JPH077129B2 - Ultra narrow band optical multilayer film - Google Patents

Ultra narrow band optical multilayer film

Info

Publication number
JPH077129B2
JPH077129B2 JP62158258A JP15825887A JPH077129B2 JP H077129 B2 JPH077129 B2 JP H077129B2 JP 62158258 A JP62158258 A JP 62158258A JP 15825887 A JP15825887 A JP 15825887A JP H077129 B2 JPH077129 B2 JP H077129B2
Authority
JP
Japan
Prior art keywords
refractive index
thin film
index thin
film
low refractive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62158258A
Other languages
Japanese (ja)
Other versions
JPS642004A (en
JPH012004A (en
Inventor
正信 和久本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP62158258A priority Critical patent/JPH077129B2/en
Publication of JPS642004A publication Critical patent/JPS642004A/en
Publication of JPH012004A publication Critical patent/JPH012004A/en
Publication of JPH077129B2 publication Critical patent/JPH077129B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、特定波長の光を選択的に透過あるいは反射
する光学多層膜に関するものである。
Description: TECHNICAL FIELD The present invention relates to an optical multilayer film that selectively transmits or reflects light of a specific wavelength.

〔背景技術〕[Background technology]

特定波長の光を選択的に透過あるいは反射する光学多層
膜1は、第7図(a)にみるように、目的とする光の波
長(λ)の1/4の厚みを有する高屈折率薄膜H″と、同
じ厚みを有する低屈折率薄膜L″とを、基板2上に交互
に積層することで形成されている。
The optical multilayer film 1 that selectively transmits or reflects light of a specific wavelength is a high refractive index thin film having a thickness of 1/4 of the wavelength (λ) of the target light, as shown in FIG. 7 (a). H ″ and a low refractive index thin film L ″ having the same thickness are alternately laminated on the substrate 2.

しかし、このような光学多層膜では、帯域幅や反射率等
の特性を自由に制御することが難しい。
However, in such an optical multilayer film, it is difficult to freely control characteristics such as bandwidth and reflectance.

また、目的とする波長のピークにおける帯域幅が、第7
図(b)にみるように広く、急峻なピークを得ることが
できない、と言う問題もある。特に、帯域幅(半値幅)
を100nm以下にすることは、従来の光学多層膜では不可
能に近い。
In addition, the bandwidth at the peak of the target wavelength is
There is also a problem that a wide and steep peak cannot be obtained as shown in FIG. Especially bandwidth (half-width)
It is almost impossible to reduce the thickness to 100 nm or less with the conventional optical multilayer film.

〔発明の目的〕[Object of the Invention]

この発明は、上記事情に鑑みてなされたものであって、
帯域幅や反射率の設定をより大きな範囲で行うことがで
き、かつ、帯域幅を従来になく狭くすることのできる超
狭帯域光学多層膜を提供することを目的としている。
The present invention has been made in view of the above circumstances,
It is an object of the present invention to provide an ultra-narrow band optical multilayer film which can set the bandwidth and the reflectance in a wider range and can make the bandwidth narrower than ever before.

〔発明の開示〕[Disclosure of Invention]

上記目的を達成するため、この発明は、基板表面に高屈
折率薄膜と低屈折率薄膜とが交互に積層された光学多層
膜であって、前記高屈折率薄膜の膜厚が低屈折率薄膜の
膜厚よりも厚く、最表層に低屈折率薄膜がくる場合はこ
の低屈折率薄膜は除くこととして他の高屈折率薄膜
(H)と低屈折率薄膜(L)は少なくとも全て膜厚比H:
Lが、1.1:1〜2:1の範囲内にあり、かつ、高屈折率薄膜
がTiO2薄膜であり、低屈折率薄膜がSiO2薄膜およびMgF2
薄膜のいずれかであって、全薄膜の平均膜厚の2倍近傍
の波長の光に対する強い選択的光学特性を有することを
特徴とする超狭帯域光学多層膜を要旨としている。
In order to achieve the above object, the present invention is an optical multilayer film in which a high refractive index thin film and a low refractive index thin film are alternately laminated on a substrate surface, wherein the high refractive index thin film has a low refractive index thin film. When the outermost layer has a low refractive index thin film, the low refractive index thin film is excluded, and at least all other high refractive index thin films (H) and low refractive index thin films (L) have a film thickness ratio. H:
L is in the range of 1.1: 1 to 2: 1, and the high refractive index thin film is a TiO 2 thin film, and the low refractive index thin film is a SiO 2 thin film and MgF 2 thin film.
The gist is an ultra-narrow-band optical multi-layer film, which is one of the thin films and has strong selective optical characteristics with respect to light having a wavelength near twice the average film thickness of all thin films.

なお、最表層に低屈折率薄膜がくる場合、この低屈折率
薄膜は勿論、高屈折率薄膜よりも薄いことには変わりな
いのであるが、他の低屈折率薄膜のほぼ1/2と、最表層
に低屈折率薄膜のみは上記の膜厚比H:Lが1.1:1〜2:1の
範囲内を外れることがある。
Incidentally, when a low refractive index thin film comes to the outermost layer, this low refractive index thin film is, of course, still thinner than the high refractive index thin film, but with about 1/2 of other low refractive index thin films, Only the low refractive index thin film on the outermost layer may have the above film thickness ratio H: L outside the range of 1.1: 1 to 2: 1.

以下に、この発明を、詳しく説明する。Hereinafter, the present invention will be described in detail.

第1図(a)にみるように、この発明の超狭帯域光学多
層膜1は、基板2表面に、高屈折率薄膜Hと低屈折率薄
膜Lとを交互に積層形成してなるものであるが、この点
は、従来のものとかわらない。
As shown in FIG. 1 (a), the ultra-narrow band optical multilayer film 1 of the present invention is formed by alternately laminating a high refractive index thin film H and a low refractive index thin film L on the surface of a substrate 2. However, this point is the same as the conventional one.

各薄膜H、Lの材料としても、従来と同様の化合物を使
用することができる。
As the material of each of the thin films H and L, the same compound as the conventional one can be used.

たとえば、高屈折率薄膜Hとしては、TiO2、CeO2、Zr
O2、ZnS、V2O5等の、屈折率nが2.0〜2.6程度の物質に
よる薄膜が候補として考えられるが、この発明では屈折
率等などからTiO2薄膜が使用される。
For example, as the high refractive index thin film H, TiO 2 , CeO 2 , Zr
Although a thin film made of a substance having a refractive index n of about 2.0 to 2.6 such as O 2 , ZnS, V 2 O 5 and the like is considered as a candidate, a TiO 2 thin film is used in the present invention because of its refractive index and the like.

低屈折率薄膜Lとしては、CaF2、MgF2、SiO2、Al2O3
の、屈折率nが1.3〜1.6程度の物質による薄膜が候補と
して考えられるが、この発明では低屈折率であるSiO2
膜かMgF2薄膜が使用される。
As the low refractive index thin film L, a thin film made of a material having a refractive index n of about 1.3 to 1.6, such as CaF 2 , MgF 2 , SiO 2 , Al 2 O 3 , is considered as a candidate. Some SiO 2 or MgF 2 thin films are used.

そして、以上のような化合物の組み合わせ、および各薄
膜H、Lの膜厚を後述のように選んでやれば、必要とす
る波長の光を反射あるいは透過させることができるよう
になるのである。
Then, by selecting the combination of the compounds as described above and the film thickness of each of the thin films H and L as described below, it becomes possible to reflect or transmit light of a required wavelength.

以上のような各薄膜H、Lを形成する方法は、この発明
では特に限定されず、通常と同様の方法が採用される。
The method of forming each of the thin films H and L as described above is not particularly limited in the present invention, and a method similar to a usual method is adopted.

たとえば、抵抗加熱による真空蒸着法、電子ビーム加熱
による蒸着法、スパッタリング法、イオンプレーティン
グ法等の物理的蒸着法や、CVD法等の化学的蒸着法等を
使用することができるのである。
For example, a vacuum vapor deposition method by resistance heating, a vapor deposition method by electron beam heating, a physical vapor deposition method such as a sputtering method or an ion plating method, or a chemical vapor deposition method such as a CVD method can be used.

これらの方法による薄膜の形成にあたっては、基板を室
温以上に加熱するようであってもよい。一般に、基板温
度が高ければ、形成される薄膜の硬度が高くなり、その
耐久性も向上する傾向があるからである。しかしなが
ら、あまり基板温度が高すぎると、作業性や生産性が悪
くなる恐れがある。したがって、基板温度は、形成する
薄膜の種類やその製法にもよるが、室温〜350℃程度で
あることが好ましい。
In forming the thin film by these methods, the substrate may be heated to room temperature or higher. This is because, generally, when the substrate temperature is high, the hardness of the formed thin film tends to be high and its durability tends to be improved. However, if the substrate temperature is too high, workability and productivity may be deteriorated. Therefore, the substrate temperature is preferably room temperature to 350 ° C., though it depends on the type of thin film to be formed and the manufacturing method thereof.

また、この発明では、焼成により上記物質となる有機金
属化合物の溶液を基板表面に塗布し焼成する方法を採用
することもできる。
Further, in the present invention, a method of applying a solution of an organometallic compound, which becomes the above-mentioned substance by firing, to the surface of the substrate and firing the solution can also be adopted.

この発明の超狭帯域光学多層膜は、上記のような両薄膜
H、Lのうち、高屈折率薄膜Hの膜厚が、低屈折率薄膜
Lの膜厚よりも厚いことを特徴とする。
The ultra-narrow band optical multilayer film of the present invention is characterized in that, of the two thin films H and L as described above, the film thickness of the high refractive index thin film H is thicker than the film thickness of the low refractive index thin film L.

このように、高屈折率薄膜Hの膜厚が、低屈折率薄膜L
の膜厚よりも厚くなっていると、第1図(b)に示した
ように、その吸収特性のλ/2の位置に、極めて帯域幅の
狭い、強い選択性を有するピークが得られる。ピークの
形状(帯域幅や強度等)は、両薄膜H、Lを構成する材
料の組み合わせや、その膜厚比、層数等の条件によって
違うが、帯域幅(半値幅)50〜60nm程度、透過率10〜30
%と言う、これまでにない、極めて選択性の強い、急峻
なものとすることができる。
As described above, the film thickness of the high refractive index thin film H is equal to
If it is thicker than the film thickness of, a peak having an extremely narrow band width and strong selectivity is obtained at the position of λ / 2 of the absorption characteristic, as shown in FIG. 1 (b). The shape of the peak (bandwidth, intensity, etc.) differs depending on the combination of the materials forming both thin films H and L, the film thickness ratio, the number of layers, etc., but the bandwidth (half-value width) is about 50-60 nm, Transmittance 10-30
%, Which is unprecedented and has extremely strong selectivity, can be steep.

このような急峻なピークは、第7図(b)に示した従来
の吸収特性のうち、波長λのピークよりも波長の短い領
域に存在していた、さざ波状の成分(リップル)のうち
の、一つの成分が大きくなったものである。
Such a steep peak is among the ripple-shaped components (ripples) that exist in the region having a shorter wavelength than the peak of the wavelength λ in the conventional absorption characteristics shown in FIG. 7 (b). , One component is larger.

この現象は、両膜薄H、Lの膜厚に差をつけると、各界
面で発生する反射波の位相に変化が起こり、干渉によっ
て、このλ/2の成分の反射が強化されるために発生する
と考えられる。
This phenomenon is because when the thicknesses of the two thin films H and L are made different, the phase of the reflected wave generated at each interface changes, and the interference enhances the reflection of this λ / 2 component. It is thought to occur.

この現象は、両薄膜の膜厚比や材料によって影響される
ため、発生波長を厳密に理論より算出することは困難で
あるが、基本的には全薄膜の平均値の2倍近傍、すなわ
ち、従来で言うところの波長λのピーク(全薄膜の平均
値の4倍の波長の成分)の半分の波長(λ/2)近傍の成
分に発生する。
Since this phenomenon is affected by the film thickness ratio of both thin films and the material, it is difficult to calculate the generated wavelength exactly by theory, but basically, it is close to twice the average value of all thin films, that is, It occurs in a component in the vicinity of a wavelength (λ / 2) which is half of the peak of the wavelength λ (a component having a wavelength four times the average value of all thin films) in the past.

一方、波長λの従来のピークも、第1図(b)にみるよ
うに、存在しない訳でなく、従来同様に存在するから、
この発明の超狭帯域光学多層膜は、結局、二つのピーク
をあわせ持つものとなる。
On the other hand, since the conventional peak of the wavelength λ does not exist as shown in FIG.
The ultra-narrow band optical multilayer film of the present invention eventually has two peaks at the same time.

波長λ/2におけるピークの形状(帯域幅、強度等)は、
前述したように、両薄膜H、Lを構成する材料の組み合
わせや、その膜厚比、層数等の条件によって種々制御す
ることができる。
The peak shape (bandwidth, intensity, etc.) at wavelength λ / 2 is
As described above, various controls can be performed depending on the combination of materials forming the thin films H and L, the film thickness ratio, the number of layers, and other conditions.

たとえば、高屈折率薄膜HとしてTiO2を、低屈折率薄膜
LとしてSiO2を、それぞれ、使用し、合計の層数を10
層、高屈折率薄膜Hの膜厚を350nm、低屈折率薄膜Lの
膜厚を250nmとすると、透過率25〜30%、帯域幅(半値
幅)50〜60nmのピークを、波長600nm近傍の位置に得る
ことができる。
For example, TiO 2 is used as the high refractive index thin film H, and SiO 2 is used as the low refractive index thin film L, and the total number of layers is 10
Layer, the high-refractive-index thin film H has a thickness of 350 nm, and the low-refractive-index thin film L has a thickness of 250 nm, a peak with a transmittance of 25 to 30% and a bandwidth (half-width) of 50 to 60 nm near a wavelength of 600 nm. You can get in position.

一例として、第2図に、高屈折率薄膜HとしてTiO2を、
低屈折率薄膜LとしてSiO2を、それぞれ、使用し、合計
の層数を6〜18層に変化させた際の光学特性を示す。図
にみるように、合計の層数を6層から増やして行くと、
波長λ/2(=600nm近傍)にあるピークの透過率を除々
に小さくする(反射率を増大する)ことができるように
なる。これを、より判り易く、ピーク頂点の超過率のみ
であらわすと、第4図のようになる。
As an example, in FIG. 2 , TiO 2 is used as the high refractive index thin film H,
The optical characteristics when SiO 2 is used as the low refractive index thin film L and the total number of layers is changed to 6 to 18 are shown. As you can see from the figure, if you increase the total number of layers from 6 layers,
It becomes possible to gradually reduce the transmittance of the peak at the wavelength λ / 2 (= around 600 nm) (increase the reflectance). This can be more easily understood and is shown by the excess rate at the peak apex as shown in FIG.

高屈折率薄膜Hと低屈折率薄膜Lとの膜厚差は、前述し
たように、この発明における重要な因子であり、高屈折
率薄膜Hの膜厚は、常に低屈折率薄膜Lの膜厚よりも厚
くなっており、しかも、最表層に低屈折率薄膜がくる場
合はこの低屈折率薄膜は除くこととして他の高屈折率薄
膜(H)と低屈折率薄膜(L)は少なくとも全て膜厚比
H:Lが、1.1:1〜2:1の範囲内にある必要がある。膜厚比
H:Lが2:1を越えると、両者の膜厚が同じである従来のも
のとの特性が差が少なくなってしまう。
The film thickness difference between the high refractive index thin film H and the low refractive index thin film L is an important factor in the present invention as described above, and the film thickness of the high refractive index thin film H is always the film of the low refractive index thin film L. When the outermost layer has a low refractive index thin film, the low refractive index thin film is excluded, and at least all other high refractive index thin films (H) and low refractive index thin films (L) are excluded. Thickness ratio
H: L must be in the range 1.1: 1 to 2: 1. Thickness ratio
When H: L exceeds 2: 1, the difference in characteristics from the conventional one in which the film thicknesses of both are the same becomes small.

また、膜厚比H:Lは、上記範囲の中でも、1.1:1:1.5〜1
の範囲内であることが、より好ましい。
The film thickness ratio H: L is 1.1: 1: 1.5 to 1 within the above range.
More preferably, it is within the range.

両薄膜H、Lの膜厚比と、光学特性の関係を第3図に示
す。図にみるように、両薄膜H、Lの膜厚が同じである
もの(1:1)では、波長λ/2(=500nm近傍)に特徴的な
ピークは見られない。その前後の成分と同じくさざ波の
一つがあるだけである。これに対し、両者の膜厚比をH:
L=1.1:1にしたこの発明の超狭帯域光学多層膜では、こ
のλ/2の成分が急成長し、急峻なピークを示す。両者の
膜厚比をさらに大きくすると、ピークはさらに大きくな
り、その頂点の透過率は、H:L=1.5:1のとき20%にもな
るのである。これを、より判り易く、ピーク頂点の透過
率のみであらわすと、第5図のようになる。
The relationship between the film thickness ratio of the two thin films H and L and the optical characteristics is shown in FIG. As shown in the figure, in the case where the thin films H and L have the same film thickness (1: 1), no characteristic peak is seen at the wavelength λ / 2 (= around 500 nm). There is only one ripple like the components before and after that. On the other hand, the film thickness ratio of both is H:
In the ultra-narrow band optical multilayer film of the present invention in which L = 1.1: 1, the component of λ / 2 grows rapidly and shows a steep peak. When the film thickness ratio of the two is further increased, the peak is further increased, and the transmittance at the apex is as high as 20% when H: L = 1.5: 1. This can be understood more easily, and the transmittance at the peak apex is shown in FIG.

なお、この際、ピークの帯域幅も、ピークが大きくなる
につれて拡がるが、第3図にみるように、それでも、半
値幅で100nmを越えるものではない。つまり、急峻なピ
ークが維持されるのである。
At this time, the bandwidth of the peak also broadens as the peak becomes larger, but as shown in FIG. 3, the half value width still does not exceed 100 nm. In other words, the steep peak is maintained.

高屈折率薄膜Hと低屈折率薄膜Lの基板上における配列
は、この発明では特に限定されないが、第6図(a)に
みるように、最表層を低屈折率薄膜とし、その膜厚を他
の低屈折率薄膜のほぼ1/2とすることが好ましい。この
ように両薄膜H、Lを配置すると、第6図(b)にみる
ように、ピーク以外の、透過帯の分光特性をよりフラッ
トにすることができるようになるからである。
The arrangement of the high refractive index thin film H and the low refractive index thin film L on the substrate is not particularly limited in the present invention, but as shown in FIG. 6 (a), the outermost layer is a low refractive index thin film and its thickness is It is preferable to make it about 1/2 of that of other low refractive index thin films. By arranging the two thin films H and L in this manner, as shown in FIG. 6B, the spectral characteristics of the transmission band other than the peak can be made flatter.

以上のような、この発明の超狭帯域光学多層膜は、必要
外の波長の光を透過し、それ以外の必要とする光を反射
するミラー(いわゆる、ダイクロイックミラー)や、必
要外の波長の光をカットする、照射用色温度変換フィル
タ、光学機器用フィルタ等のフィルタとして用いること
ができる。
As described above, the ultra-narrow-band optical multilayer film of the present invention is a mirror (so-called dichroic mirror) that transmits light of an unnecessary wavelength and reflects light of other required wavelengths, or a wavelength of an unnecessary wavelength. It can be used as a filter that cuts light, such as a color temperature conversion filter for irradiation and a filter for optical equipment.

つぎに、この発明の実施例について説明する。Next, examples of the present invention will be described.

(実施例1) 高屈折率薄膜Hとして厚み350nmのTiO2膜を、低屈折率
薄膜Lとして厚み250nmのSiO2膜を、それぞれ使用し、
これらを交互に9層積層したあと、最上層に透過帯の分
光特性をフラットにするため厚み125nmのSiO2膜を積層
して、第6図(a)にみる層構成の超狭帯域光学多層膜
を得た。このものは、第6図(b)にみるように、波長
550nmに、帯域幅(半値幅)50nmと言う極めて急峻なピ
ークを有しており、単色ミラーとして使用することがで
きた。
Example 1 A high-refractive-index thin film H is a TiO 2 film having a thickness of 350 nm, and a low-refractive-index thin film L is a SiO 2 film having a thickness of 250 nm.
After alternately stacking 9 layers, a 125 nm thick SiO 2 film is laminated on the uppermost layer to flatten the spectral characteristics of the transmission band, and the ultra-narrow-band optical multilayer with the layer structure shown in FIG. 6 (a). A film was obtained. As shown in Fig. 6 (b), this wavelength
At 550 nm, it has an extremely steep peak with a bandwidth (half-width) of 50 nm, and could be used as a monochromatic mirror.

(実施例2) 上記実施例1と同じ層構成の超狭帯域光学多層膜をフィ
ルタとして使用したところ、放射成分より緑色光成分の
みを取り除いて色温度を調整でき、明るい赤色光を透過
するものが得られた。
(Example 2) When an ultra-narrow band optical multilayer film having the same layer structure as in Example 1 above is used as a filter, only the green light component can be removed from the radiant component to adjust the color temperature and transmit bright red light. was gotten.

〔発明の効果〕〔The invention's effect〕

この発明の超狭帯域光学多層膜は、上記構成上であるが
ために、下記の効果(1),(2)を奏することが出
来、有用性が顕著である。
Since the ultra-narrow band optical multilayer film of the present invention has the above-mentioned constitution, it can exhibit the following effects (1) and (2), and its usefulness is remarkable.

効果(1) 特定の波長の光に対する顕著な選択的光学
特性を有する。
Effect (1) It has remarkable selective optical characteristics for light of a specific wavelength.

これは、基本的には高屈折率薄膜と同膜より薄い低屈折
率薄膜が交互に積層されている上、最表層の低屈折率薄
膜は別として高屈折率薄膜(H)と低屈折率薄膜(L)
が適切な膜厚比範囲たるH:L=1.1:1〜2:1にあるからで
ある。もうひとつは、高屈折率薄膜がTiO2薄膜であり、
低屈折率薄膜がSiO2薄膜およびMgF2薄膜のいずれかであ
って屈折率の差が顕著だからである。これらの相乗作用
で急峻な選択的光学特性を有するのである。
This is basically because a high refractive index thin film and a low refractive index thin film thinner than the high refractive index thin film are alternately laminated, and apart from the outermost low refractive index thin film, a high refractive index thin film (H) and a low refractive index thin film are used. Thin film (L)
Is in an appropriate film thickness ratio range, H: L = 1.1: 1 to 2: 1. The other is that the high refractive index thin film is a TiO 2 thin film,
This is because the low refractive index thin film is either the SiO 2 thin film or the MgF 2 thin film and the difference in the refractive index is remarkable. These synergistic effects have a steep selective optical characteristic.

効果(2) 帯域幅や反射率の設定をより大きな範囲で
行える。
Effect (2) Bandwidth and reflectance can be set in a larger range.

これは、反射率は主として積層回数の調整で大きく変え
られ、帯域幅は主として薄膜厚みの調整で大きく変えら
れるからである。
This is because the reflectance can be largely changed mainly by adjusting the number of laminations, and the bandwidth can be largely changed mainly by adjusting the thin film thickness.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)はこの発明の超狭帯域光学多層膜の層構成
の一例を説明する層構成図、第1図(b)はこの層構成
における光学特性の一例をあらわすグラフ、第2図は多
層膜の層数と光学特性の関係をあらわすグラフ、第3図
は高低両屈折率薄膜の膜厚比と光学特性の関係をあらわ
すグラフ、第4図は多層膜の層数とピーク頂点の超過率
との関係をあらわすグラフ、第5図は膜厚比とピーク頂
点の透過率との関係をあらわすグラフ、第6図(a)は
最表層の低屈折率薄膜の膜厚をその他の低屈折率薄膜の
1/2とした実施例の層構成を説明する層構成図、第6図
(b)はこの層構成における光学特性の一例をあらわす
グラフ、第7図(a)は従来の光学多層膜の層構成の一
例を説明する層構成図、第7図(b)はこの層構成にお
ける光学特性の一例をあらわすグラフである。 2……基板、H……高屈折率薄膜、L……低屈折率薄
膜、1……超狭帯域光学多層膜
FIG. 1 (a) is a layer configuration diagram for explaining an example of the layer configuration of the ultra-narrow band optical multilayer film of the present invention, and FIG. 1 (b) is a graph showing an example of the optical characteristics in this layer configuration, FIG. Is a graph showing the relationship between the number of layers of the multilayer film and the optical characteristics, FIG. 3 is a graph showing the relationship between the film thickness ratio of the high and low refractive index thin films and the optical characteristics, and FIG. 4 is the number of layers of the multilayer film and the peak apex. Fig. 5 is a graph showing the relationship with the excess ratio, Fig. 5 is a graph showing the relationship between the film thickness ratio and the transmittance at the peak apex, and Fig. 6 (a) is the graph showing the film thickness of the low refractive index thin film of the outermost layer. Refractive index of thin film
FIG. 6 (b) is a graph showing an example of optical characteristics in this layer structure, and FIG. 7 (a) is a layer of a conventional optical multilayer film. FIG. 7 (b) is a graph showing an example of the optical characteristics of this layer structure, illustrating the layer structure illustrating an example of the structure. 2 ... Substrate, H ... High refractive index thin film, L ... Low refractive index thin film, 1 ... Ultra narrow band optical multilayer film

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】基板表面に高屈折率薄膜と低屈折率薄膜と
が交互に積層された光学多層膜であって、前記高屈折率
薄膜の膜厚が低屈折率薄膜の膜厚よりも厚く、最表層に
低屈折率薄膜がくる場合はこの低屈折率薄膜は除くこと
として他の高屈折率薄膜(H)と低屈折率薄膜(L)は
少なくとも全て膜厚比H:Lが、1.1:1〜2:1の範囲内にあ
り、かつ、高屈折率薄膜がTiO2薄膜であり、低屈折率薄
膜がSiO2薄膜およびMgF2薄膜のいずれかであって、全薄
膜の平均膜厚の2倍近傍の波長の光に対する強い選択的
光学特性を有することを特徴とする超狭帯域光学多層
膜。
1. An optical multilayer film in which high refractive index thin films and low refractive index thin films are alternately laminated on a substrate surface, wherein the high refractive index thin film is thicker than the low refractive index thin film. If a low refractive index thin film comes to the outermost layer, this low refractive index thin film is excluded, and at least all other high refractive index thin films (H) and low refractive index thin films (L) have a film thickness ratio H: L of 1.1. In the range of 1: 1 to 2: 1, the high refractive index thin film is a TiO 2 thin film, and the low refractive index thin film is either a SiO 2 thin film or a MgF 2 thin film, and the average thickness of all thin films. An ultra-narrow-band optical multi-layer film having strong selective optical characteristics with respect to light having a wavelength near twice the above.
【請求項2】最表層が低屈折率薄膜であり、その膜厚が
他の低屈折率薄膜のほぼ1/2である特許請求の範囲第1
項記載の超狭帯域光学多層膜。
2. The outermost layer is a low-refractive index thin film, and the film thickness thereof is about half that of other low-refractive index thin films.
An ultra-narrow band optical multilayer film according to the item.
【請求項3】必要外の波長の光を透過し、必要とする波
長の光を反射するミラーに用いられている特許請求の範
囲第1項または第2項記載の超狭帯域光学多層膜。
3. The ultra-narrow band optical multilayer film according to claim 1 or 2, which is used as a mirror which transmits light having an unnecessary wavelength and reflects light having a necessary wavelength.
【請求項4】必要外の波長の光をカットするフィルタに
用いられている特許請求の範囲第1項または第2項記載
の超狭帯域光学多層膜。
4. The ultra-narrow band optical multilayer film according to claim 1 or 2, which is used in a filter that cuts light having an unnecessary wavelength.
JP62158258A 1987-06-25 1987-06-25 Ultra narrow band optical multilayer film Expired - Fee Related JPH077129B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62158258A JPH077129B2 (en) 1987-06-25 1987-06-25 Ultra narrow band optical multilayer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62158258A JPH077129B2 (en) 1987-06-25 1987-06-25 Ultra narrow band optical multilayer film

Publications (3)

Publication Number Publication Date
JPS642004A JPS642004A (en) 1989-01-06
JPH012004A JPH012004A (en) 1989-01-06
JPH077129B2 true JPH077129B2 (en) 1995-01-30

Family

ID=15667690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62158258A Expired - Fee Related JPH077129B2 (en) 1987-06-25 1987-06-25 Ultra narrow band optical multilayer film

Country Status (1)

Country Link
JP (1) JPH077129B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003077028A1 (en) * 2002-03-14 2003-09-18 Sony Corporation Projection screen and manufacturing method thereof
WO2003077027A1 (en) * 2002-03-14 2003-09-18 Sony Corporation Projection screen

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4122010B2 (en) * 2004-11-12 2008-07-23 東海光学株式会社 Infrared light emitter / receiver
KR100921202B1 (en) * 2004-11-04 2009-10-13 삼성전자주식회사 Apparatus and method of space time frequency block code
CN101057341B (en) * 2004-11-12 2010-12-29 东海光学株式会社 Infrared-transmitting cover
KR100720108B1 (en) * 2005-10-24 2007-05-21 한국과학기술원 manufacturing method for PVA fiber composite mortar for a self-consolidating

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039561A (en) * 1973-08-10 1975-04-11
JPS6086505A (en) * 1983-10-18 1985-05-16 Dainippon Printing Co Ltd Color separation filter
EP0215371A3 (en) * 1985-09-17 1989-01-04 Siemens Aktiengesellschaft Edge interference filters for a wavelength division multiplexing optical communication system
JPS62213283A (en) * 1986-03-14 1987-09-19 Seiko Epson Corp Solar cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003077028A1 (en) * 2002-03-14 2003-09-18 Sony Corporation Projection screen and manufacturing method thereof
WO2003077027A1 (en) * 2002-03-14 2003-09-18 Sony Corporation Projection screen
US7251074B2 (en) 2002-03-14 2007-07-31 Sony Corporation Projection screen and method for manufacturing the same
CN100430826C (en) * 2002-03-14 2008-11-05 索尼公司 Projection screen

Also Published As

Publication number Publication date
JPS642004A (en) 1989-01-06

Similar Documents

Publication Publication Date Title
US5337191A (en) Broad band pass filter including metal layers and dielectric layers of alternating refractive index
EP1108228B1 (en) Partial reflector
US5183700A (en) Solar control properties in low emissivity coatings
CN108680981B (en) Preparation method of deep ultraviolet narrow-band optical filter
CA2220291C (en) Multilayer thin film dielectric bandpass filter
US4309075A (en) Multilayer mirror with maximum reflectance
US5140457A (en) Reflector for display lighting
US5999322A (en) Multilayer thin film bandpass filter
US6310729B1 (en) Dichroic mirror
JPH0763915A (en) Thin film nd filter and its production
US5274661A (en) Thin film dielectric coating for laser resonator
JPH05502310A (en) DC reactive sputtered optical coatings containing niobium oxide
JPH077129B2 (en) Ultra narrow band optical multilayer film
JPH10268130A (en) Light absorbing filter
JP3670193B2 (en) Multilayer filter and halogen lamp with multilayer filter
JP3373182B2 (en) Multilayer optical filter
JPH012004A (en) Ultra-narrowband optical multilayer film
JPH05127004A (en) Reflecting mirror
JPH07111482B2 (en) Multi-layer antireflection film
Konovalova et al. Interference systems of controllable mirrors based on vanadium dioxide for the spectral range 0.6-10.6 micrometer
JP2566634B2 (en) Multi-layer antireflection film
JP2003302521A (en) Optical multilayered film filter
JP3550894B2 (en) Anti-reflective coating
JPS62143002A (en) Dielectric multi-layer film nonreflective coating
JPH0784105A (en) Reflecting film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees