JPH0770420B2 - Biaxially stretched polyester film for capacitors - Google Patents

Biaxially stretched polyester film for capacitors

Info

Publication number
JPH0770420B2
JPH0770420B2 JP62152223A JP15222387A JPH0770420B2 JP H0770420 B2 JPH0770420 B2 JP H0770420B2 JP 62152223 A JP62152223 A JP 62152223A JP 15222387 A JP15222387 A JP 15222387A JP H0770420 B2 JPH0770420 B2 JP H0770420B2
Authority
JP
Japan
Prior art keywords
film
particles
capacitor
capacitors
polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62152223A
Other languages
Japanese (ja)
Other versions
JPS63316419A (en
Inventor
俊文 滝澤
親和 川口
憲司 加藤
Original Assignee
ダイアホイルヘキスト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイアホイルヘキスト株式会社 filed Critical ダイアホイルヘキスト株式会社
Priority to JP62152223A priority Critical patent/JPH0770420B2/en
Priority to KR1019870006750A priority patent/KR960006092B1/en
Priority to EP87112252A priority patent/EP0257611B1/en
Priority to ES87112252T priority patent/ES2056802T3/en
Priority to AT87112252T priority patent/ATE109493T1/en
Priority to DE3750319T priority patent/DE3750319T2/en
Publication of JPS63316419A publication Critical patent/JPS63316419A/en
Priority to US07/420,740 priority patent/US4990400A/en
Priority to US07/420,474 priority patent/US5106681A/en
Publication of JPH0770420B2 publication Critical patent/JPH0770420B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Organic Insulating Materials (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気特性、滑り特性が優れたコンデンサー用フ
イルムに関し、とりわけ、コンデンサーとしたとき電気
容量、耐電圧の優れた極薄物コンデンサー用フイルムに
関する。
TECHNICAL FIELD The present invention relates to a film for capacitors having excellent electric characteristics and sliding properties, and more particularly to an ultrathin film for capacitors having excellent electric capacity and withstand voltage when used as a capacitor. .

〔従来の技術と発明が解決しようとする問題点〕[Problems to be solved by conventional technology and invention]

ポリエステルフイルムはその優れた物理的、化学的性質
の故に産業上広く用いられている。就中、二軸延伸ポリ
エチレンテレフタレートフイルムは他のフイルムに比し
特に弾性率、平面性、電気特性及び耐薬品性等の点で優
れる故コンデンサー用フイルムとして多く用いられてい
る。
Polyester film is widely used in industry due to its excellent physical and chemical properties. In particular, biaxially stretched polyethylene terephthalate film is widely used as a film for capacitors because it is superior to other films in terms of elastic modulus, flatness, electrical characteristics and chemical resistance.

一方、近年、コンデンサー素子は軽薄短小化の方向に推
移しつつある。具体的には、誘電体層を薄くする事によ
り、単位体積当りの表面積を上げると供に、電極間距離
を小さくし、電気容量を増加している。このコンデンサ
ー素子の軽薄短小化に不可欠なのが、フイルムの薄膜化
である。従来より2μm〜6μmの厚さのものがコンデ
ンサー用として主に使われているが、上記目的のため、
2μm以下のフイルムの要求が現在増加しつつある。
On the other hand, in recent years, the capacitor element has been in the direction of becoming thinner, lighter, shorter and smaller. Specifically, by thinning the dielectric layer, the surface area per unit volume is increased, the distance between the electrodes is reduced, and the electric capacity is increased. Indispensable for making the capacitor element lighter, thinner, shorter, and smaller is to make the film thinner. Conventionally, those having a thickness of 2 μm to 6 μm have been mainly used for capacitors, but for the above purpose,
The demand for films below 2 μm is currently increasing.

フイルムの薄膜化に伴い、フイルム製造工程やコンデン
サー製造工程で種々の問題が出てくる。又、物性的に
も、新たな問題が出てくる。
As the film becomes thinner, various problems arise in the film manufacturing process and the capacitor manufacturing process. Also, in terms of physical properties, new problems will arise.

まず第1に、フイルムの滑りの問題が上げられる。一般
的に、フイルム製造工程及び加工工程に於けるフイルム
の取り扱い作業性を改良する目的で、通常フイルム中に
不活性な無機或いは有機の微粒子を存在させフイルム表
面に適度の凹凸を付与せしめている。この凹凸は、微粒
子の粒径にもよるが、フイルム表面近傍のみならず、フ
イルム内部の粒子によっても影響を受けるため、フイル
ム厚が薄くなるに従って、フイルム粗度が小さくなり、
滑り性が悪くなる。そのため、作業性が低下し、特に巻
き取り性が悪化するので場合によっては製膜が不可能と
なる。
First of all, the problem of film slippage is raised. Generally, for the purpose of improving the handling workability of the film in the film manufacturing process and processing process, inactive inorganic or organic fine particles are usually present in the film to impart appropriate irregularities to the film surface. . This unevenness is affected not only by the vicinity of the film surface but also by the particles inside the film, depending on the particle size of the fine particles, so as the film thickness decreases, the film roughness decreases,
The slipperiness deteriorates. For this reason, workability is lowered, and especially winding property is deteriorated, so that film formation becomes impossible in some cases.

今一つの問題として、フイルム表面の凹凸により、フイ
ルム間にスキ間ができ、これが電気容量を低下せしめる
という事が上げられる。電気容量の低下量を知る目安の
量として、10枚重ねマイクロメーター法フイルム厚さ
と、重量法フイルム厚さとの差△dがある。この△dが
大きいという事は、フイルム間のスキ間が大きく電気容
量の低下が大きいという事を表わす。特性の良いコンデ
ンサーを作るためには、この△dが小さい方が望まし
い。
Another problem is that irregularities on the film surface cause gaps between the films, which reduces the electric capacity. There is a difference Δd between the film thickness of the 10-sheet micrometer method film and the weight method film as an index for knowing the amount of decrease in the electric capacity. The large Δd means that the gap between the films is large and the decrease in the electric capacity is large. In order to make a capacitor with good characteristics, it is desirable that this Δd be small.

上記2つの問題の解決法は、相反している。つまり、作
業性向上のため滑り性を良くするには、表面凹凸を増加
せしめ、粗度を大きくすれば良いが、粗度が大きくなれ
ば△dが大きくなり、電気特性が悪化し、又逆に電気特
性を良くする目的で△dを小さくし、粗度を小さくすれ
ば作業性が悪くなるという訳である。
The solutions to the above two problems are in conflict. That is, in order to improve the slipperiness for improving the workability, it is sufficient to increase the surface irregularities and increase the roughness, but if the roughness is increased, Δd is increased and the electrical characteristics are deteriorated. In addition, if Δd is reduced and the roughness is reduced for the purpose of improving the electrical characteristics, the workability is deteriorated.

従って、滑り性又は電気特性どちらかを犠牲にしなけれ
ば超薄フイルムを従来は得ることはできなかった。
Therefore, ultra-thin films could not be obtained in the past without sacrificing either slipperiness or electrical properties.

ところで、フイルム中に粒子を存在せしめる方法は、大
きく2つに分けられる。その一つの方法は、添加法と呼
ばれる方法で、カオリン、シリカ、タルク、炭酸カルシ
ウム、リン酸カルシウム等をそのままあるいは微粒子化
した後、ポリエステル反応系、成形時等に添加するもの
である。これらポリエステルに不活性な無機粒子を添加
する方法は微粒子の粒度、量を制御することができるの
で、結果の再現性は良いが、往々にして不用な粗大粒子
が混入する。この粗大粒子を除去するためには必ず分級
操作が、また必要に応じその前処理としての粉砕操作が
必要となるので操作が煩雑となる。
By the way, the method of making particles exist in the film can be roughly divided into two. One of the methods is a method called addition method, which is to add kaolin, silica, talc, calcium carbonate, calcium phosphate, etc. as they are or after making them into fine particles, and then adding them to the polyester reaction system, molding and the like. The method of adding inactive inorganic particles to these polyesters can control the particle size and amount of fine particles, so that the results are reproducible, but unnecessary coarse particles are often mixed. In order to remove the coarse particles, a classification operation and a crushing operation as a pretreatment thereof are required if necessary, which makes the operation complicated.

しかもこのような操作を行なったとしても、なお粗大粒
子の混入は避けられない。粗大粒子あるいは凝集による
二次粒子が存在することは、特にコンデンサー用フイル
ムとしては致命的で耐電圧特性その他の電気特性に悪影
響を及ぼす。
Moreover, even if such an operation is performed, it is inevitable that coarse particles are mixed. The presence of coarse particles or secondary particles due to agglomeration is particularly fatal for a film for capacitors and adversely affects withstand voltage characteristics and other electrical characteristics.

添加法と対比される今一つの方法は、析出法と呼ばれる
方法で、エステル交換反応に用いたカルシウムやリチウ
ム化合物等の触媒をリン化合物の存在下あるいは非存在
下ポリエステル製造反応系に微細な不活性微粒子として
析出させるものである。
Another method compared with the addition method is a method called a precipitation method, in which a catalyst such as a calcium or lithium compound used in a transesterification reaction is finely inert to a polyester production reaction system in the presence or absence of a phosphorus compound. The particles are deposited as fine particles.

この析出した不活性微粒子を用いて滑り性を改良しよう
とする場合には一般に析出粒子径、粒子量が変化し易い
ため、滑り性のコントロールが難しくなる。また添加法
に比べ概して滑り性が悪い上、再生使用した場合、もと
の滑り性を与えなくなるという欠点もある。
When it is attempted to improve the slidability by using the precipitated inactive fine particles, generally, the deposited particle diameter and the amount of the particles are easily changed, and it becomes difficult to control the slidability. In addition, there is a drawback that the slipperiness is generally poorer than that of the addition method and that the original slipperiness is not given when recycled.

以上、上述の不活性微粒子を用いて極薄物コンデンサー
用フイルムを作ろうとすれば、添加系、析出系にかかわ
らず、問題点があり満足のよくフイルムが得られなかっ
た。
As described above, if an attempt is made to make a film for an ultra-thin capacitor using the above-mentioned inert fine particles, there is a problem regardless of whether the film is an addition system or a precipitation system, and a satisfactory film cannot be obtained.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは上記実情に鑑みて、電気特性及び滑り特性
が共に優れたコンデンサー用二軸延伸フイルムについて
鋭意検討を重ねた結果、特定の製造法による特定の性状
を有するシリカ粒子を特定量含有するポリエステルで製
膜したフイルムの突起数及び△dが特定範囲にある二軸
延伸フイルムが、コンデンサー用として優れた特性を有
することを見出し本発明に至った。
In view of the above circumstances, the present inventors have conducted intensive studies on a biaxially stretched film for capacitors having both excellent electrical properties and sliding properties, and as a result, contain a specific amount of silica particles having specific properties by a specific production method. The present inventors have found that a biaxially stretched film in which the number of protrusions and Δd of the film formed from the polyester are in a specific range have excellent properties for use as a capacitor, leading to the present invention.

即ち、本発明の要旨はアルコキシシランの加水分解反応
及び縮合反応によって得られる平均粒系0.01〜3.0μm
の実質的に非晶質で球形のシリカ粒子を0.001〜5重量
%含有し、かつフイルム表面の突起数が1.0×103個/mm2
以上であり、10枚重ねマイクロメーター法フイルム厚さ
と重量法フイルム厚さとの差△d〔μm〕が、下記
(1)式を満足することを特徴とするコンデンサー用二
軸延伸ポリエステルフイルムに存する。
That is, the gist of the present invention is to obtain an average particle size of 0.01 to 3.0 μm obtained by a hydrolysis reaction and a condensation reaction of an alkoxysilane.
Containing substantially amorphous and spherical silica particles of 0.001 to 5% by weight, and the number of projections on the film surface is 1.0 × 10 3 / mm 2
The biaxially stretched polyester film for capacitors is characterized in that the difference Δd [μm] between the film thickness of the 10-layer micrometer method film and the weight method film satisfies the following expression (1).

0.1≦△d≦0.4 ……(1) 以下本発明を更に詳細に説明する。0.1 ≦ Δd ≦ 0.4 (1) The present invention will be described in more detail below.

本発明にいうポリエステルとは、テレフタル酸、イソフ
タル酸、ナフタレン−2,6−ジカルボン酸の如き芳香族
ジカルボン酸又は、そのエステルと、エチレングリコー
ル、ジエチレングウリコール、テトラメチレングリコー
ル、ネオペンチルグリコール等の如きグリコール成分と
を重縮合させて得ることができるポリエステルである。
The polyester referred to in the present invention means an aromatic dicarboxylic acid such as terephthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, or an ester thereof, and ethylene glycol, diethylene guaycol, tetramethylene glycol, neopentyl glycol, etc. It is a polyester that can be obtained by polycondensing such a glycol component.

このポリエステルは芳香族ジカルボン酸とグリコールを
直接重縮合させて得られる他、芳香族ジカルボン酸ジア
ルキルエステルとグリコールをエステル交換反応させた
後重縮合せしめるか、あるいは芳香族ジカルボン酸ジエ
ステルを重縮合せしめる等の方法によっても得られる。
This polyester can be obtained by directly polycondensing an aromatic dicarboxylic acid and glycol, or by subjecting an aromatic dicarboxylic acid dialkyl ester and a glycol to transesterification and then polycondensing, or by polycondensing an aromatic dicarboxylic acid diester. Can also be obtained by the method.

かかるポリマーの代表的なものとしてポリエチレンテレ
フタレートやポリエチレン−2,6−ナフタレート等が例
示される。このポリマーはホモポリマーであっても良
く、また第3成分を共重合させたものでも良い。いずれ
にしても本発明に於てはエチレンテレフタレート単位及
び/又は、エチレン−2,6−ナフタレート単位を80モル
%以上有するポリマーが好ましい。
Typical examples of such a polymer include polyethylene terephthalate and polyethylene-2,6-naphthalate. This polymer may be a homopolymer or may be a copolymer of a third component. In any case, in the present invention, a polymer having 80 mol% or more of ethylene terephthalate units and / or ethylene-2,6-naphthalate units is preferable.

本発明に於て用いられる球状シリカ微粒子はアルコキシ
シランを出発原料としてアミン触媒を用い加水分解反応
及び縮合反応によって得られるものである。
The spherical silica fine particles used in the present invention are obtained by a hydrolysis reaction and a condensation reaction using an alkoxysilane as a starting material and an amine catalyst.

アルコキシシラン化合物としては (CnH2n+1O)4Si…(n=1〜8)で表わされる化合物
であり具体的な化合物としてテトラメトキシシラン、テ
トラエトキシシラン、テトラプロポキシシラン、テトラ
ブトキシシラン等の化合物が好適に用いられる。加水分
解反応及び縮合反応触媒として、アンモニア水溶液、ト
リメチルアミン、テトラエチルアンモニア水溶液、尿素
等を用いることができるが好ましくはアンモニア水溶液
が良い。
The alkoxysilane compound is a compound represented by (CnH 2n + 1 O) 4 Si ... (n = 1 to 8), and specific compounds include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane and the like. Compounds are preferably used. As the hydrolysis reaction and condensation reaction catalyst, an aqueous ammonia solution, trimethylamine, tetraethylammonium aqueous solution, urea or the like can be used, but an aqueous ammonia solution is preferable.

本発明に於ける、アルコキシシランの加水分解、縮合法
によって得られた球状シリカ微粒子の特徴はその形状が
球状でかつ粒子径が極めて揃っている点にある。即ち該
粒子の粒度分布を電子顕微鏡写真により求め、それぞれ
の粒径の個数及び体積を大きい方から積算し、積算体積
の10%及び90%を示すそれぞれの粒径をd10,d90とし〔d
10/d90〕の値が、1.1〜2.7の範囲が良い。
In the present invention, the spherical silica fine particles obtained by the hydrolysis and condensation method of alkoxysilane are characterized in that they are spherical in shape and have very uniform particle diameters. That is, the particle size distribution of the particles is determined by an electron micrograph, and the number and volume of the respective particle sizes are integrated from the larger one, and the respective particle sizes showing 10% and 90% of the integrated volume are d 10 and d 90 , respectively. d
The value of 10 / d 90 ] is preferably in the range of 1.1 to 2.7.

更に好ましくは〔d10/d90〕の値が、1.0〜1.6の範囲で
ある。
More preferably, the value of [d 10 / d 90 ] is in the range of 1.0 to 1.6.

〔d10/d90〕の値が2.7を越えると粒度分布がブロードで
ある事を意味し、フイルムにした場合の表面粗度の制御
が困難となったり粗大粒子が増すため好ましくない。
When the value of [d 10 / d 90 ] exceeds 2.7, it means that the particle size distribution is broad, which is not preferable because it becomes difficult to control the surface roughness of the film and the number of coarse particles increases.

上記、粒度分布のシャープさ故、滑り特性が良く、なお
かつ△dが小さく電気特性の優れたコンデンサー用フィ
ルムを得ることができるものと解釈される。
It is understood that the film for capacitors, which has a good sliding property and a small Δd and an excellent electric property, can be obtained due to the sharpness of the particle size distribution.

本発明に於て用いられる微粒子としての球状シリカ微粒
子の平均粒子径は0.01〜3.0μmであることが必要であ
り、好ましくは0.05〜3.0μm、更には0.1〜2.0μmで
あることが好ましい。0.01μm未満ではフイルムの易滑
性の改良効果が充分でない。また3.0μmを越えると、
フイルムの表面粗度が大きくなり過ぎ、△dが大きくな
って電気特性が悪化するため好ましくない。
The average particle size of the spherical silica fine particles used as fine particles in the present invention is required to be 0.01 to 3.0 μm, preferably 0.05 to 3.0 μm, and more preferably 0.1 to 2.0 μm. If it is less than 0.01 μm, the effect of improving the slipperiness of the film is not sufficient. If it exceeds 3.0 μm,
The surface roughness of the film becomes too large, and Δd becomes large, so that the electrical characteristics are deteriorated, which is not preferable.

ポリエステルフイルム中の球状シリカ微粒子の含有量
は、0.001〜5重量%であることが必要であり、好まし
くは0.01〜3.0重量%、更には0.05〜2.0重量%であるこ
とが好ましい。ポリエステルフイルム中の球状シリカ微
粒子の含有量が0.001重量%未満では得られるフイルム
の滑り性の改良効果が不充分であり、また5重量%を越
えた場合にはフイルムの表面粗度が大きくなり過ぎ、容
量が低下したり、極く微量含まれる不用な粗大粒子がフ
イルム中に存在する確率が増え、コンデンサーとしての
寿命が短くなったりするので好ましくない。
The content of spherical silica fine particles in the polyester film needs to be 0.001 to 5% by weight, preferably 0.01 to 3.0% by weight, and more preferably 0.05 to 2.0% by weight. When the content of the spherical silica fine particles in the polyester film is less than 0.001% by weight, the effect of improving the slipperiness of the obtained film is insufficient, and when it exceeds 5% by weight, the surface roughness of the film becomes too large. However, the capacity is reduced, and the probability that unnecessary coarse particles contained in a very small amount are present in the film is increased, which shortens the life of the capacitor, which is not preferable.

本発明で用いる球状シリカ微粒子は、粒度分布が極めて
尖鋭でまたエチレングリコール中での分散性に優れてい
るため特殊な分散処理や分級処理を必要とせず、しかも
スラリーの過処理の際のフイルター通過性も極めて優
れている。
The spherical silica fine particles used in the present invention have an extremely sharp particle size distribution and are excellent in dispersibility in ethylene glycol, and thus do not require a special dispersion treatment or classification treatment, and moreover, pass through a filter at the time of slurry overtreatment. The property is also extremely excellent.

本発明に於て用いる球状シリカ微粒子の該ポリエステル
への添加方法はポリエステル製造工程に於ける任意の段
階で添加することができるが、エステル交換もしくはエ
ステル化反応後重縮合前に添加するのが好ましい。又、
あらかじめ球状シリカを高濃度に含有するマスターバッ
チを作っておき、押出し時に適度の希釈する方法も充分
可能である。ポリエステルの重縮合に際しては公知の方
法を採用し得る。例えば、重縮合反応の触媒として、ア
ンチモン化合物、ゲルマニウム化合物、チタン化合物等
の一種以上を用い230〜300℃程度に加熱し、減圧下エチ
レングリコールを留出させることにより反応を進行させ
る。また表面形状及びフイルム特性を多少改良する目的
で球状シリカ以外の粒子、例えば二酸化珪素、二酸化チ
タン、炭酸カルシウム、カオリン、タルク、クレー、非
晶質ゼオライト、リン酸カルシウム等の無機微粒子、架
橋高分子微粒子及びポリエステル重合反応径で触媒残渣
とリン化合物との反応で析出した微粒子等も、本発明の
特性を損わない範囲で併用することができる。もちろん
二種以上の球状シリカを使用することも可能である。
The spherical silica fine particles used in the present invention can be added to the polyester at any stage in the polyester production process, but it is preferable to add them after the transesterification or esterification reaction and before the polycondensation. . or,
It is also possible to prepare a masterbatch containing spherical silica in a high concentration in advance and appropriately dilute it during extrusion. A publicly known method can be adopted for the polycondensation of the polyester. For example, one or more antimony compounds, germanium compounds, titanium compounds and the like are used as a catalyst for the polycondensation reaction, heated to about 230 to 300 ° C., and ethylene glycol is distilled off under reduced pressure to proceed the reaction. Further, for the purpose of slightly improving the surface shape and film characteristics, particles other than spherical silica, for example, inorganic particles such as silicon dioxide, titanium dioxide, calcium carbonate, kaolin, talc, clay, amorphous zeolite, calcium phosphate, crosslinked polymer particles and Fine particles or the like deposited by the reaction of the catalyst residue and the phosphorus compound in the polyester polymerization reaction size can also be used together within the range not impairing the characteristics of the present invention. Of course, it is also possible to use two or more types of spherical silica.

本発明で得られるフイルムは、更にフイルム表面の突起
数が1.0×103個/mm2以上である事が必要であり、これを
満すべく粒子径と粒子濃度を選択すればよい。更に好ま
しくは、5.0×103個/mm2以上である。該突起数が1.0×1
03個/mm2未満ではフイルム滑り性が悪く作業性が著しく
悪化するため好ましくない。
In the film obtained in the present invention, the number of projections on the film surface needs to be 1.0 × 10 3 pieces / mm 2 or more, and the particle diameter and the particle concentration may be selected so as to satisfy this. More preferably, it is 5.0 × 10 3 pieces / mm 2 or more. The number of protrusions is 1.0 x 1
When it is less than 0 3 pieces / mm 2 , film slipperiness is poor and workability is significantly deteriorated, which is not preferable.

又、該フイルムは同時に、10枚重ねマイクロメータ法フ
イルム厚さと重量法フイルム厚さとの差、△d〔μm〕
が 0.1≦△d≦0.4 を満たしている必要がある。△dが0.4を越えるとコン
デンサーにした時、電極間距離が大きくなり、電気容量
低下を引き起すため好ましくない。又、△dが0.1未満
の場合は、十分な滑り性が得られず作業性が悪化し、好
ましくない。
In addition, the film is simultaneously formed by a difference between the thickness of the 10-layer micrometer method film and the weight method film, Δd [μm]
Must satisfy 0.1 ≦ Δd ≦ 0.4. When Δd exceeds 0.4, the distance between the electrodes becomes large when a capacitor is used, which causes a decrease in electric capacity, which is not preferable. When Δd is less than 0.1, sufficient slipperiness is not obtained and workability is deteriorated, which is not preferable.

以上詳述した本発明要件を満すポリエステルフイルム
は、製造・加工時の取扱い性に優れ、高電気容量が得ら
れると同時に、本発明で得られる球状シリカは、ポリエ
ステルとの親和性に優れる故、フイルムにした時粒子と
ポリエステルとの空隙(ボイド)が少なく、耐電圧に優
れ、更に該粒子の粒径分布が非常のシャープである故粗
大粒子の数も少ないので、コンデンサーとした時寿命が
長く、耐電圧特性も良く、非常に優れた超薄コンデンサ
ー用フイルムとして有用である。
The polyester film satisfying the requirements of the invention described in detail above is excellent in handleability during production and processing, and at the same time a high electric capacity is obtained, and at the same time, the spherical silica obtained in the present invention is excellent in affinity with polyester. When formed into a film, there are few voids (voids) between the particles and the polyester, the withstand voltage is excellent, and since the particle size distribution of the particles is very sharp, the number of coarse particles is also small, so the life when used as a capacitor is long. It is long and has excellent withstand voltage characteristics, and is useful as a very excellent film for ultra-thin capacitors.

〔実施例〕〔Example〕

以下本発明を実施例により更に詳細に説明するが、本発
明はその要旨を越えない限り以下の実施例に限定される
ものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples as long as the gist thereof is not exceeded.

なお実施例に於ける種々の諸物性及び特性は以下の如く
測定されたものであり、また定義される。また実施例中
「部」及び「%」は特記しない限りそれぞれ「重量部」
及び「重量%」を意味する。
Various physical properties and characteristics in the examples are measured and defined as follows. In addition, "parts" and "%" in the examples are "parts by weight" unless otherwise specified.
And "% by weight".

(1) シリカ粒子の平均粒径及び粒径分布 粒子を電子顕微鏡にて撮影し、写真法で測定する。粒子
約1000個の粒径を測定し、各々の粒径を体積換算し、大
きい方から換算する。積算体積分率50%の所を平均粒径
とし、粒径分布は大粒子側から体積を積算し総体積に対
し10%、90%の所の粒径比をもって表わす。
(1) Average particle size and particle size distribution of silica particles The particles are photographed with an electron microscope and measured by a photographic method. The particle size of about 1000 particles is measured, each particle size is converted into volume, and the larger one is converted. The average particle size is defined as the cumulative volume fraction of 50%, and the particle size distribution is expressed as the particle size ratio at 10% and 90% of the total volume by integrating the volume from the large particle side.

(2) フイルムの滑り性の測定 フイルムの滑り性は動摩擦係数で代表し、その測定はAS
TM D−1894に準じテープ状のサンプルで測定できるよう
改良した方法で行なった。測定は温度23℃±1℃、湿度
50±5%Rhの雰囲気下で行ない、用いたサンプルの大き
さは幅15mm、長さ150mmで、その引張り速度は20mm/分と
した。
(2) Film slidability measurement The film slidability is represented by the coefficient of kinetic friction, which is measured by AS.
According to TM D-1894, the method was modified so that measurement could be performed on a tape sample. Measurement temperature 23 ℃ ± 1 ℃, humidity
The sample was used in an atmosphere of 50 ± 5% Rh, the size of the sample was 15 mm in width and 150 mm in length, and the pulling rate was 20 mm / min.

(3) Δdの測定 10枚重ねマイクロメーター法フイルム厚さ(d10)JIS
B−7502に準拠した。測定力が700±100gf、測定長0
−25mm、1/1000マイクロメーターを用い、フイルムを10
枚重ねて測定した値を10で割りd10(μm)とする。
(3) Measurement of Δd 10-ply micrometer method Film thickness (d 10 ) JIS
According to B-7502. Measuring force is 700 ± 100gf, measuring length is 0
-25 mm, 1/1000 micrometer, 10 film
The value measured by stacking the sheets is divided by 10 to obtain d 10 (μm).

重量法フイルム厚さ(dW) フイルムを10cm角に切り出し、メトラー電子天秤で測定
した重量Wより、次式で求めた。
Gravimetric film thickness (d W ) The film was cut into a 10 cm square, and it was calculated from the weight W measured by a METTLER electronic balance by the following formula.

△dを次式で定義する。 Δd is defined by the following equation.

△d=d10−dW〔μm〕 (4) 表面突起数 フイルム表面の光学顕微鏡写真より、0.1mm2当りの突起
数をカウントし、1mm2当りの個数に換算した。
Δd = d 10 −d W [μm] (4) Number of surface protrusions The number of protrusions per 0.1 mm 2 was counted from the optical micrograph of the film surface and converted into the number per 1 mm 2 .

(5) コンデンサー容量 フイルムに真空蒸着装置にて、アルミニウムを蒸着し、
蒸着部の巾が10mmとなるようにスリットし、未蒸着端が
左右異なる長さ2mのスリットテープを2本重ね巻きし、
その後、端面封止、リード線取りつけを行ないコンデン
サー素子とした。該コンデンサー素子の静電容量を23
℃,50%Rhの雰囲気下でゼネラルラジオ社製「RLCデジブ
リッジ」を用い1KHz.0.3Vrmsの条件下で測定した。
(5) Aluminum is vapor-deposited on the condenser capacity film by a vacuum vapor deposition device,
Slit the vapor deposition part to a width of 10 mm, and wrap two 2 m long slit tapes with different left and right non-deposited ends.
After that, end face sealing and lead wire attachment were performed to obtain a capacitor element. The capacitance of the capacitor element is 23
The measurement was performed under the condition of 1 KHz.0.3 Vrms using "RLC Digibridge" manufactured by General Radio Co., Ltd. in an atmosphere of 50 ° C. and 50% Rh.

(6) 耐電圧の測定 100KV直流耐電圧試験機を用い(5)で得られたコンデ
ンサー素子電極端をクリップで試験機の電圧印加電極及
びアース電極に各々接続し、試験機電圧を100V/秒の昇
圧速度で上昇させコンデンサーが破壊して短絡した時の
電圧を読み取った。
(6) Measurement of withstanding voltage Using a 100KV DC withstanding voltage tester, connect the capacitor element electrode end obtained in (5) to the voltage application electrode and the earth electrode of the tester with clips, and set the tester voltage to 100V / sec. The voltage was read when the capacitor was broken and short-circuited by increasing the voltage at the step-up speed.

(7) 寿命特性 (5)で得られたコンデンサーの電極両端に300Vの直流
電圧を印加し、促進テストとして85℃の雰囲気下で1000
時間経過後のコンデンサー素子100個中短絡せずにコン
デンサーとしての機能を有する素子の残存率で表わし
た。
(7) Life characteristics Apply a DC voltage of 300 V across the electrodes of the capacitor obtained in (5), and use 1000 V in an atmosphere of 85 ° C as an accelerated test.
It was represented by the residual rate of the element having a function as a capacitor without being short-circuited in 100 capacitor elements after the passage of time.

〔実施例1〕 (球状シリカ粒子の合成方法) テトラメチルシラン30.4gを400gのメタノールに溶解し2
0℃に保持した(A液)。一方メタノール900gに水110g
を加え2.8%アンモニア水溶液243gを加え混合し、20℃
にほ辞した(B液)。ついでB液に撹拌装置を取り付け
撹拌しながらA液を添加した。添加後直ちに加水分解反
応、及び縮合反応が起り反応系内が白濁した。A液を添
加後更に1.9時間撹拌保持した後エチレングリコール103
gを加え、減圧下加熱して過剰の水、メタノール、アン
モニアを留去せしめて10%濃度の球状シリカ微粒子を含
有するエチレングリコールスラリーを得た。
Example 1 (Synthesis Method of Spherical Silica Particles) Tetramethylsilane (30.4 g) was dissolved in 400 g of methanol.
The temperature was maintained at 0 ° C (solution A). On the other hand, 900 g of methanol and 110 g of water
Was added and 243 g of 2.8% aqueous ammonia solution was added and mixed at 20 ° C.
I resigned (B liquid). Then, a stirring device was attached to the liquid B, and the liquid A was added while stirring. Immediately after the addition, a hydrolysis reaction and a condensation reaction occurred and the inside of the reaction system became cloudy. Ethylene glycol 103
g was added, and the mixture was heated under reduced pressure to distill off excess water, methanol, and ammonia to obtain an ethylene glycol slurry containing 10% concentration of spherical silica fine particles.

該スラリーを3μカットの過精度を有するフイルター
を用いて過処理を行なったがフイルターの通過性は非
常に良好であった。
The slurry was overtreated using a filter having an overprecision of 3 μ cut, but the filter passability was very good.

(ポリエステルフイルムの製造) ジメチルテレフタレート100部とエチレングリコール60
部及び酢酸マンガン四水塩0.03部を反応器にとり加熱昇
温するとともにメタノールを留去して、エステル交換反
応を行ない反応開始から4時間を要して230℃に昇温
し、実質的にエステル交換反応を終了した。
(Production of polyester film) 100 parts of dimethyl terephthalate and 60 of ethylene glycol
Parts and 0.03 parts of manganese acetate tetrahydrate are heated in a reactor and heated, and methanol is distilled off to carry out a transesterification reaction, which takes 4 hours from the start of the reaction and is heated to 230 ° C. to practically produce an ester. The exchange reaction was completed.

ついで平均粒子径0.27μmの球状シリカ10%を含有する
エチレングリコールスラリーを添加した後、更にエチル
アシッドフオスフエート0.021部、三酸化アンチモン0.0
35部を加え4時間重縮合を行ない、極限粘度0.66のポリ
エチレンテレフタレート樹脂を得た。粒子の添加量は0.
5%とした。
Then, an ethylene glycol slurry containing 10% of spherical silica having an average particle diameter of 0.27 μm was added, and then 0.021 part of ethyl acid phosphate and 0.00 of antimony trioxide were added.
35 parts were added and polycondensation was carried out for 4 hours to obtain a polyethylene terephthalate resin having an intrinsic viscosity of 0.66. The amount of particles added is 0.
It was set to 5%.

得られたポリエステル樹脂を180℃で窒素雰囲気下6時
間加熱乾燥後押出機によりシート状に押出し静電密着冷
却法にて24μmの無定形シートを作成した。次いでこの
無定形シートを縦方向に4倍、横方向に4倍延伸し、厚
さ1.5μmの二軸延伸フイルムを得た。
The resulting polyester resin was heated and dried at 180 ° C. in a nitrogen atmosphere for 6 hours, and then extruded into a sheet by an extruder to prepare an amorphous sheet of 24 μm by electrostatic contact cooling. Next, this amorphous sheet was stretched 4 times in the machine direction and 4 times in the transverse direction to obtain a biaxially stretched film having a thickness of 1.5 μm.

以上のようにして得たポリエステルフイルムの特性及び
コンデンサーとしたときの電気特性を第1表に示す。フ
イルム特性、コンデンサー電気特性共に優れており、十
分満足されるものが得られた。
Table 1 shows the characteristics of the polyester film obtained as described above and the electric characteristics when it is used as a capacitor. Both the film characteristics and the electrical characteristics of the capacitor were excellent, and satisfactory results were obtained.

〔実施例2、3〕 実施例1に於いてシリカ粒子の製法を若干変更し、第1
表に掲げる平均粒径のシリカ粒子を作成し、これを用い
た以外実施例1と同様の方法で得られるフイルムの特性
及びコンデンサー電気特性を第1表に示す。フイルム特
性、コンデンサー電気特性共に優れており、十分に満足
されるものが得られた。
[Examples 2 and 3] In Example 1, the production method of silica particles was slightly changed to
Table 1 shows the characteristics of the film and the electric characteristics of the capacitor obtained by the same method as in Example 1 except that silica particles having the average particle diameters listed in the table were prepared and used. Both the film characteristics and the electrical characteristics of the capacitor were excellent, and a sufficiently satisfactory product was obtained.

〔比較例1〕 実施例1に於いて、球状シリカ粒子径を3.7μmとした
他は、実施例1と同様の方法で得られるフイルムの特性
及びコンデンサー電気特性を第1表に示す。滑り性は良
好であるが、容量が小さく、耐電圧及び寿命も劣り、満
足するフイルムが得られなかった。
[Comparative Example 1] Table 1 shows the characteristics of the film obtained in the same manner as in Example 1 and the electric characteristics of the capacitor, except that the spherical silica particle diameter was 3.7 μm. The slipperiness was good, but the capacity was small, the withstand voltage and the life were poor, and a satisfactory film could not be obtained.

〔比較例2〕 実施例3で粒子の添加量を0.002%とした他は実施例3
と同様の方法で得られるフイルムの特性を第1表に示
す。平面が平担である事より、コンデンサー電気特性は
良いが動摩擦係数が高く、巻きにくいため、歩留に劣る
フイルムしか得られなかった。
Comparative Example 2 Example 3 is the same as Example 3 except that the amount of particles added is 0.002%.
The characteristics of the film obtained in the same manner as in Table 1 are shown in Table 1. Since the flat surface is flat, the electrical characteristics of the capacitor are good, but the dynamic friction coefficient is high and it is difficult to wind, so only a film with poor yield was obtained.

〔比較例3、4〕 実施例1で球状シリカの代りに、第1表に掲げる粒子径
をもつ、CaCO2及び乾式法シリカを用いた他は同様の方
法で得られるフイルムの特性を第1表に示す。共に、粒
径分布がブロードなため、粗大粒子が多く、△dも大き
くなり、コンデンサー電気特性に劣るものであった。
[Comparative Examples 3 and 4] The characteristics of the film obtained in the same manner as in Example 1 except that CaCO 2 and dry process silica having the particle sizes listed in Table 1 were used instead of the spherical silica Shown in the table. In both cases, since the particle size distribution was broad, there were many coarse particles and Δd was also large, resulting in poor electrical characteristics of the capacitor.

〔発明の効果〕 以上説明した本発明によれば、電気特性、滑り特性、と
りわけ、電気容量、耐電圧の優れた極薄物用コンデンサ
ー用ポリエステルフイルムが提供される。
[Effects of the Invention] According to the present invention described above, a polyester film for a capacitor for an ultrathin product, which is excellent in electric characteristics and slip characteristics, particularly electric capacity and withstand voltage, is provided.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B29L 7:00 (56)参考文献 特開 昭58−65744(JP,A) 特開 昭62−72514(JP,A) 特公 昭51−36779(JP,B2)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B29L 7:00 (56) Reference JP-A-58-65744 (JP, A) JP-A-62- 72514 (JP, A) Japanese Patent Sho 51-36779 (JP, B2)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】アルコキシシランの加水分解反応及び縮合
反応によって得られる、平均粒径0.01〜3.0μmの実質
的に非晶質で球形のシリカ粒子を0.001〜5重量%含有
し、かつフイルム表面の突起数が1.0×103個/mm2以上で
あり、10枚重ねマイクロメーター法フイルム厚さと重量
法フイルム厚さとの差△d〔μm〕が、下記(1)式を
満足することを特徴とするコンデンサー用二軸延伸ポリ
エステルフイルム。 0.1≦△d≦0.4 ……(1)
1. A substantially amorphous spherical silica particle having an average particle diameter of 0.01 to 3.0 μm, which is obtained by a hydrolysis reaction and a condensation reaction of an alkoxysilane, is contained in an amount of 0.001 to 5% by weight, The number of protrusions is 1.0 × 10 3 pieces / mm 2 or more, and the difference Δd [μm] between the film thickness of the 10-layer micrometer method film and the weight method film satisfies the following expression (1). Biaxially stretched polyester film for capacitors. 0.1 ≦ △ d ≦ 0.4 (1)
JP62152223A 1986-08-29 1987-06-18 Biaxially stretched polyester film for capacitors Expired - Fee Related JPH0770420B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP62152223A JPH0770420B2 (en) 1987-06-18 1987-06-18 Biaxially stretched polyester film for capacitors
KR1019870006750A KR960006092B1 (en) 1986-08-29 1987-07-01 Polyester films, magnetic recording media & film capacitors produced therefrom
DE3750319T DE3750319T2 (en) 1986-08-29 1987-08-24 Polyester compositions, processes for their production, polyester films, polyester films for magnetic tapes and films made therefrom for capacitors.
ES87112252T ES2056802T3 (en) 1986-08-29 1987-08-24 POLYESTER COMPOSITIONS, PROCEDURE FOR PREPARING THEM, POLYESTER FILMS, POLYESTER FILMS FOR MAGNETIC RECORDING MEDIA AND FILMS FOR CAPACITORS PRODUCED FROM THEM.
AT87112252T ATE109493T1 (en) 1986-08-29 1987-08-24 POLYESTER COMPOSITIONS, PROCESS FOR THEIR PREPARATION, POLYESTER FILMS, POLYESTER FILMS FOR MAGNETIC TAPE AND FILMS THEREOF FOR CAPACITORS.
EP87112252A EP0257611B1 (en) 1986-08-29 1987-08-24 Polyester compositions, process for preparing the same, polyester films, polyester films for magnetic recording media and films for capacitors produced therefrom
US07/420,740 US4990400A (en) 1987-02-12 1989-10-12 Polyester films, magnetic recording media and film capacitors produced therefrom
US07/420,474 US5106681A (en) 1987-02-12 1989-10-12 Polyester films, magnetic recording media and film capacitors produced therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62152223A JPH0770420B2 (en) 1987-06-18 1987-06-18 Biaxially stretched polyester film for capacitors

Publications (2)

Publication Number Publication Date
JPS63316419A JPS63316419A (en) 1988-12-23
JPH0770420B2 true JPH0770420B2 (en) 1995-07-31

Family

ID=15535775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62152223A Expired - Fee Related JPH0770420B2 (en) 1986-08-29 1987-06-18 Biaxially stretched polyester film for capacitors

Country Status (1)

Country Link
JP (1) JPH0770420B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0780282B2 (en) * 1988-06-08 1995-08-30 東レ株式会社 Biaxially oriented thermoplastic resin film
WO2020039638A1 (en) * 2018-08-20 2020-02-27 株式会社村田製作所 Film capacitor, film for film capacitor, and method for manufacturing film for film capacitor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136779A (en) * 1974-09-13 1976-03-27 Hitachi Ltd DATSUSUISENTAKUKI
JPS5865744A (en) * 1981-10-15 1983-04-19 Toray Ind Inc Polyethylene terephthalate for condenser film
DE3616133A1 (en) * 1985-09-25 1987-11-19 Merck Patent Gmbh SPHERICAL SIO (DOWN ARROW) 2 (DOWN ARROW) PARTICLES
JPS63255909A (en) * 1987-04-14 1988-10-24 帝人株式会社 Capacitor

Also Published As

Publication number Publication date
JPS63316419A (en) 1988-12-23

Similar Documents

Publication Publication Date Title
US7022407B2 (en) Polyester film for capacitors
US4729915A (en) Electrical insulating material
JPH0770420B2 (en) Biaxially stretched polyester film for capacitors
JP3693457B2 (en) Film for condenser
JP2590515B2 (en) Polyester composition and biaxially stretched polyester film comprising the same
JP3847551B2 (en) Polyester film for capacitors
JP3102092B2 (en) Thermoplastic polyester composition and method for producing the same
JPS5865744A (en) Polyethylene terephthalate for condenser film
JPH08250373A (en) Polyester film for capacitor
JPH0458811B2 (en)
JP3847550B2 (en) Polyester film for capacitors
JPH1022169A (en) Biaxially oriented polyester film for capacitor
JP3693456B2 (en) Film for condenser
JPS6333290B2 (en)
JPH0715050B2 (en) Polyester composition
JP2566578B2 (en) Polyester film
JP4101390B2 (en) Capacitor film
KR100541206B1 (en) Biaxially oriented polyester film
JPH11349707A (en) Polyethylene-2,6-naphthalate film
JP3847552B2 (en) Polyester film for capacitors
JPH09194603A (en) Polyester film for condenser
JP2001089582A (en) Polyester film for condenser
JPH08222477A (en) Polyethylene naphthalate film for capacitor
JPH10163064A (en) Polyester film for capacitor
JP2682106B2 (en) Polyester composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees