【0017】
前記回動部4は前記発光部3から入射された偏光照射光束を水平方向に射出走査するものであり、発光部3からの偏光照射光束の光軸を90°変向するペンタプリズム14が前記偏光照射光束の光軸を中心に回転する回転支持台15に設けられ、該回転支持台15は従動ギア16、駆動ギア17を介して走査モータ18に連結されている。
【0018】
又、該回動部4には前記対象反射体2からの偏光反射光束が入射する様になっており、前記ペンタプリズム14に入射した偏光反射光束は前記孔開きミラー13に向けて変向され、該孔開きミラー13は反射光検出部5に偏光反射光束を入射させる。
【0019】
次に、前記反射光検出部5について説明する。
【0020】
前記孔開きミラー13の反射光軸上にコンデンサレンズ20、第2λ/4複屈折部材21、ピンホール22、偏光ビームスプリッタ23、フォトダイオード等から成る第1受光器24を前記孔開きミラー13側から順次配設し、前記偏光ビームスプリッタ23の反射光軸上にフォトダイオード等から成る第2受光器25を配設する。前記第1受光器24、前記第2受光器25からの出力は反射光束検出回路26に入力される。
【0021】
前記偏光ビームスプリッタ23は反射光検出部5に入射する偏光反射光束を分割して前記第1受光器24、第2受光器25に入射させるが、前記発光部3から射出された偏光照射光束がλ/4複屈折部材を2回透過し本体に戻ってきた偏光反射光束の偏光方向と一致する光束が前記第1受光器24に、又前記発光部3より射出された偏光照射光束と同方向の偏光方向で本体に戻ってきた偏光反射光束が前記第2受光器25に入射する様、前記第2λ/4複屈折部材21、前記偏光ビームスプリッタ23を配置する。
【0022】
前記偏光反射光束検出回路26の一例を図2により説明する。
【0023】
前記第1受光器24、第2受光器25の出力はアンプ31、アンプ35を介して差動アンプ32に入力され、又該差動アンプ32の出力は同期検波部33を介して差動アンプ34に入力される。又、前記第1受光器24、第2受光器25の出力は前記アンプ31、アンプ35を介して加算アンプ36に入力され、該加算アンプ36の出力は同期検波部38を介して差動アンプ39に入力される。該差動アンプ39、及び前記差動アンプ34の出力は回動制御部6に入力される様になっている。
【0024】
又、前記偏光反射光束検出回路26は発振回路40を具備し、該発振回路40は前記同期検波部33、同期検波部38に同期検波の為のクロック信号を出力すると共に前記発光素子駆動部7にパルス変調に必要なクロック信号を発する。
【0025】
前記回動制御部6は前記反射光検出部5からの信号を基に前記走査モータ18を回転制御し、前記発光部3から射出される偏光照射光束を対象反射体2を中心に往復走査させる。
【0026】
又、前記発光素子駆動部7は前記反射光束検出回路26からのクロック信号を基に前記レーザダイオード10から射出される偏光照射光束をパルス変調する。
【0027】
前記対象反射体2を図3に於いて説明する。
【0028】
基板27上に反射層28を形成し、図中左半分にλ/4複屈折部材29を貼設し、反射層28露出部分を入射光束の偏光方向を保存して反射する反射部、前記λ/4複屈折部材29部分を入射光束に対して偏光方向を変換して反射する偏光変換反射部として構成する。前記反射層28は再帰反射材からなり、複数の微小なコーナキューブ、又は球反射体等を配置したものである。又、前記λ/4複屈折部材29は入射光束に対して偏光反射光束がλ/4の位相差を生じさせる作用を有する。
【0029】
以下、作動を説明する。
【0030】
前記発光素子駆動部7により駆動されるレーザダイオード10が発する偏光照射光束は、前記発振回路40からのクロック信号を基に変調されている。前記レーザダイオード10からの射出された直線偏光の偏光照射光束は、前記コリメータレンズ11で平行光束にされ、更に前記第1λ/4複屈折部材12を透過することで円偏光の偏光照射光束となる。円偏光照射光束は前記孔開きミラー13を透過し、前記ペンタプリズム14により水平方向に変向され射出される。
【0031】
該ペンタプリズム14は前記走査モータ18により駆動ギア17、従動ギア16を介して回転される。前記ペンタプリズム14の回転範囲は最初は全周回転であり、ペンタプリズム14から射出される偏光照射光束は全周走査する。
【0032】
全周走査により偏光照射光束が前記対象反射体2を通過する。通過した際に前記対象反射体2により偏光照射光束が反射され、該偏光反射光束が前記ペンタプリズム14に入射する。
【0033】
前記した様に、対象反射体2の半面は単に反射層28であり、又他の半面はλ/4複屈折部材29が貼設されている。従って、前記反射層28露出部分で反射された偏光反射光束は入射偏光照射光束の偏光状態が保存された円偏光であり、前記λ/4複屈折部材29を透過して前記反射層28で反射され、更に前記λ/4複屈折部材29を透過した偏光反射光束は、入射偏光照射光束の偏光状態に対してλ/2位相がずれた円偏光となっている。
【0034】
前記対象反射体2で反射された偏光反射光束は、前記ペンタプリズム14により90°変向され孔開きミラー13に入射し、該孔開きミラー13は反射光束をコンデンサレンズ20に向けて反射する。前記コンデンサレンズ20は反射光束を収束光として第2λ/4複屈折部材21に入射する。円偏光で戻ってきた反射光束は第2λ/4複屈折部材21により直線偏光に変換され、ピンホール22に入射する。前記した様に反射層28露出部分で反射された反射光束とλ/4複屈折部材29で反射された反射光束とでは位相がλ/2異なっている為、前記第2λ/4複屈折部材21により直線偏光に変換された2つの反射光束では偏光面が90°異なっている。
【0035】
該ピンホール22は本体から射出された偏光照射光束に対して光軸のずれた正対しない反射光束を受光器24,25に入射しない様にする作用を有し、該ピンホール22を通過した反射光束は前記偏光ビームスプリッタ23に入射する。
【0036】
該偏光ビームスプリッタ23は、前記発光部3から射出した偏光照射光束と180°偏光方向が異なる偏光の光束を透過し、発光部3から射出した偏光照射光束と90°偏光方向が異なる偏光の光束を反射する作用を有し、偏光ビームスプリッタ23を透過した反射光束は、該偏光ビームスプリッタ23によって直交する偏光成分に分割され、前記受光器24,25は分割された反射光束をそれぞれ受光する。
【0037】
該第1受光器24,第2受光器25の受光状態は、本体の外でλ/4複屈折部材を2回透過した偏光反射光束、即ち前記対象反射体2のλ/4複屈折部材29部分で反射された偏光反射光束が前記反射光検出部5に入光すると、前記した第2λ/4複屈折部材21と偏光ビームスプリッタ23の関係から、前記第1受光器24に入射する光量の方が前記第2受光器25に入射する光量よりも多くなり、又λ/4複屈折部材を透過していない偏光反射光束、即ち対象反射体2の反射層28露出部分、或はその他の不要反射体で反射された偏光反射光束が入光すると前記第2受光器25に入射する光量の方が前記第1受光器24に入射する光量よりも多くなる。
【0038】
而して、前記第1受光器24、第2受光器25への偏光反射光束の入射光量の差をとることで、入射した偏光反射光束が前記対象反射体2の前記反射層28露出部で反射されたものか、前記λ/4複屈折部材29部分で反射されたものかを識別することができる。
【0039】
更に詳述する。
【0040】
λ/4複屈折部材29を2回透過した反射光束の場合、前記反射光検出部5の第1受光器24に入射する光量の方が第2受光器25に入射する光量より多くなる。その信号を図4中a,bに示す。それぞれの受光器24,25からの信号を前記アンプ31、前記アンプ35で増幅し、差動アンプ32にて差をとる。その信号を図4中cに示す。差動アンプ32の出力信号を発振回路40からのクロック1で同期検波すると、バイアス電圧に対し正の電圧(図4中dで示す)、クロック2で同期検波すると、バイアス電圧に対し負の電圧(図4中eで示す)が得られる。同期検波で得られた電圧の差をとると(d−e)、差動アンプ34の出力はバイアス電圧に対し正の電圧(図4中fで示す)が得られる。
【0041】
λ/4複屈折部材29を透過していない反射光束の場合、前記反射光検出部の第2受光器25に入射する光量の方が第1受光器24に入射する光量より多くなる。その信号を図4中h,iに示す。それぞれの受光器24,25からの信号をアンプ31、アンプ35で増幅し、差動アンプ32にて差をとる。その信号を図4中jで示す。差動アンプ32の出力信号を発振回路40からのクロック1で同期検波すると、バイアス電圧に対し負の電圧(図4中kで示す)、クロック2で同期検波すると、バイアス電圧に対し正の電圧(図4中lで3示す)が得られる。同期検波で得られた電圧の差をとると(k−l)、差動アンプ34の出力はバイアス電圧に対し負の電圧(図4中mで示す)が得られる。
【0042】
図3に示す対象反射体2を偏光照射光束が走査した場合、反射光検出回路26の差動アンプ34の出力は図5(B)に示す波形となる。該差動アンプ34の出力に正の信号が出て、正の信号の立下がりから所定時間以内に負の信号の立下がりが有った場合、対象反射体2であると識別し前記回動制御部6により前記走査モータ18を制御駆動し、前記ペンタプリズム14を往復回転させ、回転照射本体1から射出する偏光照射光束を対象反射体2を中心に往復走査する。
【0043】
前記対象反射体2を用いた場合、偏光照射光束の回転方向が逆転すると反射光検出回路26の差動アンプ34の出力信号の正負が逆の順番になる。
【0044】
回転照射本体1から射出された偏光照射光束が、鏡等で1回反射し対象反射体2に入射して反射してきた場合、差動アンプ34の出力信号の正負の順番が、反射光束を受光した時の偏光照射光束の回転方向とは逆の回転方向の時の順番となる為、1回対象反射体2以外で反射して戻ってきた反射光束か、対象反射体2以外で反射した反射光束かを識別することができる。
【0045】
図6に於いて第2の実施例を説明する。尚、図6中、図1中で示したものと同一のものには同符号を付し、その説明を省略する。
【0046】
図6に於いて示す実施例では、アライメント表示部41を具備している。
【0047】
該アライメント表示部41は位置判別部42と、表示器43を有し、前記位置判別部42には前記反射光束検出回路26からの第1受光器24、第2受光器25の受光状態を示す信号が入力されると共に前記回動部4に設けられたペンタプリズム14の回転位置を検出するエンコーダ44からの信号が入力される。
【0048】
前記アライメント表示部41の表示により、前記回動部4を停止させ、偏光照射光束の照射点を前記対象反射体2の反射層28露出部、λ/4複屈折部材29部分との境界に正しく容易に合わせることができる。
【0049】
対象反射体2の任意の位置に偏光照射光束が当たった場合の、前記反射光検出回路26の差動アンプ34の出力信号は、図4、図5の様になる。該差動アンプ34の出力信号がバイアス電圧に対し正の電圧の場合は、偏光照射光束が左、差動アンプ34の出力信号がバイアス電圧に対し負の電圧の場合は、偏光照射光束が右、差動アンプ34の出力信号がバイアス電圧であり反射光の有無を検出する差動アンプ39の出力信号がバイアス電圧に対し正の電圧の場合は、偏光照射光束が対象反射体2の中心にあるという3種類の状態を前記位置判別部42が判別し、判別結果を表示器43に入力し、偏光照射光束が中心にない場合は移動の方向を示す矢印43a,43cにより、中心にある場合は中央の表示部43bにて表示する。
【0050】
アライメント表示部41を設けることにより、表示器43により偏光照射光束のアライメント調整を1人で容易に且精度良く行うことができる。
【0051】
図7により第3の実施例を説明する。
【0052】
図7に示す実施例はオートフォーカス機能を有するものであり、回転照射装置本体1と対象反射体2間の距離を計測し、計測結果に基づき射出する偏光照射光束の焦点位置をオートフォーカス機構で調整するものである。
【0053】
図7中、図6中で示したものと同一のものには同符号を付してある。
【0054】
図7で示した発光部3のコリメータレンズ11と第1λ/4複屈折部材12との間にオートフォーカス機構45を設ける。該オートフォーカス機構45はフォーカス制御部46により駆動され、該フォーカス制御部46には前記反射光束検出回路26から前記第1受光器24、第2受光器25の受光状態、エンコーダ44から位置信号が入力される。
【0055】
前記した回転照射装置本体1と対象反射体2間の距離は該対象反射体2のλ/4複屈折部材29部分の幅、反射層28の露出部分の幅を偏光照射光束が通過した際の角度を検出することで、角度と前記対象反射体2の幅寸法から距離を逆算することができる。
【0056】
即ち、前記対象反射体2を偏光照射光束が走査した場合の該対象反射体2により反射された偏光反射光束の前記第1受光器24、前記第2受光器25の受光状態は図5の通りであり、前記反射光束検出回路26から出力の正の信号の立上がりから負の信号の立上がりの間の前記エンコーダ44からのパルス数をカウントすることで対象反射体2の幅に対応するペンタプリズム14の回転中心に対する中心角を求めることができる。前記対象反射体2の幅は既知の寸法であり、従って、回転照射装置本体1と対象反射体2間の距離が演算により求まる。この演算の結果は、前記オートフォーカス機構45に入力され、計測された距離に適正に対応する様オートフォーカス機構45が作動される。
【0057】
尚、上記説明では正の信号の立上がりから負の信号の立上がりの間の走査角度を求めたが、正の信号の立上がりから負の信号の立上がりの間の時間を測定し、走査速度との関連から距離を求めることもできる。但し、この場合走査速度の設定値に対する誤差が、距離測定誤差となるので、測定に走査速度の設定値に対する誤差の影響を受けない角度検出による距離測定の方が正確、確実である。
【0058】
図8、図9により第4の実施例を説明する。
【0059】
第4の実施例は対象反射体に対する偏光照射光束の照射位置を調整制御する機能を有するものである。
【0060】
回転照射装置本体1は本体回動装置47に鉛直軸心を中心に回転される様に、前記図1で示した姿勢から90°倒した姿勢で設けられ、前記回転照射装置本体1は水平軸心を中心に前記回動部4を回転する構成となっている。従って、該回動部4から射出される偏光照射光束は鉛直方向に走査する様になっている。
【0061】
又、本実施例に使用される図9に示される対象反射体2′について説明する。
【0062】
該対象反射体2′は矩形の反射層28の表面を1つの対角線(分割線)で分割して、分割された一方にλ/4複屈折部材29を貼設して構成されている。
【0063】
尚、分割の方法は対角線で分割するに限らず、偏光照射光束が対象反射体2′を横切って走査した場合に、分割線により分割される対象反射体2′上の走査線線分比が、前記偏光照射光束が走査方向に対して直交する方向に移動した場合に所定の関係で漸次変化する分割方法であればよい。
【0064】
次に作動を図2、図8を参照して説明する。
【0065】
前記対象反射体2′への偏光照射光束の照射位置を検出するには、走査位置の反射層28露出部、λ/4複屈折部材29部の幅から検出するが、上記した様に幅を検出するには偏光照射光束回動時に前記第1受光器24、前記第2受光器25に於ける反射光束の受光時間により検出する方法と、回動部4と同軸上に設けたエンコーダ44により角度から検出する方法が有るが、回動部4の回転速度により誤差を生じないエンコーダ44を用いる方法を説明する。
【0066】
前記対象反射体2′に対して偏光照射光束を鉛直方向に走査する。偏光照射光束が対象反射体2′を通過することで、該対象反射体2′で反射された偏光反射光束が前記回動部4を介して前記反射光検出部5に入射し、前記第1受光器24、第2受光器25によりそれぞれ受光される。前記第1受光器24、第2受光器25の受光状態は前記偏光反射光束検出回路26により検出される。
【0067】
該反射光検出回路26の差動アンプ34の出力信号がバイアス電圧に対し正の電圧が得られている回動部4の回転角と、バイアス電圧に対し負の電圧が得られている回動部4の前記エンコーダ44により検出する。得られた2つの回転角の比は前記線分比に対応し、回転角の比を求めることで、対象反射体2′の偏光照射光束走査位置が判別できる。2つの回転角の比から対象反射体2′のどの位置に偏光照射光束が照射されているかを位置判別部(図示せず)で判別し、この判別結果により本体回動装置47により回転照射本体1を回動させ、偏光照射光束の照射位置を対象反射体2′の所望の位置に変化させる。
【0068】
尚、本発明はレーザ回転照射装置に限らず、固定的な基準線を形成するレーザ基準レベル設定装置等に実施可能であることは言う迄もない。
【0069】
【発明の効果】
以上述べた如く本発明によれば、対象反射体を確実に識別できる為、走査動作の誤認が防止され、作業効率の向上が図れる。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示す説明図である。
【図2】該実施例中の偏光反射光束検出回路を示すブロック図てある。
【図3】該実施例に於ける対象反射体の一例を示す説明図である。
【図4】前記偏光反射光束検出回路に於ける信号波形を示す説明図である。
【図5】(A)(B)は前記対象反射体、偏光照射光束及び対象反射体からの出力信号の関係を示す説明図である。
【図6】第2の実施例を示す説明図である。
【図7】第3の実施例を示す説明図である。
【図8】第4の実施例を示す説明図である。
【図9】対象反射体の他の例を示す説明図である。
【符号の説明】
1 回転照射装置本体
2 対象反射体
3 発光部
4 回動部
5 反射光検出部
6 回動制御部
7 発光素子駆動部
10 レーザダイオード
12 第1λ/4複屈折部材
14 ペンタプリズム
18 走査モータ
21 第2λ/4複屈折部材
23 偏光ビームスプリッタ
24 第1受光器
25 第2受光器
26 反射光束検出回路
44 エンコーダ
45 オートフォーカス機構
[0001]
[Industrial applications]
The present invention relates to a target reflector detection apparatus that irradiates a polarized irradiation light beam from a main body toward a target reflector, and detects the target reflector by detecting a polarized reflected light beam reflected by the target reflector. .
[0002]
[Prior art]
In order to determine a height standard in the fields of civil engineering and architecture, a laser rotary irradiation device that rotates and scans a polarized light beam in a horizontal plane has been used.
[0003]
In recent years, a visible semiconductor laser has been put to practical use, and a laser rotary irradiation device using the visible semiconductor laser has also appeared, and it has become possible to perform visual work. In such a laser rotary irradiation device, the laser output is limited from the viewpoint of ensuring the safety of workers. For this reason, in work and measurement that require visual confirmation of the reflection of the polarized irradiation light beam, the work distance is relatively short.
[0004]
For this reason, a laser rotary irradiation apparatus has been put to practical use in which a polarized irradiation light beam is reciprocally scanned to increase the apparent brightness of the polarized reflected light beam and the working distance is lengthened. To reciprocate in an appropriate range, it is necessary to know the scanning position. For this reason, a target reflector is installed at the work point, and the position of the target reflector is detected by detecting the polarized reflected light beam from the target reflector. There is a target reflector detection device that performs
[0005]
In such a target reflector detection device, in order to identify the target reflector, the emitted light is polarized, and the polarization of the reflected light from the target reflector is changed from the polarization direction of the emitted light. Keep it. Unnecessary reflectors such as a glass surface have the property of reflecting in a state where the polarization direction is preserved, and are therefore distinguished therefrom.
[0006]
[Problems to be solved by the invention]
In the above-mentioned laser rotary irradiation apparatus, reflected light is detected by detection means corresponding to the polarized light from the target reflector. Is not constant and may include various polarization components.
[0007]
For this reason, when strong reflected light, such as when the laser light from the laser rotary irradiation device hits an unnecessary reflective object having a glossy surface at right angles, enters the main body detector, or is optically similar to the target reflector For example, when the reflected light reflected by the reflecting object is incident on the main body detection unit, it may be erroneously detected as the target reflector, and reciprocal scanning may occur at an incorrect position.
[0008]
In view of such circumstances, the present invention will provide a target reflector detection device that can reliably distinguish a reflected light flux from a target reflector from a non-target reflector optically similar to the target reflector. It is assumed that.
[0009]
[Means for Solving the Problems]
The present invention is directed to a target reflector detection method of irradiating a polarized irradiation light beam from a main body portion toward a target reflector, receiving the polarized reflected light beam reflected by the target reflector at the main body portion, and detecting the target reflector. In the apparatus, the main body unit detects first polarized light reflected from the target reflector, second detected light different from the polarized reflected light from the target reflector, and second detector. A reflected light beam detection circuit for identifying the target reflector by comparing the output of the first detector and the output of the second detector, wherein the reflection surface of the target reflector is divided into at least two parts, and at least one surface is irradiated with the polarized light. The target reflector detection device is a reflection unit that reflects as a polarization reflection light beam that preserves the polarization direction of the light beam, and at least one surface is a polarization conversion reflection unit that reflects the polarization direction of the polarization irradiation light beam as a polarization reflection light beam. Alternatively, the present invention relates to an object reflector detection device having means for detecting the width of the object reflector from the output from the reflected light beam detection circuit, or the width of the polarization conversion reflector and the reflector of the object reflector. And a discriminator for discriminating a position at which the polarized irradiation light beam hits the target reflector from the width ratio between the polarization conversion reflector and the reflector, and irradiates polarized light based on an irradiation position signal from the discriminator. The present invention relates to an object reflector detection device configured to control the emission direction of a light beam, or further to a polarization conversion reflection section of the object reflector and a detection section for detecting the width of the reflection section, and an object reflection section based on an output of the detection section. A focus control unit for calculating a body distance, obtaining a distance signal, and operating a focus mechanism based on the distance signal.
[0010]
[Action]
The target reflector is divided into a polarization conversion reflector and a reflector, and the reflected beams from both reflectors are detected and compared to distinguish between the reflected beam from the unnecessary reflector and the reflected beam from the target reflector. The target reflector is prevented from being erroneously recognized, reciprocating scanning is performed at a required angle around the target reflector, and the width of the target reflector is detected to accurately emit a polarized light beam to the center of the target reflector. Then, autofocus is performed based on the width of the target reflector.
[0011]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0012]
FIG. 1 shows a laser rotary irradiation device provided with a target reflector detection device according to the present invention. The laser rotary irradiation device includes a rotary irradiation device main body 1 and an object reflector 2 that is disposed apart from the rotary irradiation device main body 1.
[0013]
First, the rotary irradiation device main body 1 will be described.
[0014]
The rotating irradiation device main body 1 includes a light emitting unit 3, a rotating unit 4, a reflected light detecting unit 5, a rotating control unit 6, and a light emitting element driving unit 7.
[0015]
The light emitting unit 3 will be described.
[0016]
A collimator lens 11, a first λ / 4 birefringent member 12, and a perforated mirror 13 are sequentially arranged from the side of the laser diode 10 on the optical axis of the laser diode 10 which emits a linearly polarized polarized light beam. The linearly polarized polarized light beam emitted from 10 is converted into a parallel light beam by the collimator lens 11 and converted into circularly polarized light by the first λ / 4 birefringent member 12. The circularly polarized polarized light beam is emitted to the rotating part 4 through the perforated mirror 13.
[0017]
The rotating unit 4 scans the polarized light beam emitted from the light emitting unit 3 in the horizontal direction, and scans the polarized light beam emitted from the light emitting unit 3 by 90 degrees. It is provided on a rotation support 15 that rotates about the optical axis of the polarized irradiation light beam, and the rotation support 15 is connected to a scanning motor 18 via a driven gear 16 and a driving gear 17.
[0018]
A polarized reflected light beam from the target reflector 2 is incident on the rotating portion 4, and the polarized reflected light beam incident on the pentaprism 14 is deflected toward the perforated mirror 13. The perforated mirror 13 causes the reflected light detecting unit 5 to enter the polarized reflected light beam.
[0019]
Next, the reflected light detecting section 5 will be described.
[0020]
A first light receiver 24 including a condenser lens 20, a second λ / 4 birefringent member 21, a pinhole 22, a polarization beam splitter 23, a photodiode, and the like is provided on the reflection optical axis of the perforated mirror 13 on the side of the perforated mirror 13. And a second light receiver 25 composed of a photodiode or the like is provided on the reflection optical axis of the polarization beam splitter 23. Outputs from the first light receiver 24 and the second light receiver 25 are input to a reflected light flux detection circuit 26.
[0021]
The polarizing beam splitter 23 splits the polarized reflected light beam incident on the reflected light detection unit 5 and causes the split light beam to enter the first light receiver 24 and the second light receiver 25. The polarized light beam emitted from the light emitting unit 3 A light beam having the same polarization direction as the polarized reflected light beam transmitted through the λ / 4 birefringent member twice and returned to the main body is directed to the first light receiver 24 and in the same direction as the polarized light beam emitted from the light emitting unit 3. The second λ / 4 birefringent member 21 and the polarizing beam splitter 23 are arranged so that the polarized reflected light flux returning to the main body in the polarization direction of the above enters the second light receiver 25.
[0022]
An example of the polarization reflected light beam detection circuit 26 will be described with reference to FIG.
[0023]
Outputs of the first and second light receivers 24 and 25 are input to a differential amplifier 32 via an amplifier 31 and an amplifier 35, and an output of the differential amplifier 32 is output to a differential amplifier via a synchronous detection unit 33. 34. The outputs of the first light receiver 24 and the second light receiver 25 are input to the addition amplifier 36 via the amplifiers 31 and 35, and the output of the addition amplifier 36 is output to the differential amplifier via the synchronous detection unit 38. 39 is input. The outputs of the differential amplifier 39 and the differential amplifier 34 are input to the rotation control unit 6.
[0024]
The polarization reflected light beam detection circuit 26 includes an oscillation circuit 40. The oscillation circuit 40 outputs a clock signal for synchronous detection to the synchronous detection sections 33 and 38, and outputs the clock signal for synchronous detection. A clock signal required for pulse modulation is generated.
[0025]
The rotation control unit 6 controls the rotation of the scanning motor 18 based on the signal from the reflected light detection unit 5 to reciprocally scan the polarized light beam emitted from the light emitting unit 3 around the target reflector 2. .
[0026]
Further, the light emitting element drive section 7 pulse-modulates the polarized irradiation light beam emitted from the laser diode 10 based on the clock signal from the reflected light beam detection circuit 26.
[0027]
The target reflector 2 will be described with reference to FIG.
[0028]
A reflection layer 28 is formed on a substrate 27, a λ / 4 birefringent member 29 is attached on the left half in the figure, and a reflection portion that reflects an exposed portion of the reflection layer 28 while preserving the polarization direction of the incident light beam. The / 4 birefringent member 29 is configured as a polarization conversion reflection unit that converts the direction of polarization of the incident light beam and reflects the light. The reflection layer 28 is made of a retroreflective material and has a plurality of minute corner cubes or spherical reflectors arranged thereon. The λ / 4 birefringent member 29 has the function of causing a phase difference of λ / 4 between the reflected light beam and the incident light beam.
[0029]
Hereinafter, the operation will be described.
[0030]
A polarized light beam emitted from the laser diode 10 driven by the light emitting element driving section 7 is modulated based on a clock signal from the oscillation circuit 40. The linearly polarized light beam emitted from the laser diode 10 is converted into a parallel light beam by the collimator lens 11, and further transmitted through the first λ / 4 birefringent member 12 to become a circularly polarized light beam. . The circularly polarized irradiation light beam passes through the apertured mirror 13 and is turned in the horizontal direction by the pentaprism 14 and emitted.
[0031]
The pentaprism 14 is rotated by the scanning motor 18 via a driving gear 17 and a driven gear 16. The rotation range of the pentaprism 14 is full rotation at first, and the polarized irradiation light beam emitted from the pentaprism 14 scans the full circumference.
[0032]
The polarized irradiation light beam passes through the target reflector 2 by the full circumference scan. When passing through, the polarized light beam is reflected by the target reflector 2, and the polarized reflected light beam enters the pentaprism 14.
[0033]
As described above, the half surface of the target reflector 2 is simply the reflection layer 28, and the other half surface is provided with the λ / 4 birefringent member 29. Therefore, the polarized reflected light beam reflected by the exposed portion of the reflective layer 28 is circularly polarized light in which the polarization state of the incident polarized light irradiation light beam is preserved, passes through the λ / 4 birefringent member 29, and is reflected by the reflective layer 28. Further, the polarized reflected light beam transmitted through the λ / 4 birefringent member 29 is circularly polarized light having a λ / 2 phase shift with respect to the polarization state of the incident polarized light irradiation light beam.
[0034]
The polarized reflected light beam reflected by the target reflector 2 is turned by 90 ° by the pentaprism 14 and enters the perforated mirror 13. The perforated mirror 13 reflects the reflected light beam toward the condenser lens 20. The condenser lens 20 enters the second λ / 4 birefringent member 21 with the reflected light beam as convergent light. The reflected light flux returned as circularly polarized light is converted into linearly polarized light by the second λ / 4 birefringent member 21 and enters the pinhole 22. As described above, the phase of the reflected light beam reflected by the exposed portion of the reflective layer 28 and the phase of the reflected light beam reflected by the λ / 4 birefringent member 29 are different by λ / 2. The polarization planes of the two reflected light beams converted into linearly polarized light differ by 90 °.
[0035]
The pinhole 22 has a function of preventing a reflected light beam, which is not directly opposed to the polarized light beam emitted from the main body from being shifted from the optical axis, from entering the light receivers 24 and 25, and has passed through the pinhole 22. The reflected light beam enters the polarization beam splitter 23.
[0036]
The polarization beam splitter 23 transmits a polarized light beam having a polarization direction different from the polarized light beam emitted from the light emitting unit 3 by 180 ° and a polarized light beam having a different 90 ° polarization direction from the polarized light beam emitted from the light emitting unit 3. The reflected light flux transmitted through the polarization beam splitter 23 is split into orthogonal polarization components by the polarization beam splitter 23, and the light receivers 24 and 25 receive the split reflected light flux, respectively.
[0037]
The light receiving state of the first light receiver 24 and the second light receiver 25 is the polarization reflected light flux transmitted twice through the λ / 4 birefringent member outside the main body, that is, the λ / 4 birefringent member 29 of the target reflector 2. When the polarized reflected light beam reflected by the portion enters the reflected light detection unit 5, the amount of light incident on the first light receiver 24 is determined by the relationship between the second λ / 4 birefringent member 21 and the polarization beam splitter 23. Is larger than the amount of light incident on the second photodetector 25, and is a polarized reflected light flux that has not passed through the λ / 4 birefringent member, ie, the exposed portion of the reflective layer 28 of the target reflector 2, or other unnecessary light. When the polarized reflected light beam reflected by the reflector enters, the amount of light incident on the second light receiver 25 becomes larger than the amount of light incident on the first light receiver 24.
[0038]
Thus, by taking the difference between the amounts of the polarized reflected light beams incident on the first light receiver 24 and the second light receiver 25, the incident polarized reflected light beam is exposed at the exposed portion of the reflective layer 28 of the target reflector 2. It can be determined whether the light is reflected or reflected by the λ / 4 birefringent member 29.
[0039]
Further details will be described.
[0040]
In the case of a reflected light beam transmitted twice through the λ / 4 birefringent member 29, the amount of light incident on the first light receiver 24 of the reflected light detection unit 5 is larger than the amount of light incident on the second light receiver 25. The signals are shown in FIGS. The signals from the respective light receivers 24 and 25 are amplified by the amplifier 31 and the amplifier 35, and the difference is obtained by the differential amplifier 32. The signal is shown in FIG. When the output signal of the differential amplifier 32 is synchronously detected with the clock 1 from the oscillation circuit 40, a positive voltage (shown by d in FIG. 4) with respect to the bias voltage, and when the synchronous detection is performed with the clock 2, a negative voltage with respect to the bias voltage is obtained. (Indicated by e in FIG. 4) is obtained. Taking the difference between the voltages obtained by the synchronous detection (d-e), a positive voltage (shown by f in FIG. 4) with respect to the bias voltage is obtained from the output of the differential amplifier 34.
[0041]
In the case of a reflected light beam that has not passed through the λ / 4 birefringent member 29, the amount of light incident on the second light receiver 25 of the reflected light detection unit is larger than the amount of light incident on the first light receiver 24. The signals are indicated by h and i in FIG. The signals from the respective light receivers 24 and 25 are amplified by the amplifiers 31 and 35, and the difference is calculated by the differential amplifier 32. The signal is indicated by j in FIG. When the output signal of the differential amplifier 32 is synchronously detected by the clock 1 from the oscillation circuit 40, a negative voltage (indicated by k in FIG. 4) with respect to the bias voltage is obtained. (Indicated by 3 in FIG. 4) is obtained. Taking the difference between the voltages obtained by the synchronous detection (k-1), the output of the differential amplifier 34 is a negative voltage (indicated by m in FIG. 4) with respect to the bias voltage.
[0042]
When the polarized irradiation light beam scans the target reflector 2 shown in FIG. 3, the output of the differential amplifier 34 of the reflected light detection circuit 26 has a waveform shown in FIG. When a positive signal is output from the output of the differential amplifier 34 and a negative signal falls within a predetermined time from the falling of the positive signal, the target reflector 2 is identified and the rotation is performed. The control unit 6 controls and drives the scanning motor 18 to reciprocately rotate the pentaprism 14 to reciprocally scan the polarized light beam emitted from the rotary irradiation body 1 around the target reflector 2.
[0043]
When the target reflector 2 is used, when the rotation direction of the polarized irradiation light beam is reversed, the sign of the output signal of the differential amplifier 34 of the reflected light detection circuit 26 is reversed.
[0044]
When the polarized irradiation light beam emitted from the rotary irradiation main body 1 is reflected once by a mirror or the like and is incident on the target reflector 2 and reflected, the positive and negative order of the output signal of the differential amplifier 34 indicates that the reflected light beam is received. In this case, the direction of rotation is opposite to the direction of rotation of the polarized irradiation light beam, so that the reflected light beam returns once after being reflected by other than the target reflector 2 or the reflection reflected by other than the target reflector 2 It can be identified as a light flux.
[0045]
A second embodiment will be described with reference to FIG. 6, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted.
[0046]
In the embodiment shown in FIG. 6, an alignment display section 41 is provided.
[0047]
The alignment display section 41 has a position discriminating section 42 and a display 43, and the position discriminating section 42 indicates a light receiving state of the first light receiver 24 and the second light receiver 25 from the reflected light beam detecting circuit 26. A signal is input, and a signal is also input from an encoder 44 that detects the rotational position of the pentaprism 14 provided in the rotating unit 4.
[0048]
According to the display of the alignment display section 41, the rotation section 4 is stopped, and the irradiation point of the polarized irradiation light beam is correctly positioned on the boundary between the exposed portion of the reflective layer 28 of the target reflector 2 and the λ / 4 birefringent member 29. Can be easily adapted.
[0049]
The output signal of the differential amplifier 34 of the reflected light detection circuit 26 when the polarized irradiation light beam hits an arbitrary position of the target reflector 2 is as shown in FIGS. When the output signal of the differential amplifier 34 is a positive voltage with respect to the bias voltage, the polarized light beam is left, and when the output signal of the differential amplifier 34 is a negative voltage with respect to the bias voltage, the polarized light beam is right. When the output signal of the differential amplifier 34 is a bias voltage and the output signal of the differential amplifier 39 for detecting the presence or absence of reflected light is a positive voltage with respect to the bias voltage, the polarized irradiation light beam is located at the center of the target reflector 2. The position discriminating unit 42 discriminates three types of states, that is, exists, and inputs the discrimination result to the display 43. If the polarized irradiation light beam is not at the center, it is indicated by arrows 43a and 43c indicating the direction of movement. Are displayed on the central display section 43b.
[0050]
By providing the alignment display unit 41, the alignment of the polarized light beam can be easily and accurately adjusted by the display 43 alone.
[0051]
A third embodiment will be described with reference to FIG.
[0052]
The embodiment shown in FIG. 7 has an autofocus function, measures the distance between the rotary irradiation device main body 1 and the target reflector 2, and uses the autofocus mechanism to determine the focal position of the polarized irradiation light beam to be emitted based on the measurement result. It is to adjust.
[0053]
7, the same components as those shown in FIG. 6 are denoted by the same reference numerals.
[0054]
An autofocus mechanism 45 is provided between the collimator lens 11 of the light emitting unit 3 and the first λ / 4 birefringent member 12 shown in FIG. The auto-focus mechanism 45 is driven by a focus control unit 46. The focus control unit 46 receives the light receiving states of the first light receiver 24 and the second light receiver 25 from the reflected light beam detecting circuit 26 and the position signal from the encoder 44. Is entered.
[0055]
The distance between the rotary irradiation device main body 1 and the target reflector 2 is determined by the width of the λ / 4 birefringent member 29 of the target reflector 2 and the width of the exposed portion of the reflective layer 28 when the polarized irradiation light beam passes. By detecting the angle, the distance can be calculated back from the angle and the width dimension of the target reflector 2.
[0056]
That is, when the polarized light beam is scanned on the target reflector 2, the light receiving state of the first light receiver 24 and the second light receiver 25 of the polarized reflected light beam reflected by the target reflector 2 is as shown in FIG. The pentaprism 14 corresponding to the width of the target reflector 2 is counted by counting the number of pulses from the encoder 44 between the rise of the positive signal output from the reflected light beam detection circuit 26 and the rise of the negative signal. Can be obtained with respect to the center of rotation of. The width of the target reflector 2 is a known size, and therefore, the distance between the rotary irradiation device main body 1 and the target reflector 2 is obtained by calculation. The result of this calculation is input to the autofocus mechanism 45, and the autofocus mechanism 45 is operated so as to appropriately correspond to the measured distance.
[0057]
In the above description, the scanning angle between the rising of the positive signal and the rising of the negative signal is determined. However, the time between the rising of the positive signal and the rising of the negative signal is measured, and the relationship with the scanning speed is measured. You can also find the distance from. However, in this case, an error with respect to the set value of the scanning speed is a distance measurement error. Therefore, distance measurement by angle detection, which is not affected by the error with the set value of the scanning speed, is more accurate and reliable.
[0058]
A fourth embodiment will be described with reference to FIGS.
[0059]
The fourth embodiment has a function of adjusting and controlling the irradiation position of the polarized irradiation light beam on the target reflector.
[0060]
The rotating irradiation device main body 1 is provided at a position inclined by 90 ° from the position shown in FIG. 1 so that the main body rotating device 47 is rotated about a vertical axis. The rotation unit 4 is configured to rotate around a center. Accordingly, the polarized irradiation light beam emitted from the rotating section 4 scans in the vertical direction.
[0061]
Further, the target reflector 2 'shown in FIG. 9 used in this embodiment will be described.
[0062]
The target reflector 2 'is formed by dividing the surface of a rectangular reflective layer 28 by one diagonal line (partition line), and attaching a λ / 4 birefringent member 29 to one of the divided portions.
[0063]
The division method is not limited to diagonal division. When the polarized irradiation light beam scans across the target reflector 2 ′, the scanning line segment ratio on the target reflector 2 ′ divided by the division line becomes smaller. Any division method may be used as long as the polarization irradiation light beam moves in a direction orthogonal to the scanning direction and gradually changes in a predetermined relationship.
[0064]
Next, the operation will be described with reference to FIGS.
[0065]
In order to detect the irradiation position of the polarized irradiation light beam onto the target reflector 2 ', the irradiation position is detected from the width of the exposed portion of the reflective layer 28 and the width of the λ / 4 birefringent member 29 at the scanning position. For the detection, a method of detecting the reflected light beam at the first light receiving unit 24 and the second light receiving unit 25 when the polarized light beam is rotated at the time of rotation is used, and an encoder 44 provided coaxially with the rotating unit 4 is used. Although there is a method of detecting from an angle, a method of using the encoder 44 which does not cause an error due to the rotation speed of the rotating unit 4 will be described.
[0066]
The polarized light beam is scanned in the vertical direction with respect to the target reflector 2 '. When the polarized light beam passes through the target reflector 2 ′, the polarized reflected light beam reflected by the target reflector 2 ′ is incident on the reflected light detection unit 5 via the rotation unit 4, and The light is received by the light receiver 24 and the second light receiver 25, respectively. The light receiving state of the first light receiver 24 and the second light receiver 25 is detected by the polarization reflected light beam detection circuit 26.
[0067]
The rotation angle of the rotation unit 4 where the output signal of the differential amplifier 34 of the reflected light detection circuit 26 has a positive voltage with respect to the bias voltage, and the rotation angle where a negative voltage has been obtained with respect to the bias voltage. Detected by the encoder 44 of the unit 4. The obtained ratio of the two rotation angles corresponds to the line segment ratio, and by determining the ratio of the rotation angles, the polarization irradiation light beam scanning position of the target reflector 2 'can be determined. A position determining unit (not shown) determines which position of the target reflector 2 ′ is irradiated with the polarized irradiation light beam based on the ratio of the two rotation angles. 1 is rotated to change the irradiation position of the polarized irradiation light beam to a desired position on the target reflector 2 '.
[0068]
It is needless to say that the present invention is not limited to the laser rotary irradiation device, but can be applied to a laser reference level setting device that forms a fixed reference line.
[0069]
【The invention's effect】
As described above, according to the present invention, since the target reflector can be reliably identified, erroneous recognition of the scanning operation can be prevented, and work efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a first embodiment of the present invention.
FIG. 2 is a block diagram showing a polarization reflected light beam detection circuit in the embodiment.
FIG. 3 is an explanatory diagram showing an example of a target reflector in the embodiment.
FIG. 4 is an explanatory diagram showing a signal waveform in the polarization reflected light beam detection circuit.
FIGS. 5A and 5B are explanatory diagrams showing a relationship between the target reflector, a polarized light beam, and an output signal from the target reflector.
FIG. 6 is an explanatory diagram showing a second embodiment.
FIG. 7 is an explanatory diagram showing a third embodiment.
FIG. 8 is an explanatory diagram showing a fourth embodiment.
FIG. 9 is an explanatory view showing another example of the target reflector.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 rotating irradiation device main body 2 target reflector 3 light emitting section 4 rotating section 5 reflected light detecting section 6 rotation controlling section 7 light emitting element driving section 10 laser diode 12 first λ / 4 birefringent member 14 pentaprism 18 scanning motor 21 2λ / 4 birefringent member 23 polarizing beam splitter 24 first light receiver 25 second light receiver 26 reflected light beam detection circuit 44 encoder 45 autofocus mechanism

Claims (6)

照射光束を本体部より対象反射体に向けて回転走査し、該対象反射体によって反射された反射光束を上記本体部の受光部で受光し、対象反射体を検出する対象反射体検出装置に於いて、前記対象反射体の反射部は、前記回転走査と直交する方向に幅が漸次変化する様に2つに分割し、走査位置を回転走査と直交する方向に移動した場合に2つの反射部を横切る走査線の線分比が漸次変化する様に設けられ、前記照射光束を前記回転走査と直交する方向に回転させる回動装置と、前記分割された2つの反射部の反射光束から前記対象反射体上の照射位置を判別する位置判断手段とが前記本体部に設けられ、前記位置判断手段の判別結果に基づき前記回動装置により照射位置を変化させ、前記対象反射体上の所望の位置に照射光束を回転照射可能としたことを特徴とする対象反射体検出装置。The irradiation light beam is rotated and scanned from the main body toward the target reflector, and the reflected light flux reflected by the target reflector is received by the light receiving section of the main body, and the target reflector detection device detects the target reflector. The reflecting portion of the target reflector is divided into two such that the width gradually changes in a direction orthogonal to the rotational scanning, and when the scanning position is moved in the direction orthogonal to the rotational scanning, the two reflecting portions A rotation device for rotating the irradiation light beam in a direction orthogonal to the rotational scanning; and a rotating device for rotating the irradiation light beam in a direction orthogonal to the rotational scanning. Position determining means for determining an irradiation position on a reflector is provided in the main body, and an irradiation position is changed by the rotating device based on a determination result of the position determining means, and a desired position on the target reflector is determined. Rotational irradiation with irradiation light beam Object reflector detecting apparatus characterized by the. 前記照射光束が偏光照射光束であって、漸次変化する様に分割された前記対象反射体の少なくとも1面は前記偏光照射光束の偏光方向を保存して反射する反射部であり、少なくとも1面は前記偏光照射光束の偏光方向を変換して反射する偏光変換反射部であり、前記本体部の受光部が、前記偏光方向を保存した反射光束を検出する第1検出手段と、偏光方向を変換した反射光束を検出する第2検出手段とからなる請求項1の対象反射体検出装置。The irradiation light beam is a polarized light irradiation light beam, and at least one surface of the target reflector divided so as to change gradually is a reflecting portion that preserves and reflects the polarization direction of the polarized light irradiation light beam, and at least one surface is A polarization conversion / reflection unit that converts the polarization direction of the polarized light beam and reflects the reflected light beam, wherein the light receiving unit of the main body unit detects a reflected light beam that preserves the polarization direction, and converts the polarization direction. 2. The target reflector detecting device according to claim 1, further comprising second detecting means for detecting the reflected light beam. 前記照射光束を前記対象反射体上の所望の位置で往復走査させる請求項1の対象反射体検出装置。2. The object reflector detection device according to claim 1, wherein the irradiation light beam is reciprocally scanned at a desired position on the object reflector. 前記照射光束を前記対象反射体上の所望の位置で停止させる請求項1の対象反射体検出装置。The target reflector detection device according to claim 1, wherein the irradiation light beam is stopped at a desired position on the target reflector. 本体部がフォーカス機構と回転走査を検出するエンコーダとを有し、対象反射体の幅に対応する前記エンコーダ出力と、既知である前記対象反射体の幅に基づいて該対象反射体迄の距離を演算し、該対象反射体に前記照射光束をオートフォーカスする請求項1の対象反射体検出装置。The main body has a focus mechanism and an encoder that detects rotational scanning, the encoder output corresponding to the width of the target reflector, and the distance to the target reflector based on the known width of the target reflector. 2. The target reflector detection device according to claim 1, wherein the target reflector is calculated and the irradiation light flux is automatically focused on the target reflector. フォーカス機構を有し、対象反射体の幅に対応する受光部の受光時間と、既知である前記対象反射体の幅に基づいて該対象反射体迄の距離を演算し、該対象反射体に前記照射光束をオートフォーカスする請求項1の対象反射体検出装置。It has a focus mechanism, calculates the distance to the target reflector based on the light receiving time of the light receiving unit corresponding to the width of the target reflector, and the known width of the target reflector. 2. The target reflector detecting device according to claim 1, wherein the irradiation light beam is auto-focused.
JP16610594A 1993-09-09 1994-06-24 Target reflector detection device Expired - Lifetime JP3582853B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP16610594A JP3582853B2 (en) 1994-06-24 1994-06-24 Target reflector detection device
US08/302,051 US5612781A (en) 1993-09-09 1994-09-07 Object reflector detection system
EP97203395A EP0829702B1 (en) 1993-09-09 1994-09-08 Laser reference line setting system
DE69433327T DE69433327T2 (en) 1993-09-09 1994-09-08 Laser system for defining a reference line
DE69411102T DE69411102T2 (en) 1993-09-09 1994-09-08 Laser rotation system with an object reflector
EP94306605A EP0643283B1 (en) 1993-09-09 1994-09-08 Laser rotary irradiation system with object reflector
CN94115159.XA CN1092793C (en) 1993-09-09 1994-09-09 Object reflector detection system
CNB991107764A CN100397039C (en) 1993-09-09 1994-09-09 Laser levelling system for laying-out pipes
US08/627,430 US5774211A (en) 1993-09-09 1996-04-04 Laser leveling system for setting pipes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16610594A JP3582853B2 (en) 1994-06-24 1994-06-24 Target reflector detection device

Publications (2)

Publication Number Publication Date
JPH0814891A JPH0814891A (en) 1996-01-19
JP3582853B2 true JP3582853B2 (en) 2004-10-27

Family

ID=15825114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16610594A Expired - Lifetime JP3582853B2 (en) 1993-09-09 1994-06-24 Target reflector detection device

Country Status (1)

Country Link
JP (1) JP3582853B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1080412C (en) * 1995-10-30 2002-03-06 株式会社拓普康 Rotary laser system
JP2002296031A (en) * 2001-03-30 2002-10-09 Sokkia Co Ltd Laser surveying instrument

Also Published As

Publication number Publication date
JPH0814891A (en) 1996-01-19

Similar Documents

Publication Publication Date Title
JP3941839B2 (en) Laser rotary irradiation device
US5612781A (en) Object reflector detection system
US6249338B1 (en) Laser survey instrument
US5309212A (en) Scanning rangefinder with range to frequency conversion
JP4088906B2 (en) Photo detector of surveying instrument
JP4350385B2 (en) Method for automatically searching for target marks, device for automatically searching for target marks, receiving unit, geodometer and geodetic system
EP1001250A2 (en) Laser survey instrument
JPH0712569A (en) Reflection target and detection apparatus of reflection target
WO1997023787A1 (en) Optical coordinate measuring machine
EP1061335A2 (en) Position detecting apparatus
JP4996043B2 (en) Lightwave distance measuring method and lightwave distance measuring apparatus
JP3684248B2 (en) Laser rotary irradiation device
EP0401909A1 (en) Method of and device for determining the position of a surface
JP3582853B2 (en) Target reflector detection device
JP3288454B2 (en) Rotary laser device
US5774211A (en) Laser leveling system for setting pipes
JP3681198B2 (en) Laser surveyor
JP5000819B2 (en) Rotating laser device
EP0935152A1 (en) Laser irradiation system
JP6749192B2 (en) Scanner and surveying equipment
JPH11166832A (en) Laser surveying system
JP2939413B2 (en) Target reflective object detector
JPH0783657A (en) Surveying instrument
JPH07117414B2 (en) Automatic collimating lightwave rangefinder
JP2000161961A (en) Rotary laser device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term