JPH02129232A - Biaxially oriented polyester film - Google Patents
Biaxially oriented polyester filmInfo
- Publication number
- JPH02129232A JPH02129232A JP28306688A JP28306688A JPH02129232A JP H02129232 A JPH02129232 A JP H02129232A JP 28306688 A JP28306688 A JP 28306688A JP 28306688 A JP28306688 A JP 28306688A JP H02129232 A JPH02129232 A JP H02129232A
- Authority
- JP
- Japan
- Prior art keywords
- film
- polyester film
- particles
- biaxially oriented
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920006267 polyester film Polymers 0.000 title claims abstract description 12
- 239000002245 particle Substances 0.000 claims abstract description 48
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 25
- 239000004408 titanium dioxide Substances 0.000 claims description 7
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 abstract description 3
- 238000000034 method Methods 0.000 description 20
- 238000005299 abrasion Methods 0.000 description 19
- 239000008188 pellet Substances 0.000 description 9
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 238000005266 casting Methods 0.000 description 6
- 239000010419 fine particle Substances 0.000 description 6
- 229920000728 polyester Polymers 0.000 description 6
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000010954 inorganic particle Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- -1 polyethylene terephthalate Polymers 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000003490 calendering Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- NZZFYRREKKOMAT-UHFFFAOYSA-N diiodomethane Chemical compound ICI NZZFYRREKKOMAT-UHFFFAOYSA-N 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 125000005487 naphthalate group Chemical group 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 239000006259 organic additive Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 230000003678 scratch resistant effect Effects 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は二軸配向ポリエステルフィルムに関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to biaxially oriented polyester films.
[従来の技術]
二軸配向ポリエステルフィルムとしては、ポリエステル
にアナターゼ型二酸化チタンを含有せしめたフィルムが
知られている(たとえば、特開昭59−178224号
公報)。[Prior Art] As a biaxially oriented polyester film, a film in which anatase type titanium dioxide is contained in polyester is known (for example, JP-A-59-178224).
[発明が解決しようとする課H]
しかし、上記従来の二軸配向ポリエステルフィルムは、
フィルムの加工工程、たとえば包装用途における印刷工
程、磁気媒体用途における磁性層塗布・カレンダー工程
などの工程速度増大にともない、接触するロールなどで
(1)フィルム表面に傷がつきやすい。(2)フィルム
の表面が削られることによりロール上に粉がつく、とい
うことにより加工工程上、製品性能上のトラブルとなる
という欠点が、最近、問題となってきている。[Problem H to be solved by the invention] However, the above conventional biaxially oriented polyester film has the following problems:
As the speed of film processing processes, such as the printing process for packaging applications and the magnetic layer coating/calendering process for magnetic media applications, increases, (1) the surface of the film is easily scratched by contacting rolls, etc. (2) Recently, there has been a problem in that the surface of the film is scraped and powder is deposited on the roll, which causes problems in the processing process and product performance.
本発明は、かかる問題点、すなわち、工程速度増大にと
もない接触するなどで、(1)フィルム表面に傷がつき
やすいという問題、(2)フィルム表面が削られること
によりロール上に粉がつくという問題を解決し、表面の
耐スクラッチ性、耐削れ性のすぐれたフィルムを提供す
ることを目的とする。The present invention solves these problems, namely, (1) the film surface is easily scratched due to contact as the process speed increases, and (2) powder is deposited on the roll due to the film surface being scraped. The purpose is to solve this problem and provide a film with excellent surface scratch resistance and abrasion resistance.
[課題を解決するための手段]
本発明は、ルチル型二酸化チタンを0.05〜5重量%
含有してなるポリエステルフィルムであつて、該二酸化
チタンの平均粒径が0.05〜2μm、球状係数が0.
8〜1であることを特徴とする二軸配向ポリエステルフ
ィルムとしたものである。[Means for Solving the Problems] The present invention provides 0.05 to 5% by weight of rutile titanium dioxide.
A polyester film containing titanium dioxide having an average particle size of 0.05 to 2 μm and a sphericity coefficient of 0.05 to 2 μm.
8 to 1.
本発明におけるポリエステルは、エチレンテレフタレー
ト、エチレンα、β−ビス(2−クロルフェノキシ)エ
タン−4,4′−ジカルボキシレート、エチレン2.6
−ナフタレート単位から選ばれた少なくとも一種の構造
単位を主要構成成分とする。ただし、本発明を阻害しな
い範囲内、好ましくは15モル%以内であれば他成分が
共重合されていてもよい。The polyester in the present invention includes ethylene terephthalate, ethylene α, β-bis(2-chlorophenoxy)ethane-4,4′-dicarboxylate, ethylene 2.6
- Contains at least one structural unit selected from naphthalate units as a main constituent. However, other components may be copolymerized within a range that does not impede the present invention, preferably within 15 mol%.
また、エチレンテレフタレートを主要構成成分とするポ
リエステルの場合に滑り性、耐スクラッチ性、耐削れ性
がより一層良好となるので特に望ましい。In addition, polyester containing ethylene terephthalate as a main component is particularly desirable because it has even better slip properties, scratch resistance, and abrasion resistance.
本発明における二酸化チタン粒子(以下粒子と略記する
)は、ルチル型であることが必要である。The titanium dioxide particles (hereinafter abbreviated as particles) in the present invention need to be of rutile type.
アナターゼ型では、本発明の目的である高いレベルの耐
削れ性を満足できないので好ましくない。The anatase type is not preferred because it cannot satisfy the high level of abrasion resistance that is the objective of the present invention.
本発明における粒子の含有量は0.05〜5重量%、好
ましくは0.1〜3重量%である。含有量が上記の範囲
より少ないとフィルムの耐スクラッチ性が不良となり好
ましくない。逆に含有量が上記の範囲より多いとフィル
ムの耐削れ性が不良となり好ましくない。The content of particles in the present invention is 0.05 to 5% by weight, preferably 0.1 to 3% by weight. If the content is less than the above range, the scratch resistance of the film will be poor, which is not preferable. On the other hand, if the content is more than the above range, the abrasion resistance of the film will be poor, which is not preferable.
本発明における粒子の平均粒径は0.05〜2μm、好
ましくは0.1〜1μmの範囲である。The average particle diameter of the particles in the present invention is in the range of 0.05 to 2 μm, preferably 0.1 to 1 μm.
平均粒径が上記の範囲より小さいとフィルムの耐スクラ
ッチ性が不良となり好ましくない。平均粒径が上記の範
囲より大きいと耐削れ性が不良となり好ましくない。If the average particle size is smaller than the above range, the scratch resistance of the film will be poor, which is not preferable. If the average particle size is larger than the above range, the abrasion resistance will be poor, which is not preferable.
本発明における粒子の球状係数は0.8〜1であること
が必要である。球状係数が上記の範囲より小さいと耐ス
クラッチ性が不良となり好ましくない。球状係数の上限
は1でありこの時粒子は真球である。It is necessary that the sphericity coefficient of the particles in the present invention is 0.8 to 1. If the sphericity coefficient is smaller than the above range, the scratch resistance will be poor, which is not preferable. The upper limit of the sphericity coefficient is 1, in which case the particle is a true sphere.
本発明におけるフィルムの表面突起偏平度は、7〜16
である場合に耐スクラッチ性、耐削れ性が良好となるの
で望ましい。The surface protrusion flatness of the film in the present invention is 7 to 16
This is desirable because scratch resistance and abrasion resistance become good.
本発明において、本発明の目的を阻害しない範囲内で、
ルチル型二酸化チタン粒子以外の無機粒子あるいは内部
析出粒子を併用してもよい。In the present invention, within the scope that does not impede the purpose of the present invention,
Inorganic particles or internally precipitated particles other than rutile titanium dioxide particles may be used in combination.
本発明フィルムは、上記組成物を主要成分とするが、本
発明の目的を阻害しない範囲内で、他種ポリマをブレン
ドしてもよいし、また酸化防止剤、熱安定剤、滑剤、紫
外線吸収剤、核生成剤などの無機または有機添加剤が通
常添加される程度添加されていてもよい。The film of the present invention has the above-mentioned composition as a main component, but other polymers may be blended within the range that does not impede the purpose of the present invention, and antioxidants, heat stabilizers, lubricants, ultraviolet absorbers, etc. Inorganic or organic additives such as agents, nucleating agents, etc. may be added to the extent that they are normally added.
本発明フィルムは上記組成物を二軸配向せしめたフィル
ムである。未延伸フィルム、−軸配向フィルムでは、耐
スクラッチ性、耐削れ性が不良となるので好ましくない
。The film of the present invention is a film in which the above composition is biaxially oriented. An unstretched film or a -axis oriented film is not preferred because it has poor scratch resistance and abrasion resistance.
また、その二軸配向の程度を表わす面配向指数は特に限
定されないが、0.935〜0.975、特に0.94
0〜0.970の範囲である場合に、耐スクラッチ性、
耐削れ性がより一層良好となるので特に望ましい。In addition, the plane orientation index representing the degree of biaxial orientation is not particularly limited, but is 0.935 to 0.975, particularly 0.94
Scratch resistance when in the range of 0 to 0.970;
This is particularly desirable because the abrasion resistance becomes even better.
本発明フィルムの密度指数は0.02〜0.05の範囲
である場合に、耐スクラッチ性、耐削れ性がより一層良
好となるので特に望ましい。It is particularly desirable for the density index of the film of the present invention to be in the range of 0.02 to 0.05, since this provides even better scratch resistance and abrasion resistance.
また、本発明フィルムは、幅方向の表面平均粗さRaが
0.005〜0.030μm、特に0゜007〜0.0
25μmの範囲である場合に、耐スクラッチ性がより一
層良好となるので特に望ましい。Further, the film of the present invention has an average surface roughness Ra in the width direction of 0.005 to 0.030 μm, particularly 0°007 to 0.0 μm.
A thickness in the range of 25 μm is particularly desirable because the scratch resistance becomes even better.
本発明におけるフィルムの摩擦係数μkが0゜20〜0
.35の範囲にある場合に、耐スクラッチ性がより一層
良好となるので特に望ましい。The friction coefficient μk of the film in the present invention is 0°20 to 0
.. A value in the range of 35 is particularly desirable because the scratch resistance becomes even better.
また、本発明フィルムの表面固有抵抗が1×11014
Ω以下である場合に、耐スクラッチ性、耐削れ性が一層
良好となるので特に望ましい。Furthermore, the surface resistivity of the film of the present invention is 1×11014
It is particularly desirable that the resistance is Ω or less because scratch resistance and abrasion resistance become even better.
次に本発明フィルムの製造方法について説明する。Next, a method for producing the film of the present invention will be explained.
まず、所定のポリエステルにルチル型二酸化チタンを含
有せしめる方法としては、重合前、重合中、重合後のい
ずれに添加してもよいが、ポリエステルのジオール成分
であるエチレングリコールに、スラリーの形で混合、分
散せしめて添加する方法が有効である。また、粒子の含
有量を調節する方法としては、高濃度のマスターペレッ
トを製膜時に稀釈する方法が有効である。ルチる型二酸
化チタンを用いて、高濃度、好ましくは1〜5重景置部
マスターペレットの溶融粘度、共重合成分を調節して、
ガラス転移点Tgと冷結晶化温度Tccとの差(Tcc
−Tg)を、65〜110℃、特に75〜100℃にし
ておくことが、きわめて有効である。First, to add rutile titanium dioxide to a given polyester, it can be added before, during, or after polymerization, but it can be added in the form of a slurry to ethylene glycol, which is the diol component of polyester. A method of adding after dispersing is effective. Furthermore, as a method for adjusting the content of particles, it is effective to dilute a highly concentrated master pellet during film formation. Using rutile type titanium dioxide, adjust the melt viscosity and copolymerization component of high concentration, preferably 1 to 5 layered master pellets,
Difference between glass transition point Tg and cold crystallization temperature Tcc (Tcc
-Tg) at 65 to 110°C, particularly 75 to 100°C, is extremely effective.
かくして、所定量の不活性無機粒子を含有するペレット
を十分乾燥したのち、公知の溶融押出機に供給し、27
0〜330℃でスリット状のダイからシート状に押出し
、キャスティングロール上で冷却固化せしめて、未延伸
フィルムを作る。After sufficiently drying the pellets containing a predetermined amount of inert inorganic particles, the pellets were fed to a known melt extruder and 27
It is extruded into a sheet through a slit-shaped die at 0 to 330°C, and cooled and solidified on a casting roll to produce an unstretched film.
この未延伸フィルムを作る場合、キャスト時のドラフト
化く口金のスリット幅/未延伸フィルムの厚み)は16
倍以上の高い値であることが好ましい。含有粒子が球状
粒子であるゆえ、高ドラフトキャストを行なうと、粒子
が表層部へ集中するという特異な現象がおこるため、こ
のような高ドラフトキャストを行なうことが本発明にお
いて、特に有効である。When making this unstretched film, the draft during casting (slit width of the die/thickness of the unstretched film) is 16
Preferably, the value is at least twice as high. Since the contained particles are spherical particles, high draft casting causes a unique phenomenon in which the particles concentrate on the surface layer. Therefore, such high draft casting is particularly effective in the present invention.
次にこの未延伸フィルムを二軸延伸し、二軸配向せしめ
る。延伸方法としては、逐次二軸延伸法、または同時二
軸延伸法を用いることができる。逐次二軸延伸法の場合
は、長平方向、幅方向の順に延伸するのが一般的である
が、この順を逆にして延伸してもよい。二軸延伸の条件
は延伸方法、ポリマの種類などによって必らずしも一定
ではないが、通常長手方向、幅方向ともに80〜160
℃、好ましくは90℃〜150℃の範囲で、延伸倍率は
、それぞれ3.0〜5.0倍、好ましくは382〜4.
5倍の範囲が、また延伸速度は1000〜70000%
/分の範囲が好適である。Next, this unstretched film is biaxially stretched and biaxially oriented. As the stretching method, a sequential biaxial stretching method or a simultaneous biaxial stretching method can be used. In the case of the sequential biaxial stretching method, it is common to stretch in the longitudinal direction and then in the width direction, but this order may be reversed. The conditions for biaxial stretching are not necessarily constant depending on the stretching method, type of polymer, etc., but usually 80 to 160 in both the longitudinal and width directions.
℃, preferably in the range of 90℃ to 150℃, and the stretching ratio is 3.0 to 5.0 times, preferably 382 to 4.
The range is 5 times, and the stretching speed is 1000-70000%
A range of /min is preferred.
次にこの延伸フィルムを熱処理する。熱処理条件は、定
長下、および1〜15%、好ましくは2〜10%の弛緩
下で150〜230℃、好ましくは170〜220℃の
範囲で0.5〜60秒間が好適である。Next, this stretched film is heat treated. The heat treatment conditions are preferably 150 to 230°C, preferably 170 to 220°C for 0.5 to 60 seconds under constant length and relaxation of 1 to 15%, preferably 2 to 10%.
[物性の測定方法ならびに効果の評価方法]本発明の特
性値の測定方法ならびに効果の評価方法は次の通りであ
る。[Method of Measuring Physical Properties and Evaluating Effects] The methods of measuring the characteristic values and evaluating the effects of the present invention are as follows.
(1)無機微粒子の含有量(重量%)
ポリエステル100gに0−クロルフェノール1、Oa
を加え120℃で3時間加熱した後、日立工機■製超遠
心機55P−72を用い、30゜000rpmで40分
間遠心分離を行ない、得られた粒子を100°Cで真空
乾燥する。微粒子を走査型差動熱1計にて測定した時、
ポリマに相当する溶解ピークが認められる場合には微粒
子に0゜クロルフェノールを加え、加熱冷却後再び遠心
分離操作を行なう。溶解ピークが認められなくなった時
、微粒子を析出粒子とする。通常遠心分離操作は2回で
足りる。かくして分離された粒子の全体量に対する比率
(重量%)を微粒子の含有量とする。(1) Content of inorganic fine particles (wt%) 0-chlorophenol 1, Oa in 100 g of polyester
After heating at 120°C for 3 hours, centrifugation was performed at 30°000 rpm for 40 minutes using an ultracentrifuge 55P-72 manufactured by Hitachi Koki ■, and the obtained particles were vacuum dried at 100°C. When fine particles were measured with a scanning differential caloric meter,
If a dissolution peak corresponding to the polymer is observed, 0° chlorophenol is added to the particles, and after heating and cooling, centrifugation is performed again. When the dissolution peak is no longer observed, the fine particles are considered to be precipitated particles. Normally, two centrifugation operations are sufficient. The ratio (wt%) of the thus separated particles to the total amount is defined as the content of fine particles.
(2)無機微粒子の平均粒径(μm)
大和化学製プラズマリアクター(PR−503型〉を用
いて、酸素供給ff150cc/分、処理時間20分で
フィルム表面をプラズマエツチングした。このサンプル
を白金蒸着後、電子顕微鏡にて倍率2000〜5000
倍で観察し、粒子の短径と長径を測定した。(2) Average particle size of inorganic fine particles (μm) Using a Yamato Chemical plasma reactor (model PR-503), the film surface was plasma-etched with oxygen supply ff 150 cc/min and processing time 20 minutes.This sample was coated with platinum evaporation. After that, use an electron microscope at a magnification of 2000 to 5000.
The particles were observed under magnification and the short axis and long axis of the particles were measured.
(3) 無機微粒子の球状係数
大和化学製プラズマリアクター(PR−503型〉を用
いて、酸素供給量50cc/分、処理時間20分でフィ
ルム表面をプラズマエツチングした。このサンプルを白
金蒸着後、電子顕微鏡にて倍率2000〜5000倍で
観察し、粒子の短径と長径を測定し、短径と長径の比の
平均値でもって、微粒子の球状係数とした。(3) Spherical coefficient of inorganic particles The surface of the film was plasma etched using a Yamato Chemical plasma reactor (Model PR-503) with an oxygen supply rate of 50 cc/min and a processing time of 20 minutes. After platinum deposition, this sample was etched with electrons. The particles were observed with a microscope at a magnification of 2,000 to 5,000 times, the short axis and long axis of the particles were measured, and the average value of the ratio of the short axis to the long axis was taken as the sphericity coefficient of the fine particles.
(4)表面突起偏平度
2検出方式の走査型電子顕微鏡[ESM−3200、エ
リオニクス■製]と断面測定装置[PMS−1、エリオ
ニクス■製において、フィルム表面の平滑面の高さを0
として走査した時の高さ測定値を25656階調レー値
として画像処理装置[IBAS2000、カールツァイ
ス■製]に送り、このグレー値を基にIBAS2000
上にフィルム表面突起画像を再構築する。次にこの表面
突起画像で10階調以上のものを2値下して得られた個
々の突起の面積から円相光径を求めこれを表面突起径と
した。次に同様にして測定された個々の突起部分の中で
最も高い値をその高さとしな。(4) Using a scanning electron microscope [ESM-3200, manufactured by Elionix ■] with a two-detection method for surface protrusion flatness and a cross-sectional measuring device [PMS-1, manufactured by Elionix ■, the height of the smooth surface of the film surface was set to 0.
The height measurement value when scanning is sent to the image processing device [IBAS2000, manufactured by Carl Zeiss ■] as a 25656-level gray value, and based on this gray value, the IBAS2000
Reconstruct the film surface projection image on top. Next, the circular diameter was determined from the area of each protrusion obtained by lowering 10 or more gradations of this surface protrusion image by two values, and this was taken as the surface protrusion diameter. Next, determine the height of the highest value among the individual protrusions measured in the same manner.
この測定を1mm2について行ないこの平均値を、それ
ぞれ表面突起径d、表面高さhとし、上記方法で求めら
れた表面突起径dと表面突起高さhを用いて、d/hを
表面突起偏平度としな。This measurement is performed for 1 mm2, and the average values are defined as the surface protrusion diameter d and the surface height h, respectively. Using the surface protrusion diameter d and surface protrusion height h obtained by the above method, d/h is the surface protrusion flatness. Toshiba.
なお、走査型電子顕微鏡の倍率は、通常3000倍であ
るが、突起の大きさに応じて2000〜5000倍の範
囲の間で最適な倍率を選択することができる。Note that the magnification of a scanning electron microscope is usually 3000 times, but an optimal magnification can be selected from a range of 2000 to 5000 times depending on the size of the protrusion.
(5)面配向指数
ナトリウムD線(波長589nm)を光源としてアツベ
屈折率計を用いて、二軸配向フィルムの厚さ方向の屈折
率(Aとする)および溶融プレス後10℃の水中へ急冷
して作った無配向くアモルファス)フィルムの厚さ方向
の屈折率(Bとする)を測定し、A/Bをもって・面配
向指数とした。マウント液にはヨウ化メチレンを用い、
25℃、65%RHにて測定した。(5) Planar orientation index Using an Atsube refractometer with sodium D line (wavelength 589 nm) as a light source, measure the refractive index in the thickness direction of the biaxially oriented film (denoted as A) and quench it in water at 10°C after melt pressing. The refractive index (referred to as B) in the thickness direction of the non-oriented amorphous film produced was measured, and A/B was taken as the plane orientation index. Methylene iodide was used as the mounting solution.
Measurement was performed at 25° C. and 65% RH.
(6)ガラス転移点Tg、冷結晶化温度Tccパーキン
エルマー社製のDSC(示差走査熱量計)■型を用いて
測定した。DSCの条件は次の通りである。すなわち、
試料10■をDSC装置にセットし、300℃の温度で
5分間溶融した後、液体窒素中に急冷する。この急冷試
料を10℃/分で昇温し、ガラス転移点Tgを検知する
。さらに昇温を続け、ガラス状態からの結晶化発熱ピー
ク温度をもって冷結晶化温度Tccとした。(6) Glass transition point Tg, cold crystallization temperature Tcc Measured using a PerkinElmer DSC (differential scanning calorimeter) type II. The conditions for DSC are as follows. That is,
Sample 10 is set in a DSC device, melted at a temperature of 300° C. for 5 minutes, and then rapidly cooled in liquid nitrogen. This rapidly cooled sample is heated at a rate of 10° C./min, and the glass transition point Tg is detected. The temperature was further increased, and the exothermic peak temperature of crystallization from the glass state was defined as the cold crystallization temperature Tcc.
(7)密度指数
n−へブタン/四塩化炭素からなる密度勾配管を用いて
測定したフィルムの密度をdl(g/csi3)とし、
このフィルムを溶融プレス後、10℃の水中へ急冷して
作った無配向(アモルファス)フィルムの密度d2どの
差、(dl−d2 )をもって密度指数とした。(7) Density index The density of the film measured using a density gradient tube made of n-hebutane/carbon tetrachloride is dl (g/csi3),
This film was melt-pressed and then rapidly cooled in water at 10 DEG C. to produce a non-oriented (amorphous) film.The difference in density d2 (dl-d2) was taken as the density index.
(8) 摩擦係数(μk)
テープ走行性試験機TBT−300型(■横浜システム
研究新製)を使用し、20℃、60%RH雰囲気で走行
させ、初期のμk(摩擦係数)を下記の式より求めた。(8) Coefficient of friction (μk) Using a tape runnability tester TBT-300 model (manufactured by Yokohama System Research New Co., Ltd.), run the tape in an atmosphere of 20°C and 60% RH, and determine the initial μk (coefficient of friction) as shown below. It was calculated from the formula.
μに=0.733 l og (T1/To )ここで
Toは入側張力、T1は出側張力である。μ = 0.733 l og (T1/To) where To is the inlet tension and T1 is the outlet tension.
ガイド径は6mmφであり、ガイド材質は5US27(
表面粗度0.2S)、巻き付は角は180°走行速度は
3.3cn/秒である。The guide diameter is 6mmφ, and the guide material is 5US27 (
The surface roughness is 0.2S), and the winding angle is 180°. The running speed is 3.3cn/sec.
(9)表面固有抵抗
超絶縁計(月日電機製作所■製)VE−40型を使用し
て測定した。(9) Surface specific resistance Measured using a superinsulator meter (manufactured by Tsukihi Denki Seisakusho ■) model VE-40.
<10) 耐スクラッチ性
フィルムを幅1/2インチのテープ状にスリットし、張
力300g、走行速度200m/分で、ビデオカセット
のテープガイドビン(表面粗さがRtで2500nm程
度の表面を持ったステンレス性ガイドビン)上を巻き付
は角90°で走行させ、その時につく傷の量を次の基準
にしたがい目視で判定した。<10) The scratch-resistant film was slit into a tape with a width of 1/2 inch, and the film was slit into a tape with a tension of 300 g and a running speed of 200 m/min. The wrapping was run at an angle of 90° on a stainless steel guide bottle, and the amount of scratches created at that time was visually judged according to the following criteria.
まったく傷のないもの一−−−−5点
浅い傷のあるものミーーーーーー3点
深い傷のあるもの一−−−−−−1点
また、5点と3点の中間を4点、3点と1点の中間を2
点とした。この時、3点以上を耐スクラッチ性良好、3
点未満を耐スクラッチ性不良とした。この時の判定で3
点未満のフィルムは、フィルムの加工時や製品とした時
の走行時にフィルム表面が摩耗して深い傷が発生するた
め、製品の品質が著しく悪くなる。Items with no scratches: 5 points Items with shallow scratches: 3 points Items with deep scratches: 1 point In addition, the points between 5 and 3 points are 4 points and 3 points. The middle point of 1 point is 2
It was marked as a point. At this time, 3 points or more indicates good scratch resistance.
A value less than a point was considered poor scratch resistance. Judgment at this time was 3
If the film is below the point, the surface of the film will be abraded and deep scratches will occur during processing or during running when it is made into a product, resulting in significantly poor quality of the product.
01)耐削れ性
フィルムを幅1/2インチにテープ状にスリットしたも
のに片刃を垂直に押しあて、さらに0゜5++un押し
込んだ状態で20am走行させる(走行張カニ500g
、走行速度:6.7cn/秒)。この時片刃の先に付着
したフィルム表面の削れ物の高さを顕微鏡で読みとり、
削れ量としたく単位はμm〉。この削れ量の両面の平均
値が5μm以下の場合は耐削れ性:非常に良好、5〜7
μmの場合は耐削れ性:良好、7μmを越える場合は耐
削れ性:不良と判定した。この7μmという値は、印刷
工程や、カレンダー工程などの加工工程で、フィルム表
面が削れることによって、工程上、製品性能上のトラブ
ルがおこるか否かを厳しく判定するための臨界点である
。01) Press one blade perpendicularly against a tape-like slit of abrasion-resistant film 1/2 inch wide, press it further by 0°5++ un, and run it for 20 am (running tension crab 500g)
, running speed: 6.7 cn/sec). At this time, the height of the scraped material on the film surface attached to the tip of the single blade was read using a microscope.
The unit for the amount of abrasion is μm. If the average value of the amount of abrasion on both sides is 5 μm or less, the abrasion resistance is very good, 5 to 7
If it was μm, it was determined that the abrasion resistance was good, and if it exceeded 7 μm, it was determined that the abrasion resistance was poor. This value of 7 μm is a critical point for strictly determining whether or not troubles in the process and product performance will occur due to scraping of the film surface during processing steps such as the printing process and the calendering process.
[実施例] 本発明を実施例に基づいて説明する。[Example] The present invention will be explained based on examples.
実施例1
平均粒径0.3μm、球状係数0.95のルチル型酸化
チタンを2重量%エチレングリコール中に均一分散させ
、195℃で2時間加熱処理した後、ジメチルテレフタ
レートと重合して、粒子を2重量%含有するポリエチレ
ンテレフタレートの粒子マスターペレットを作った。こ
の粒子マスターペレットと、粒子を含有していないポリ
エチレンテレフタレートのペレットを、粒子含有量が所
定量となるように混合したペレットを180℃で3時間
減圧乾燥(3Torr)した。このペレットを押出機に
供給し、290℃で溶融押出し、静電印加キャスト法を
用いて表面温度30℃のキャスティング・ドラムに巻き
つけて冷却固化し、厚さ約180μmの未延伸フィルム
を作った。この時のドラフト比は22であった。Example 1 Rutile-type titanium oxide with an average particle size of 0.3 μm and a sphericity coefficient of 0.95 was uniformly dispersed in 2% by weight ethylene glycol, heat-treated at 195°C for 2 hours, and then polymerized with dimethyl terephthalate to form particles. Particle master pellets of polyethylene terephthalate containing 2% by weight of This particle master pellet and pellets of polyethylene terephthalate containing no particles were mixed so that the particle content was a predetermined amount, and the pellet was dried under reduced pressure (3 Torr) at 180° C. for 3 hours. The pellets were supplied to an extruder, melt-extruded at 290°C, wound around a casting drum with a surface temperature of 30°C using an electrostatic casting method, and cooled and solidified to produce an unstretched film with a thickness of approximately 180 μm. . The draft ratio at this time was 22.
この未延伸フィルムを90℃にて長手方向に3゜4倍延
伸した。この−軸フィルムをステンタを用いて100℃
で幅方向に3.6倍延伸し、定長下で210℃にて5秒
間熱処理し、厚さ15μmの二軸配向フィルムを得た。This unstretched film was stretched 3° to 4 times in the longitudinal direction at 90°C. This -axis film was heated to 100°C using a stenter.
The film was stretched 3.6 times in the width direction and heat treated at 210° C. for 5 seconds under constant length to obtain a biaxially oriented film with a thickness of 15 μm.
このフィルムの面配向指数は0.950であり密度指数
は0.03であった。This film had a planar orientation index of 0.950 and a density index of 0.03.
またこのフィルムの表面平均粗さRaは0.0155μ
mであり、摩擦係数μには0.22であった。Moreover, the surface average roughness Ra of this film is 0.0155μ
m, and the friction coefficient μ was 0.22.
このフィルムの表面突起偏平度は11であった。The surface protrusion flatness of this film was 11.
次にこのフィルムの耐スクラッチ性を測定すると5点で
あり非常に良好であった。また耐削れ性を測定すると3
.0μmであり非常に良好であった。(第1表)。Next, the scratch resistance of this film was measured and was found to be 5 points, which was very good. Also, when measuring the abrasion resistance, 3
.. It was 0 μm, which was very good. (Table 1).
実施例2〜3.比較例1〜5
含有する粒子の種類、平均粒径、含有量、粒子の球状係
数、製膜条件などを種々かえて、実施例1と同様にポリ
エチレンテレフタレートの二軸配向フィルムとした。含
有粒子と粒子の球状係数、ドラフト比、表面突起偏平度
の全てが本発明の範囲内であるものは、耐スクラッチ性
と耐割れ性が良好であった。(実施例2〜4)。Examples 2-3. Comparative Examples 1 to 5 Biaxially oriented films of polyethylene terephthalate were prepared in the same manner as in Example 1 by changing the type of particles contained, average particle diameter, content, sphericity coefficient of particles, film forming conditions, etc. Those whose contained particles, particle sphericity coefficient, draft ratio, and surface protrusion flatness were all within the range of the present invention had good scratch resistance and cracking resistance. (Examples 2-4).
しかし、粒子の種類、平均粒径、含有量、粒子の球状係
数のいずれかが、本発明外であるときは、耐スクラッチ
性、耐削れ性を共に満足させることはできなかった(比
較例1〜7)。However, when any of the particle type, average particle size, content, and particle sphericity coefficient is outside the scope of the present invention, it was not possible to satisfy both scratch resistance and abrasion resistance (Comparative Example 1). ~7).
[発明の効果]
本発明は、ルチル型二酸化チタン粒子を用いてその平均
粒径、含有量、球状係数を特定の範囲とした二軸配向ポ
リエステルフィルムとしたので、滑り性を維持しつつ、
最近の苛酷な使用条件にも耐えうる、耐スクラッチ性、
耐削れ性のすぐれたフィルムが得られたものである。[Effects of the Invention] The present invention uses rutile-type titanium dioxide particles to produce a biaxially oriented polyester film whose average particle diameter, content, and sphericity coefficient are set within specific ranges, so while maintaining slipperiness,
Scratch resistance that can withstand today's harsh usage conditions,
A film with excellent abrasion resistance was obtained.
本発明フィルムの用途は特に限定されないが、加工工程
で■フィルム表面に傷がつく。■フィルム表面が削れる
。ということによる製品性能への影響が特に大きい磁気
記録媒体用ベースフィルムとして特に有用である。Although the use of the film of the present invention is not particularly limited, (1) the film surface is damaged during the processing process. ■The film surface can be scraped. This is particularly useful as a base film for magnetic recording media, which has a particularly large influence on product performance.
Claims (2)
含有してなるポリエステルフィルムであって、該二酸化
チタン粒子の平均粒径が0.05〜2μm、球状係数が
0.8〜1であることを特徴とする二軸配向ポリエステ
ルフィルム。(1) 0.05 to 5% by weight of rutile titanium dioxide particles
A biaxially oriented polyester film comprising titanium dioxide particles, wherein the titanium dioxide particles have an average particle size of 0.05 to 2 μm and a sphericity coefficient of 0.8 to 1.
を特徴とする請求項1記載の二軸配向ポリエステルフィ
ルム。(2) The biaxially oriented polyester film according to claim 1, wherein the film has a surface projection flatness of 7 to 16.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28306688A JPH02129232A (en) | 1988-11-09 | 1988-11-09 | Biaxially oriented polyester film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28306688A JPH02129232A (en) | 1988-11-09 | 1988-11-09 | Biaxially oriented polyester film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02129232A true JPH02129232A (en) | 1990-05-17 |
Family
ID=17660762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28306688A Pending JPH02129232A (en) | 1988-11-09 | 1988-11-09 | Biaxially oriented polyester film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02129232A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016108504A (en) * | 2014-12-10 | 2016-06-20 | 東レ株式会社 | Biaxially-oriented polyester film |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62205133A (en) * | 1986-03-04 | 1987-09-09 | Diafoil Co Ltd | Polyester film |
JPS6369834A (en) * | 1986-09-12 | 1988-03-29 | Toray Ind Inc | Production of polyethylene terephthalate film for magnetic recording media |
JPS63230740A (en) * | 1987-03-19 | 1988-09-27 | Toray Ind Inc | Biaxially oriented polyester film |
-
1988
- 1988-11-09 JP JP28306688A patent/JPH02129232A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62205133A (en) * | 1986-03-04 | 1987-09-09 | Diafoil Co Ltd | Polyester film |
JPS6369834A (en) * | 1986-09-12 | 1988-03-29 | Toray Ind Inc | Production of polyethylene terephthalate film for magnetic recording media |
JPS63230740A (en) * | 1987-03-19 | 1988-09-27 | Toray Ind Inc | Biaxially oriented polyester film |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016108504A (en) * | 2014-12-10 | 2016-06-20 | 東レ株式会社 | Biaxially-oriented polyester film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5853907A (en) | Aromatic polyamide film, method for producing the same, and magnetic recording medium and solar cell using the same | |
JP2621461B2 (en) | Biaxially oriented polyester film | |
JPS63178144A (en) | Biaxially oriented polyester film | |
JP2000273214A (en) | Polybenzazole film and magnetic recording medium using the same | |
JPH0430974B2 (en) | ||
JPS63108037A (en) | Biaxially oriented polyester film | |
JPH02129232A (en) | Biaxially oriented polyester film | |
JPH06279599A (en) | Biaxially oriented polyester film | |
JPH03207651A (en) | Biaxially oriented polyester film | |
JPH02214733A (en) | Biaxially oriented polyester film | |
JPH01195045A (en) | Biaxially oriented polyester film | |
JP2525461B2 (en) | Biaxially oriented polyester film | |
JPH03207727A (en) | Biaxially oriented thermoplastic resin film and film roll | |
JPS63230740A (en) | Biaxially oriented polyester film | |
JPH0445529B2 (en) | ||
JP2525396B2 (en) | Biaxially oriented thermoplastic resin film | |
JPH02194029A (en) | Biaxially oriented polyester film | |
JPS62263024A (en) | Biaxially oriented polyethylene terephthalate film for magnetic disc | |
JPH0198634A (en) | Biaxially oriented polyester film | |
JP2515782B2 (en) | Biaxially oriented polyester film | |
JPS63221132A (en) | Biaxially oriented polyester film | |
JPH01299833A (en) | Biaxially oriented polyester film | |
JPS63221134A (en) | Biaxially oriented polyester film | |
JPH02214735A (en) | Biaxially oriented polyester film | |
JPH02143836A (en) | Biaxially-oriented polyester film and its manufacture |