JPH0458811B2 - - Google Patents

Info

Publication number
JPH0458811B2
JPH0458811B2 JP4711186A JP4711186A JPH0458811B2 JP H0458811 B2 JPH0458811 B2 JP H0458811B2 JP 4711186 A JP4711186 A JP 4711186A JP 4711186 A JP4711186 A JP 4711186A JP H0458811 B2 JPH0458811 B2 JP H0458811B2
Authority
JP
Japan
Prior art keywords
film
particle size
polyester
average particle
titanium dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4711186A
Other languages
Japanese (ja)
Other versions
JPS62205133A (en
Inventor
Kazuo Endo
Takashi Kagyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diafoil Co Ltd
Original Assignee
Diafoil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diafoil Co Ltd filed Critical Diafoil Co Ltd
Priority to JP4711186A priority Critical patent/JPS62205133A/en
Publication of JPS62205133A publication Critical patent/JPS62205133A/en
Publication of JPH0458811B2 publication Critical patent/JPH0458811B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は、平滑で易滑性及び耐摩耗性が高床に
改良された二軞延䌞ポリ゚ステルフむルムに関す
る。 埓来技術ず解決すべき問題点 ポリ゚チレンテレフタレヌトに代衚されるポリ
゚ステルは、その優れた機械的特性、電気的特
性、耐薬品性、寞法安定性の点から、磁気蚘録
甚、コンデンサヌ甚、包装甚、補版甚、電絶甚、
写真フむルム甚等倚くの分野で基材ずしお甚いら
れる。 これらにポリ゚ステルフむルムが甚いられる堎
合、各甚途に応じおその芁求特性が異なるが、普
遍的に芁求される特性はフむルム取り扱い時の䜜
業性であり、これを改善するためにはフむルムの
滑り性即ち摩擊係数を枛じる必芁がある。 たた近幎䌞びの著しいオヌデむオ、ビデオ、コ
ンピナヌタヌ甚等のベヌスフむルムずしおそのフ
むルム衚面に磁性局を塗垃し、磁気蚘録媒䜓ずし
お甚いる堎合には、滑り性及び耐摩耗性が悪い
ず、磁性局塗垃時に斌けるコヌテむングロヌルず
フむルム衚面ずの摩擊及び摩耗が激しく、フむル
ム衚面に擊り傷が発生しやすい。たた磁性局塗垃
埌のフむルムをオヌデむオ、ビデオ、コンピナヌ
タヌ甚テヌプ等に加工し補品ずした埌でも、リヌ
ルやカセツト等からの匕出し巻き䞊げその他の操
䜜の際に、倚くのガむド郚、蚘録・再生ヘツド等
の間に摩擊及び摩耗が著しく生じ、ポリ゚ステル
フむルム衚面の削れ等による癜粉状物質が生成す
るため、磁気蚘録信号の欠萜、即ちドロツプアり
トの倧きな原因ずなるこずが倚い。ポリ゚ステル
フむルムに芁求されるこれらの特性を改良するた
めに、最も䞀般的に採甚されおいる方法は、フむ
ルム衚面に凹凞を付䞎するため、ポリ゚ステルに
察し䞍掻性な埮粒子を存圚させる方法である。 この方法は倧きく二぀に分けられる。その䞀぀
は析出法ず呌ばれる方法であり、゚ステル亀換反
応あるいぱステル化反応の前埌に゚チレングリ
コヌルに可溶な金属化合物、䟋えばカルシナりム
化合物、リチりム化合物等の䞀皮以䞊を添加しポ
リ゚ステル補造工皋、特に重合工皋に斌おこれら
をポリ゚ステルに䞍溶性の埮粒子ずしお沈殿させ
る方法である。析出法ず察比される今䞀぀の方法
は添加法ず呌ばれる方法であり、炭酞カルシナり
ム、硫酞カルシナりム、カオリン、シリカ、二酞
化チタン等をそのたたあるいは埮粒子化したのち
ポリ゚ステル合成時あるいは成型時に添加するも
のである。 これらポリ゚ステル䞭の粒子は、その粒子埄が
倧きい皋、滑り性の改良効果が倧きいこずが䞀般
的であるが、磁気テヌプ、特にビデオ甚のごずき
粟密甚途にはその粒子自䜓が倧きいこずがドロツ
プアりト等の欠陥発生原因ずなり埗るため、ポリ
゚ステル䞭に含たれる粒子は出来るだけ埮现であ
る必芁がある。しかしながら、このような盞反す
る特性を同時に満足するこずは非垞に難しいのが
珟状である。 問題点を解決するための手段 本発明者らは、近幎磁気蚘録甚テヌプの高粟密
床化が䞀段ず促進され、ベヌステヌプ甚フむルム
の滑り性及び耐摩耗性の改良がより芁求され぀぀
ある状況䞋に鑑みお、フむルム衚面が平滑でか぀
滑り性及び耐摩耗性に優れ、ドロツプアりト等の
欠点発生の少ないベヌステヌプ甚フむルムを芋い
出し、本発明に到達するに至぀た。 即ち本発明の芁旚は、平均粒埄が0.01〜0.30ÎŒ
のルチル型二酞化チタンを0.01〜1.0wt及び
平均粒埄が0.31〜1.0Όのルチル型二酞化チタン
を0.002〜0.5wt含有するこずを特城ずする二軞
延䌞ポリ゚ステルフむルムに関するものである。 以䞋本発明に぀いおより詳しく説明する。 本発明にいうポリ゚ステルずは、テレフタル
酞、む゜フタル酞、ナフタレン−−ゞカル
ボン酞の劂き芳銙族ゞカルボン酞又はその゚ステ
ルず、゚チレングリコヌル、ゞ゚チレングリコヌ
ル、テトラメチレングリコヌル、ネオペンチルグ
リコヌル等の劂きグリコヌルずを重瞮合させお埗
るこずのできるポリ゚ステルである。 このポリ゚ステルは、芳銙族ゞカルボン酞ずグ
リコヌルずを盎接重瞮合させお埗られる他、芳銙
族ゞカルボン酞ゞアルキル゚ステルずグリコヌル
ずを゚ステル亀換反応させた埌重瞮合せしめる
か、あるいは芳銙族ゞカルボン酞のゞ゚ステルを
重瞮合せしめる等の方法によ぀おも埗られる。 かかるポリマヌの代衚的なものずしお、ポリ゚
チレンテレフタレヌトやポリ゚チレン−−
ナフタレヌト等が䟋瀺される。このポリマヌはホ
モポリマヌであ぀おも良く、たた第成分を共重
合させたものでも良い。いずれにしおも本発明に
斌おぱチレンテレフタレヌト単䜍及び又ぱ
チレン−−ナフタレヌト単䜍を80モル以
䞊有するポリ゚ステルが奜たしい。 本発明の芁点は、平均粒埄の異なる二皮類のル
チル型二酞化チタンをそれぞれ特定量ず぀添加す
るこずにある。 粒子埄の小さいルチル型二酞化チタンの平均粒
埄は0.01〜0.30Όである必芁があり、曎には平
均粒埄0.05〜0.27Όであるこずが奜たしい。平
均粒埄0.01Ό未満では滑り性及び耐摩耗性の改
良効果が䞍充分ずなるので奜たしくない。 逆に平均粒埄が0.30Όを越えるずフむルム衚
面の平滑性が䜎䞋し、か぀ドロツプアりト発生の
原因ずなる倧粒子が倚くなるので奜たしくない。
たたポリ゚ステルに察する添加量は、0.01〜
1.0wtずする必芁があり、曎には添加量は0.1〜
0.7wtがより奜たしい。添加量が0.01wt未満
では滑り性及び耐摩耗性の改良効果が䞍充分ずな
るので奜たしくない。逆に添加量が1.0wtを越
えるずフむルム衚面の平滑性が䜎䞋しか぀ドロツ
プアりト発生の原因ずなる粗倧粒子の混入が倚く
なるので奜たしくない。 粒子埄の倧きいルチル型二酞化チタンの平均粒
埄は、0.31〜1.0Όの範囲が必芁であり、曎に
は、平均粒埄0.35〜0.70Όがより奜たしい。平
均粒埄0.31Ό未満では、滑り性及び耐摩耗性の改
良効果が䞍充分ずなるので奜たしくない。逆に平
均粒埄が1.0Όを越えるずフむルムの平滑性が䜎
䞋し、か぀ドロツプアりト発生の原因ずなる倧粒
子が倚くなるので奜たしくない。 たた該ポリ゚ステルに察する添加量は0.002〜
0.5wtずする必芁があり、曎には添加量は0.005
〜0.3wtがより奜たしい。添加量が0.002wt未
満では滑り性及び耐摩耗性の改良効果が䞍充分ず
なるので奜たしくない。逆に添加量が0.5wtを
越えるずフむルム衚面の平滑性が䜎䞋し、か぀ド
ロツプアりト発生の原因ずなる粗倧粒子の混入が
倚くなるので奜たしくない。 なお、滑り性及び耐摩耗性向䞊のためには、小
粒埄のルチル型に二酞化チタンず倧粒埄のルチル
型二酞化チタンずの平均粒埄の差は少なくずも
0.10Ό以䞊であるこずが奜たしい。 本発明に斌お甚いるルチル型二酞化チタンは先
に芏定した条件を満せばその補法その他によ぀お
なんら制限されるものではない。たた衚面凊理を
しないものを甚いおも良いし、衚面凊理を斜した
ものを甚いおも良い。 䜓積圢状係数に関しおは、その倀が0.1〜π
の範囲のものを甚いるのが奜たしい。 〔ただし、䜓積圢状係数は次匏で衚される。 D3 匏䞭、は粒子䜓積Όm3、は粒子の投圱
面に斌ける最倧埄Όを瀺す。〕 䜓積圢状係数は粒子の球状の皋床を衚わすもの
で、πに近ずく皋球状に近ずく。 ここでいう平均粒埄ずは、島接補䜜所補遠心沈
降匏粒床分垃枬定装眮で枬定された等䟡球埄分垃
に斌ける積算重量基準50の倀を甚いる。 なお、本発明で甚いるルチル型二酞化チタンの
該ポリ゚ステル䞭ぞの添加方法ずしおはポリ゚ス
テル補造工皋に斌ける任意の段階で添加するこず
ができるが、奜たくぱステル亀換もしくぱス
テル化反応埌重瞮合前に添加する。たたポリ゚ス
テル補造工皋ぞの該粒子の添加方法はスラリヌ状
及び粉末状のいずれの状態で添加しおも良いが、
通垞ポリ゚ステル補造工皋に粒子を添加するに際
しおは、自動化、蚈量化の容易さ、分散性の向
䞊、回収系の簡玠化等の諞点から粒子を゚チレン
グリコヌルのスラリヌずしお添加するのが䞀般的
である。粒子をスラリヌ状に分散させる際には、
できるだけ凝集の少ない䞀次粒子の状態に分散さ
せる必芁がある。このように粒子を䞀次粒子の状
態に均䞀に分散させるためには必芁に応じ、分
散、解砕、粉砕、分玚、過等任意の方法を採甚
するこずができる。 たた所定の平均粒埄の粒子を埗るために、垂販
粒子の粉砕、分玚、過凊理等の操䜜を採甚しお
もよい。該粒子を゚チレングリコヌルスラリヌず
しお添加する際、スラリヌ䞭の2Ό以䞊の粗倧
粒子の割合が党粒子に察しお0.5wt以䞋にしお
添加するこずが、ポリ゚ステルフむルムずした際
のフむルム衚面の粗倧突起を䜎枛させる䞊で特に
奜たしい。 本発明では、必芁であれば、粗倧粒子数を増加
させず、か぀フむルムの衚面平滑性に察し悪圱響
を及がさない皋床の平均粒埄及び含有量であれ
ば、ルチル型二酞化チタン以倖に䞍掻性埮粒子を
䜵甚しおも良い。たた䞊蚘䞍掻性埮粒子以倖に反
応系で觊媒残枣ずリン化合物ずの反応により析出
させた埮粒子を䜵甚するこずができる。 本発明に斌けるルチル型二酞化チタンを含有す
るポリ゚ステルの重合に際しおは公知の方法を採
甚し埗る。䟋えば重瞮合反応の觊媒ずしお、アン
チモン化合物、ゲルマニりム化合物、チタン化合
物等の䞀皮以䞊を甚いお230〜300℃皋床に加熱
し、枛圧䞋゚チレングリコヌルを留出させるこず
により反応を進行させる。 たたフむルム化に際しおは公知の補膜方法、䟋
えば270〜300℃でポリ゚ステルチツプをフむルム
状に溶融抌出埌、40〜70℃で冷华固化し無定圢シ
ヌトずした埌、瞊、暪に逐次二軞延䌞あるいは同
時二軞延䌞し160〜240℃で熱凊理する等の方法
䟋えば特公昭30−5639号公報蚘茉の方法を採
甚するこずができる。 実斜䟋 以䞋本発明を実斜䟋により曎に詳现に説明する
が、本発明はその芁旚を越えない限り以䞋の実斜
䟋に限定されるものではない。なお皮々の諞物性
及び特性は以䞋の劂くしお枬定されたものであ
り、たたは定矩される。実斜䟋䞭、「郚」及び
「」はそれぞれ「重量郚」及び「重量」を意
味する。 (1) 平均粒埄 島接補䜜所補遠心沈降匏粒床分垃枬定装眮
SA−CP3圢によ぀お枬定された等䟡球埄分垃
に斌ける積算重量基準50の倀を甚いる。 (2) フむルムの衚面平滑性 JIS B0601−1976蚘茉の方法によ぀た。枬定
は、衚面粗さ枬定機モデルSE−3F小坂研究所
補を甚いお行぀た。觊針埄2Ό、觊針圧30mm
、カツトオフ倀0.08mm、枬定長は25mmずし
た。枬定は12点行ない、最倧倀、最小倀をそれ
ぞれカツトし、10点の平均倀で瀺した。 (3) 滑り性 摩擊係数で代衚し、摩擊係数はASTM −
1894に準じおテヌプ状のサンプルで枬定できる
よう改良した方法で行぀た。枬定時のサンプル
の倧きさは幅15mm、長さ150mmでその匕匵速床
は20mmmmである。枬定は枩床21±℃、湿床
65±の雰囲気䞋で行぀た。 (4) 摩耗性 第図に瀺す走行系でフむルムを500長に
わた぀お走行させ、で瀺したmmφの硬質ク
ロム固定ピンに付着した摩耗量を目芖評䟡し䞋
蚘の瀺すランク別に別けた。なおフむルム速床
は10mmずし、匵力は玄200、Ξ130°ず
した。 ランク党く付着しない。 ランク若干付着する。 ランク付着量が倚い。 (5) 粗倧突起数 フむルム衚面にアルミニナりムを蒞着し、干
枉顕埮鏡を甚いお二光速法にお枬定した。枬定
波長0.54Όで次以䞊の干枉瞞を瀺す突起個数
を25cm2圓りに換算しお瀺した。 実斜䟋  ゞメチルテレフタレヌト100郚ず゚チレングリ
コヌル60郚及び酢酞マグネシナりム四氎塩0.09郚
を反応噚にずり、加熱昇枩するずずもに、メタノ
ヌルを留去しお゚ステル亀換反応を行い、反応開
始から時間を芁しお、230℃に昇枩しお、実質
的に゚ステル亀換反応を終了した。぀いで平均粒
埄0.25Όの小粒子ルチル型二酞化チタンを予め
゚チレングリコヌル䞭に分散し、分玚、過凊理
したものを0.3重量ず平均粒埄0.45Όの倧粒子
ルチル型二酞化チタンを予め゚チレングリコヌル
䞭に分散し、分玚、過凊理したもの0.07重量
を充分混合し添加した埌、曎に゚チルアシツドフ
オスプト0.04郚、䞉酞化アンチモン0.035郚を
加え時間重瞮合を行い極限粘床0.66のポリ゚チ
レンテレフタレヌト暹脂を埗た。 該ポリマヌを真空也燥埌、抌出機を通しお厚さ
160Όの非晶質の原反を䜜成し、぀いで瞊方向
に倍、暪方向に3.9倍延䌞し、230℃で熱凊理を
行぀お厚さ10Όの二軞延䌞ポリ゚チレンテレフ
タレヌトフむルムを埗た。 埗られたポリ゚ステルフむルムの特性の第衚
に瀺す。第衚に瀺す劂く埗られたフむルムの衚
面平滑性、滑り性、耐摩耗性及び粗倧突起数共非
垞に良奜であり、磁気テヌプ甚フむルムずしお極
めお満足すべきレベルにあ぀た。 実斜䟋  実斜䟋に斌お䜿甚した小粒子ルチル型二酞化
チタンの平均粒埄0.25Όの代りに0.15Όのもの
を甚い、添加量0.5重量ずした以倖は実斜䟋
ず同様の方法にお二軞延䌞ポリ゚ステルフむルム
を埗た。埗られたポリ゚ステルフむルムの特性を
第衚に瀺す。埗られたフむルムの特性は実斜䟋
ず同等であ぀た。 比范䟋  平均粒埄0.25Όのルチル型二酞化チタンを予
め゚チレングリコヌル䞭に分散し、分玚、過凊
理したものを0.3重量単独で添加する以倖は実
斜䟋ず同様の方法にお二軞延䌞ポリ゚ステルフ
むルムを埗た。埗られたポリ゚ステルフむルムの
特性を第衚に瀺す。第衚に瀺す劂く、埗られ
たフむルムは耐摩耗性が劣぀おおり、磁気テヌプ
の特性ずしおは䞍充分である。 比范䟋  平均粒埄0.45Όのルチル型二酞化チタンを予
め゚チレングリコヌル䞭に分散し、分玚、過凊
理したものを0.07重量単独で添加した以倖は実
斜䟋ず同様の方法にお二軞延䌞ポリ゚ステルフ
むルムを埗た。埗られたポリ゚ステルフむルムの
特性を第衚に瀺す。第衚に瀺す劂く、埗られ
たフむルムは滑り性、耐摩耗性が劣぀おおり、磁
気テヌプの特性ずしおは䞍充分である。 比范䟋  平均粒埄0.25Όの小粒子ルチル型二酞化チタ
ンを予め゚チレングリコヌル䞭に分散し、分玚、
過凊理したものを1.5重量ず平均粒埄0.45Ό
の倧粒子ルチル型二酞化チタンを予め゚チレング
リコヌル䞭に分散し、分玚、過したもの0.07重
量を充分混合し添加した以倖は実斜䟋ず同様
の方法で二軞延䌞ポリ゚ステルフむルムを埗た。
埗られたポリ゚ステルフむルムの特性を第衚に
瀺す。第衚に瀺す劂く、埗られたフむルムの滑
り性及び耐摩耗性は満足すべき特性を有しおいる
が、粗倧突起数の点が劣぀おおり磁気テヌプ甚ず
しおは䞍充分である。 比范䟋  平均粒埄0.25Όの小粒子ルチル型二酞化チタ
ンを予め゚チレングリコヌル䞭に分散し、分玚、
過凊理したものを0.3重量ず平均粒埄0.45Ό
の倧粒子ルチル型二酞化チタンを予め゚チレング
リコヌル䞭に分散し、分玚、過凊理したもの
0.7重量を充分混合し添加した以倖は実斜䟋
ず同様の方法にお二軞延䌞ポリ゚ステルフむルム
を埗た。埗られたポリ゚ステルフむルムの特性を
第衚に瀺す。第衚に瀺す劂く、埗られたフむ
ルムの滑り性及び耐摩耗性は満足すべき特性を有
しおいるが、粗倧突起数の点が劣぀おおり、磁気
テヌプ甚ずしおは䞍充分である。
<Industrial Application Field> The present invention relates to a biaxially oriented polyester film that is smooth and highly improved in slipperiness and abrasion resistance. <Prior art and problems to be solved> Polyester, represented by polyethylene terephthalate, is used for magnetic recording, capacitors, and packaging because of its excellent mechanical properties, electrical properties, chemical resistance, and dimensional stability. , for plate making, for electrical cutting,
It is used as a base material in many fields such as photographic film. When polyester film is used in these applications, the required properties differ depending on the application, but the universally required property is workability when handling the film, and in order to improve this, the slipperiness of the film, It is necessary to reduce the coefficient of friction. In addition, when a magnetic layer is coated on the surface of a film used as a base film for audio, video, and computer applications, which have been growing rapidly in recent years, and used as a magnetic recording medium, poor slipperiness and abrasion resistance may cause problems when coating the magnetic layer. Friction and abrasion between the coating roll and the film surface are severe, and scratches are likely to occur on the film surface. Furthermore, even after the film coated with the magnetic layer is processed into products such as audio, video, and computer tapes, there are many guide parts, recording/playback heads, etc. when pulling out from a reel or cassette, winding up, or performing other operations. Significant friction and wear occur during this process, and white powdery substances are generated due to abrasion of the surface of the polyester film, which is often a major cause of missing magnetic recording signals, that is, dropouts. In order to improve these properties required of polyester films, the most commonly employed method is to add inactive fine particles to polyester in order to impart irregularities to the film surface. This method can be broadly divided into two. One of them is the precipitation method, in which one or more metal compounds soluble in ethylene glycol, such as calcium compounds and lithium compounds, are added before and after the transesterification reaction or esterification reaction, and the polyester manufacturing process, especially the polymerization This is a method in which these are precipitated as fine particles insoluble in polyester during the process. Another method that is compared to the precipitation method is the addition method, in which calcium carbonate, calcium sulfate, kaolin, silica, titanium dioxide, etc. are added as they are or after being made into fine particles during polyester synthesis or molding. Generally speaking, the larger the particle size of the particles in polyester, the greater the effect of improving slipperiness, but for precision applications such as magnetic tape, especially video, the particles themselves are large, causing dropouts and other problems. Therefore, the particles contained in polyester need to be as fine as possible. However, at present, it is extremely difficult to simultaneously satisfy these contradictory characteristics. <Means for Solving the Problems> The present inventors have discovered that as the precision of magnetic recording tapes has been further promoted in recent years, improvements in the slipperiness and abrasion resistance of base tape films have been increasingly required. In view of the circumstances, we have discovered a film for base tapes that has a smooth film surface, excellent slipperiness and abrasion resistance, and has fewer defects such as dropouts, and has arrived at the present invention. That is, the gist of the present invention is that the average particle size is 0.01 to 0.30Ό.
The present invention relates to a biaxially oriented polyester film characterized by containing 0.01 to 1.0 wt% of rutile titanium dioxide having an average particle diameter of 0.31 to 1.0 ÎŒm and 0.002 to 0.5 wt% of rutile titanium dioxide having an average particle size of 0.31 to 1.0 ÎŒm. The present invention will be explained in more detail below. Polyester as used in the present invention refers to aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, and naphthalene-2,6-dicarboxylic acid or esters thereof, and glycols such as ethylene glycol, diethylene glycol, tetramethylene glycol, neopentyl glycol, etc. It is a polyester that can be obtained by polycondensing. This polyester can be obtained by direct polycondensation of aromatic dicarboxylic acid and glycol, or by polycondensation after transesterification of aromatic dicarboxylic acid dialkyl ester and glycol, or by polycondensation after polycondensation of aromatic dicarboxylic acid dialkyl ester and glycol. It can also be obtained by methods such as polycondensation. Typical examples of such polymers include polyethylene terephthalate and polyethylene-2,6-
Examples include naphthalate. This polymer may be a homopolymer or may be a copolymer of a third component. In any case, in the present invention, polyesters having 80 mol% or more of ethylene terephthalate units and/or ethylene-2,6-naphthalate units are preferred. The key point of the present invention is to add specific amounts of two types of rutile titanium dioxide having different average particle sizes. The average particle size of the rutile titanium dioxide, which has a small particle size, must be 0.01 to 0.30 ÎŒm, and more preferably 0.05 to 0.27 ÎŒm. If the average particle size is less than 0.01 ÎŒm, the effect of improving slipperiness and abrasion resistance will be insufficient, which is not preferable. On the other hand, if the average particle diameter exceeds 0.30 .mu.m, the smoothness of the film surface decreases and the number of large particles that cause dropouts increases, which is not preferable.
Also, the amount added to polyester is 0.01~
It needs to be 1.0wt%, and the amount added is 0.1~
0.7wt% is more preferable. If the amount added is less than 0.01 wt%, the effect of improving slipperiness and abrasion resistance will be insufficient, which is not preferable. On the other hand, if the amount added exceeds 1.0 wt%, the smoothness of the film surface will decrease and coarse particles, which may cause dropouts, will increase, which is not preferable. The average particle size of rutile titanium dioxide having a large particle size needs to be in the range of 0.31 to 1.0 Όm, and more preferably, the average particle size is 0.35 to 0.70 Όm. If the average particle size is less than 0.31Ό, the effect of improving slipperiness and abrasion resistance will be insufficient, which is not preferable. On the other hand, if the average particle diameter exceeds 1.0 .mu.m, the smoothness of the film decreases and the number of large particles, which causes dropouts, increases, which is not preferable. The amount added to the polyester is 0.002~
It needs to be 0.5wt%, and the amount added is 0.005
~0.3wt% is more preferable. If the amount added is less than 0.002 wt%, the effect of improving slipperiness and abrasion resistance will be insufficient, which is not preferable. On the other hand, if the amount added exceeds 0.5 wt%, the smoothness of the film surface will decrease and coarse particles, which may cause dropouts, will increase, which is not preferable. In addition, in order to improve slipperiness and wear resistance, the difference in average particle size between small particle size rutile titanium dioxide and large particle size rutile type titanium dioxide must be at least
It is preferably 0.10 ÎŒm or more. The rutile type titanium dioxide used in the present invention is not limited in any way by its manufacturing method or other aspects as long as it satisfies the conditions specified above. Further, a material without surface treatment may be used, or a material with surface treatment may be used. Regarding the volume shape factor, its value is 0.1 to π/
It is preferable to use one in the range of 6. [However, the volume shape factor F is expressed by the following formula. F=V/D In the formula, V is the particle volume (ÎŒm 3 ), and D is the maximum diameter (ÎŒm) of the particle in the projection plane. ] The volume shape coefficient represents the degree of sphericity of the particle, and the closer it is to π/6, the closer it becomes to spherical shape. The average particle diameter used here is the value of 50% of the cumulative (weight basis) in the equivalent spherical diameter distribution measured with a centrifugal sedimentation type particle size distribution measuring device manufactured by Shimadzu Corporation. The rutile titanium dioxide used in the present invention can be added to the polyester at any stage in the polyester production process, but preferably after the transesterification or esterification reaction and before the polycondensation. Add to. The particles may be added to the polyester manufacturing process in either slurry or powder form;
When adding particles to the polyester manufacturing process, it is common to add the particles as an ethylene glycol slurry for various reasons such as automation, ease of metering, improved dispersibility, and simplification of the recovery system. When dispersing particles into a slurry,
It is necessary to disperse it in the state of primary particles with as little agglomeration as possible. In order to uniformly disperse the particles in the state of primary particles in this manner, any method such as dispersion, crushing, pulverization, classification, and sieving may be employed as necessary. Further, in order to obtain particles having a predetermined average particle size, operations such as pulverization, classification, and overtreatment of commercially available particles may be employed. When adding the particles as an ethylene glycol slurry, it is important to keep the ratio of coarse particles of 2 Όm or more in the slurry to 0.5 wt% or less based on the total particles to prevent coarse protrusions on the surface of the film when it is made into a polyester film. It is particularly preferable to reduce this. In the present invention, if necessary, inert fine particles other than rutile titanium dioxide can be used as long as the average particle size and content are such that the number of coarse particles does not increase and the surface smoothness of the film is not adversely affected. may be used together. In addition to the above-mentioned inert fine particles, fine particles precipitated by a reaction between a catalyst residue and a phosphorus compound in the reaction system can be used in combination. In the present invention, known methods can be employed for polymerizing the polyester containing rutile titanium dioxide. For example, as a catalyst for the polycondensation reaction, one or more of antimony compounds, germanium compounds, titanium compounds, etc. are used and heated to about 230 to 300°C, and the reaction is allowed to proceed by distilling off ethylene glycol under reduced pressure. In addition, when making a film, a known film forming method is used, for example, polyester chips are melted and extruded into a film at 270 to 300°C, cooled and solidified at 40 to 70°C to form an amorphous sheet, and then sequentially biaxially stretched vertically and horizontally. Alternatively, a method such as simultaneous biaxial stretching and heat treatment at 160 to 240° C. (for example, the method described in Japanese Patent Publication No. 30-5639) can be adopted. <Examples> The present invention will be explained in more detail by Examples below, but the present invention is not limited to the following Examples unless the gist thereof is exceeded. In addition, various physical properties and characteristics were measured or defined as follows. In the examples, "parts" and "%" mean "parts by weight" and "% by weight," respectively. (1) Average particle size Centrifugal sedimentation type particle size distribution measuring device manufactured by Shimadzu Corporation
Use the integrated value (weight basis) of 50% in the equivalent sphere diameter distribution measured by the SA-CP3 type. (2) Surface smoothness of film The method described in JIS B0601-1976 was used. The measurement was performed using a surface roughness measuring machine model SE-3F (manufactured by Kosaka Institute). Stylus diameter 2Ό, stylus pressure 30mm
g, the cutoff value was 0.08 mm, and the measurement length was 25 mm. Measurements were made at 12 points, the maximum and minimum values were cut out, and the average value of the 10 points was shown. (3) Sliding property Represented by the friction coefficient, which is ASTM D-
1894, using a method modified to allow measurement using tape-shaped samples. The size of the sample at the time of measurement was 15 mm in width and 150 mm in length, and the tensile speed was 20 mm/mm. Measurements were made at a temperature of 21±2℃ and humidity.
The test was carried out in an atmosphere of 65±5%. (4) Abrasion property The film was run over a length of 500 m using the running system shown in Figure 1, and the amount of wear attached to the 6mmφ hard chrome fixing pin was visually evaluated and classified into the ranks shown below. The film speed was 10 m/mm, the tension was approximately 200 g, and Ξ = 130°. Rank A: No adhesion at all. Rank B: Slight adhesion. Rank C: Large amount of adhesion. (5) Number of coarse protrusions Aluminum was deposited on the surface of the film and measured by the two-light velocity method using an interference microscope. The number of protrusions showing interference fringes of fourth or higher order at a measurement wavelength of 0.54ÎŒ is calculated per 25cm 2 and shown. Example 1 100 parts of dimethyl terephthalate, 60 parts of ethylene glycol, and 0.09 parts of magnesium acetate tetrahydrate were placed in a reactor, and the temperature was raised while methanol was distilled off to perform a transesterification reaction, which took 4 hours from the start of the reaction. Then, the temperature was raised to 230°C to substantially complete the transesterification reaction. Next, 0.3% by weight of small particles of rutile titanium dioxide with an average particle size of 0.25 ÎŒm, which were previously dispersed in ethylene glycol, classified and overtreated, and large particles of rutile titanium dioxide, with an average particle size of 0.45 ÎŒm, were dispersed in ethylene glycol in advance. Dispersed, classified and overtreated 0.07% by weight
After thoroughly mixing and adding, 0.04 part of ethyl acid phosphate and 0.035 part of antimony trioxide were further added and polycondensation was carried out for 4 hours to obtain a polyethylene terephthalate resin with an intrinsic viscosity of 0.66. After drying the polymer in vacuum, it is passed through an extruder to a thickness of
A 160 Όm thick amorphous original film was prepared, then stretched 4 times in the machine direction and 3.9 times in the cross direction, and heat treated at 230° C. to obtain a biaxially stretched polyethylene terephthalate film with a thickness of 10 Όm. Table 1 shows the properties of the obtained polyester film. As shown in Table 1, the surface smoothness, slipperiness, abrasion resistance, and number of coarse protrusions of the obtained film were very good, and were at an extremely satisfactory level as a film for magnetic tape. Example 2 Example 1 except that the average particle diameter of the small rutile titanium dioxide used in Example 1 was 0.15 Όm instead of 0.25 Όm, and the amount added was 0.5% by weight.
A biaxially stretched polyester film was obtained in the same manner as above. The properties of the obtained polyester film are shown in Table 1. The properties of the obtained film were similar to those of Example 1. Comparative Example 1 Biaxial stretching was carried out in the same manner as in Example 1, except that 0.3% by weight of rutile titanium dioxide having an average particle size of 0.25 ÎŒm was previously dispersed in ethylene glycol, classified and overtreated. A polyester film was obtained. The properties of the obtained polyester film are shown in Table 1. As shown in Table 1, the obtained film had poor abrasion resistance and was insufficient in properties as a magnetic tape. Comparative Example 2 Biaxial stretching was carried out in the same manner as in Example 1, except that 0.07% by weight of rutile titanium dioxide having an average particle size of 0.45 ÎŒm was previously dispersed in ethylene glycol, classified, and overtreated. A polyester film was obtained. The properties of the obtained polyester film are shown in Table 1. As shown in Table 1, the obtained film had poor slip properties and abrasion resistance, and was insufficient as a magnetic tape characteristic. Comparative Example 3 Small particle rutile titanium dioxide with an average particle size of 0.25 ÎŒm was dispersed in ethylene glycol in advance, classified,
1.5% by weight of over-treated material and average particle size 0.45ÎŒm
A biaxially stretched polyester film was obtained in the same manner as in Example 1, except that 0.07% by weight of large-particle rutile titanium dioxide was previously dispersed in ethylene glycol, classified and filtered, and then added after thorough mixing.
The properties of the obtained polyester film are shown in Table 1. As shown in Table 1, although the obtained film has satisfactory properties in terms of slipperiness and abrasion resistance, it is inferior in the number of coarse protrusions and is insufficient for use in magnetic tapes. Comparative Example 4 Small particle rutile titanium dioxide with an average particle size of 0.25 ÎŒm was dispersed in ethylene glycol in advance, classified,
0.3% by weight of over-treated material and average particle size 0.45ÎŒm
Large-particle rutile titanium dioxide is pre-dispersed in ethylene glycol, classified and overtreated.
Example 1 except that 0.7% by weight was thoroughly mixed and added.
A biaxially stretched polyester film was obtained in the same manner as above. The properties of the obtained polyester film are shown in Table 1. As shown in Table 1, although the obtained film has satisfactory properties in terms of slipperiness and abrasion resistance, it is inferior in the number of coarse protrusions, making it unsatisfactory for use in magnetic tapes.

【衚】 発明の効果 以䞊詳述した劂く、本発明のフむルムは特定粒
埄の小粒子ルチル型二酞化チタンず特定粒埄の倧
粒子ルチル型二酞化チタンをそれぞれ特定量づ぀
含有しお成るフむルムであり、磁気テヌプ甚ポリ
゚ステルフむルムずしお芁求される衚面平滑性、
滑り性及び耐摩耗性に優れ、磁気テヌプ補造時及
び磁気テヌプ䜿甚時に斌ける金属ロヌル面を走行
する際生じる癜粉発生量が著しく少ない特城を有
する。䜵せお、ビデオテヌプ甚ずしお甚いた堎合
ドロツプアりト発生の原因ずなる粗倧突起数の著
しく少ない特性を有しおいるこずから磁気テヌプ
甚、蒞着甚、コンデンサヌ甚、包装甚等の広範な
甚途に利甚するこずができる。
[Table] <Effects of the Invention> As detailed above, the film of the present invention is a film containing specific amounts of small-particle rutile titanium dioxide having a specific particle size and large-particle rutile titanium dioxide having a specific particle size. The surface smoothness required for a polyester film for magnetic tape,
It has excellent slip properties and abrasion resistance, and has the characteristic that the amount of white powder generated when running on a metal roll surface during magnetic tape production and use is extremely small. In addition, it has a characteristic of extremely low number of large protrusions that can cause dropouts when used for video tapes, so it can be used for a wide range of applications such as magnetic tapes, vapor deposition, capacitors, and packaging. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第図は耐摩耗性を評䟡する走行系を瀺す抂略
図、はmmφの硬質クロム固定ピン、はテン
シペンメヌタヌを瀺しΞは130°である。
FIG. 1 is a schematic diagram showing a running system for evaluating wear resistance, where I is a hard chrome fixing pin of 6 mmφ, symbol is a tension meter, and Ξ is 130°.

Claims (1)

【特蚱請求の範囲】[Claims]  平均粒埄が0.01〜0.30Όのルチル型二酞化
チタンを0.01〜1.0wt及び平均粒埄が0.31〜1.0ÎŒ
のルチル型二酞化チタンを0.002〜0.5wt含有
するこずを特城ずする二軞延䌞ポリ゚ステルフむ
ルム。
1 0.01 to 1.0 wt% of rutile titanium dioxide with an average particle size of 0.01 to 0.30 ÎŒm and an average particle size of 0.31 to 1.0 ÎŒm
A biaxially oriented polyester film containing 0.002 to 0.5 wt% of rutile titanium dioxide.
JP4711186A 1986-03-04 1986-03-04 Polyester film Granted JPS62205133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4711186A JPS62205133A (en) 1986-03-04 1986-03-04 Polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4711186A JPS62205133A (en) 1986-03-04 1986-03-04 Polyester film

Publications (2)

Publication Number Publication Date
JPS62205133A JPS62205133A (en) 1987-09-09
JPH0458811B2 true JPH0458811B2 (en) 1992-09-18

Family

ID=12766067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4711186A Granted JPS62205133A (en) 1986-03-04 1986-03-04 Polyester film

Country Status (1)

Country Link
JP (1) JPS62205133A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129232A (en) * 1988-11-09 1990-05-17 Toray Ind Inc Biaxially oriented polyester film
JP2615974B2 (en) * 1989-02-16 1997-06-04 東レ株匏䌚瀟 Biaxially oriented polyester film
KR960000956A (en) * 1994-06-30 1996-01-25 하Ʞ죌 Agricultural Polyester Film
JP4647342B2 (en) * 2005-02-28 2011-03-09 アキレス株匏䌚瀟 Solar reflective sheet
JP6459457B2 (en) * 2014-12-10 2019-01-30 東レ株匏䌚瀟 Biaxially oriented polyester film

Also Published As

Publication number Publication date
JPS62205133A (en) 1987-09-09

Similar Documents

Publication Publication Date Title
US4818581A (en) Biaxially oriented polyester film
KR930000667B1 (en) Polyethylene naphthalate film
JPH0778134B2 (en) Polyester film
EP0257611A2 (en) Polyester compositions, process for preparing the same, polyester films, polyester films for magnetic recording media and films for capacitors produced therefrom
JPS61236852A (en) Oriented polyester film
JPH0458811B2 (en)
JPH01311131A (en) Polyester film for magnetic recording medium
JPH0458812B2 (en)
JP2564891B2 (en) Polyester composition and film comprising the same
JPH0458813B2 (en)
JP2504055B2 (en) Biaxially oriented polyester film for magnetic recording media
JPH04298538A (en) Polyester film
JPS63247913A (en) Polyester film for magnetic recording medium
JP2566578B2 (en) Polyester film
JPS63289029A (en) Polyester film
JP3672581B2 (en) Polyester film
JP3041053B2 (en) Oriented polyester film
JPH07165946A (en) Biaxially oriented polyester film
JPH07266398A (en) Production of biaxially oriented polyester film for magneticrecording medium
JPH07100742B2 (en) Biaxially stretched polyester film
JPH06172555A (en) Biaxially oriented polyester film for magnetic recording medium
KR100248728B1 (en) Biaxially oriented polyester film for magnetic recording media and process for the preparation thereof
JPH07225938A (en) Biaxially oriented polyester film for magnetic recording medium
JPH0458814B2 (en)
JPS59152952A (en) Oriented polyester film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees