JPH0769729A - Production of vitreous carbonaceous material - Google Patents

Production of vitreous carbonaceous material

Info

Publication number
JPH0769729A
JPH0769729A JP5246285A JP24628593A JPH0769729A JP H0769729 A JPH0769729 A JP H0769729A JP 5246285 A JP5246285 A JP 5246285A JP 24628593 A JP24628593 A JP 24628593A JP H0769729 A JPH0769729 A JP H0769729A
Authority
JP
Japan
Prior art keywords
carbon
glassy carbon
thermosetting resin
carbonization
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5246285A
Other languages
Japanese (ja)
Other versions
JP3543980B2 (en
Inventor
Hisayuki Hamashima
久幸 浜島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP24628593A priority Critical patent/JP3543980B2/en
Publication of JPH0769729A publication Critical patent/JPH0769729A/en
Application granted granted Critical
Publication of JP3543980B2 publication Critical patent/JP3543980B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain in high yield a vitreous carbonaceous material >6 mm in wall thickness having uniform and dense texture. CONSTITUTION:This material can be obtained by mixing carbon clusters, either directly or in the form of an organic solvent solution, with a thermosetting resin liquor convertible to vitreous carbon when carbonized and then by molding and hardening the mixture, followed by heating it in a nonoxidative atmosphere at >=800 deg.C to effect baking carbonization.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、均質緻密な組織構造を
備えるガラス状カーボン材の製造方法、とくに厚さが6
mmを越える厚肉形状を有する高品位のガラス状カーボン
材を製品歩留よく製造するための方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a glassy carbon material having a homogeneous and dense structure, particularly a thickness of 6
The present invention relates to a method for producing a high-quality glassy carbon material having a thick shape exceeding mm with a good product yield.

【0002】[0002]

【従来の技術】ガラス状カーボン材はガラス質の緻密な
組成構造を有する異質な炭素材料で、通常のカーボン材
に比べて化学的安定性、気体不透過性、耐摩耗性、自己
潤滑性、表面の平滑性および堅牢性などに優れることか
ら、その特性を生かして電池用電極、電解用電極、半導
体製造用坩堝ほか、多様な分野で各種工業材料に有用さ
れている。また、近年では組織から微小なパーティクル
が離脱することがない非汚染性の材質性状に着目して、
シリコンウエハーのプラズマエッチング用電極やイオン
注入装置用部材など汚染を嫌う半導体分野での実用化が
図られている。
2. Description of the Related Art A glassy carbon material is a heterogeneous carbon material having a glassy and dense composition structure, and has chemical stability, gas impermeability, wear resistance, self-lubricity, compared with ordinary carbon materials. Because of its excellent surface smoothness and toughness, it is utilized for various industrial materials in various fields, such as battery electrodes, electrolysis electrodes, semiconductor manufacturing crucibles, by taking advantage of its characteristics. In recent years, paying attention to the non-contaminating material property that minute particles do not separate from the tissue,
It is being put to practical use in the field of semiconductors such as electrodes for plasma etching of silicon wafers and members for ion implantation equipment where contamination is not desired.

【0003】一般に、ガラス状カーボン材はフェノール
系またはフラン系などの炭化残炭率の高い熱硬化性樹脂
液を成形、硬化した前駆体を焼成炭化する方法によって
製造される。このプロセスによる焼成炭化の機構は、固
相で進行するため、前駆体樹脂の熱分解によって多量に
発生する揮発分を固相外に排出し、体積収縮しながら炭
化物に転化する過程を辿る。ところが、前駆体が大型で
厚肉形状であると、熱分解ガスや縮合水が成形体内から
円滑に排出されずに組織内部に残留し、これが原因でポ
アやボイドの発生、ひいては材質の膨れ、割れ等の材質
欠陥を招くことになる。このため、大型や厚肉形状のガ
ラス状カーボン材を工業的に製造することは炭素業界の
大きな課題とされており、その研究も盛んにおこなわれ
ている。
Generally, a glassy carbon material is produced by a method of molding a thermosetting resin liquid having a high carbonization residual carbon ratio such as a phenol type or a furan type and firing and carbonizing a cured precursor. Since the mechanism of calcination and carbonization by this process progresses in the solid phase, a process of discharging a large amount of volatile components generated by thermal decomposition of the precursor resin to the outside of the solid phase and converting into a carbide while shrinking in volume is followed. However, when the precursor is large and has a thick shape, the pyrolysis gas and condensed water are not smoothly discharged from the molded body and remain inside the tissue, which causes the generation of pores and voids, and thus the swelling of the material, This will cause material defects such as cracks. Therefore, industrially manufacturing a large-sized or thick-walled glassy carbon material is considered to be a major issue in the carbon industry, and research on it has been actively conducted.

【0004】従来、大型または厚肉形状のガラス状カー
ボン材を製造するための技術としては、大別して原料と
なる熱硬化性樹脂の種類や性状を選択するものと、熱硬
化性樹脂に他の添加成分を複合化して原料系とする方法
が知られている。このうち前者の技術には、例えば分子
量100以上、粘度1〜100ポイズ、ゲル化時間5〜
60分のフェノール樹脂を特定の条件により加熱処理
し、ついで成形硬化したのち焼成炭化して厚肉板状ガラ
ス状カーボン材を製造する方法(特開平4−362062号公
報) が本出願人によって提案されているが、この方法に
より製造される最高肉厚は4mm程度が限度である。
Conventionally, as a technique for manufacturing a large or thick-walled glassy carbon material, the technique is roughly classified to select the type and properties of a thermosetting resin as a raw material, and other techniques for the thermosetting resin. A method is known in which an additive component is combined into a raw material system. Among these, the former technique includes, for example, a molecular weight of 100 or more, a viscosity of 1 to 100 poise, and a gelling time of 5 to
A method for producing a thick plate-like glassy carbon material by heat-treating a phenol resin for 60 minutes under a specific condition, followed by molding and curing and then firing and carbonizing (JP-A-4-362062) is proposed by the present applicant. However, the maximum wall thickness produced by this method is limited to about 4 mm.

【0005】後者の方法としては、例えば熱硬化性樹脂
液とカーボン粉末を混練して押出および圧延成形したの
ち焼成炭化する方法(特公平1−27967 号公報) 、セル
ロース質シートに熱硬化性樹脂液を含浸したのち積層成
形し、これを焼成炭化する方法(特開昭60−145952号公
報) などが知られている。これら複合原料系を用いる方
法によれば、成形性が改善されて厚肉や大型材の製造が
容易となる。特にカーボン粉末を添加する方法は、同時
に炭化残炭率を向上させる効果がもたらせるため厚肉製
品を得るために一層有利となる。
Examples of the latter method include a method in which a thermosetting resin liquid and carbon powder are kneaded, extruded and roll-molded, and then calcined and carbonized (Japanese Patent Publication No. 1-27967). A method is known in which a liquid is impregnated, then laminated and molded, and then calcined and carbonized (JP-A-60-145952). According to the method using these composite raw material systems, the moldability is improved and the production of thick-walled or large-sized materials becomes easy. In particular, the method of adding carbon powder is more advantageous for obtaining a thick-walled product since it can simultaneously bring about the effect of improving the carbonization residual coal rate.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、複合原
料系を用いる製造方法では固体物質を液状の熱硬化性樹
脂に分散、混合または浸透する過程で空気の巻き込み現
象に基づく微小ポアの発生が避けられず、また異質成分
添加の影響により得られるガラス状カーボン材の組織が
不均一となる等の欠点がある。
However, in the manufacturing method using the composite raw material system, generation of fine pores due to the entrainment of air is avoided in the process of dispersing, mixing or permeating a solid substance into a liquid thermosetting resin. However, there is a defect that the structure of the glassy carbon material obtained is not uniform due to the influence of the addition of foreign components.

【0007】本発明者は、複合原料系の添加成分として
好適な物質について多角的に検討をおこなった結果、分
子状カーボンにより構成されたカーボンクラスターを用
いると従来技術で製造が困難とされていた厚さ6mmを越
える厚肉形状を有する均質緻密性状のガラス状カーボン
材が製品歩留よく製造し得ることを知見して本発明に至
った。
The present inventor has conducted various studies on substances suitable as additive components in the composite raw material system, and as a result, it has been difficult to produce the conventional carbon clusters using carbon clusters composed of molecular carbon. The present invention has been completed by finding that a glassy carbon material having a uniform and dense shape having a thick shape exceeding 6 mm can be manufactured with a good product yield.

【0008】したがって、本発明の目的は、均質緻密組
織を備え、かつ厚さ6mmを越える厚肉材を製品歩留よく
生産することができるガラス状カーボン材の製造方法を
提供することにある。
Therefore, an object of the present invention is to provide a method for producing a glassy carbon material which has a homogeneous and dense structure and is capable of producing a thick material having a thickness of more than 6 mm with a good product yield.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めの本発明によるガラス状カーボン材の製造方法は、炭
素化によりガラス状カーボンに転化する熱硬化性樹脂液
にカーボンクラスターをそのままもしくは有機溶媒に溶
解した状態で混合し、混合物を成形硬化したのち、非酸
化性雰囲気中で800℃以上の温度に加熱して焼成炭化
処理することを構成上の特徴とする。
The method for producing a glassy carbon material according to the present invention for achieving the above-mentioned object is a thermosetting resin liquid which is converted into glassy carbon by carbonization, in which a carbon cluster is used as it is or as an organic compound. The composition is characterized in that the mixture is mixed in a state of being dissolved in a solvent, the mixture is molded and cured, and then the mixture is heated to a temperature of 800 ° C. or higher in a non-oxidizing atmosphere to perform a firing carbonization treatment.

【0010】本発明の主原料となる熱硬化性樹脂液は、
炭素化によりガラス状カーボンに転化する樹脂材料であ
れば種類や化学性状に制約はないが、最も好ましい樹脂
原料はフェノール系およびフラン系に属する熱硬化性樹
脂の初期縮合物である。
The thermosetting resin liquid as the main raw material of the present invention is
The type and chemical properties are not limited as long as it is a resin material that is converted to glassy carbon by carbonization, but the most preferable resin raw material is an initial condensate of a thermosetting resin belonging to a phenol type or a furan type.

【0011】複合原料系の添加成分となるカーボンクラ
スターとは、炭素原子が数十個集合した性状の分子状カ
ーボン(「フラーレン」と呼ばれることがある)、ある
いはこの炭素分子に官能基を付加させた分子状カーボン
を意味する。現在、カーボンクラスターとしては、
60、C70、C76、C78等の物性が知られているが、物
性の種類は問われない。
The carbon cluster as an additive component of the composite raw material system is a molecular carbon (sometimes referred to as "fullerene") having a property of collecting dozens of carbon atoms, or a functional group is added to this carbon molecule. Means molecular carbon. Currently, as a carbon cluster,
Physical properties such as C 60 , C 70 , C 76 , and C 78 are known, but the type of physical properties is not limited.

【0012】カーボンクラスターは、熱硬化性樹脂液に
そのままもしくは有機溶媒に溶解した状態で混合し、複
合原料系を形成する。溶解して混合する際に用いられる
有機溶媒としては、例えばトルエン、ベンゼン、二硫化
炭素などを挙げることができる。また、カーボンクラス
ターを空気あるいは硝酸等によって酸化させてカルボニ
ル基や水酸基のような官能基を表面の形成し、これをア
ルコール、アセトン等の極性有機溶媒に溶解して混合す
るすることも可能である。熱硬化性樹脂液に対するカー
ボンクラスターの配合量は、用いる熱硬化性樹脂の種類
や成形肉厚等を考慮して適宜に設定されるが、概ね5〜
50重量%の範囲が適切である。配合量が5重量%未満
では添加効果が得られず、50重量%を越えると均一混
合ができなくなる。混合は撹拌処理によっておこなわれ
るが、カーボンクラスターは撹拌操作により樹脂液に円
滑に溶解する。
The carbon clusters are mixed with the thermosetting resin liquid as it is or in the state of being dissolved in an organic solvent to form a composite raw material system. Examples of the organic solvent used when dissolving and mixing include toluene, benzene, and carbon disulfide. It is also possible to oxidize carbon clusters with air, nitric acid or the like to form a functional group such as a carbonyl group or a hydroxyl group on the surface, which is dissolved in a polar organic solvent such as alcohol or acetone and mixed. . The blending amount of carbon clusters with respect to the thermosetting resin liquid is appropriately set in consideration of the type of the thermosetting resin used, the molding thickness, etc.
A range of 50% by weight is suitable. If the amount is less than 5% by weight, the effect of addition cannot be obtained, and if it exceeds 50% by weight, uniform mixing cannot be achieved. The mixing is performed by a stirring process, but the carbon clusters are smoothly dissolved in the resin liquid by the stirring operation.

【0013】ついで、複合原料系の混合物は最終的に得
られるガラス状カーボン材の肉厚が6mm以上になるよう
に成形および炭化時の収縮率を見込んで所望形状に成形
し、加熱硬化する。混合物の性状は液状であるため、成
形操作は注型成形法または多重成形(重ね塗り)法を適
用しておこなわれる。注型成形を採用する場合には、真
空系内に置いて減圧脱気処理を施すことが好ましい。成
形後の硬化処理は、100〜300℃の温度範囲で加熱
する。
Then, the composite raw material mixture is molded into a desired shape in consideration of the shrinkage ratio during molding and carbonization so that the finally obtained glassy carbon material has a wall thickness of 6 mm or more, and is heat-cured. Since the mixture has a liquid state, the molding operation is performed by applying a casting method or a multiple molding (overcoating) method. When cast molding is adopted, it is preferable to place it in a vacuum system and perform degassing under reduced pressure. The curing treatment after molding is performed by heating in the temperature range of 100 to 300 ° C.

【0014】硬化処理された前駆体は、非酸化性雰囲気
に保持された加熱炉に入れ、800℃以上、好ましくは
1000〜2500℃の温度範囲で焼成炭化処理して厚
肉のガラス状カーボン材を得る。
The hardened precursor is placed in a heating furnace kept in a non-oxidizing atmosphere, and calcined and carbonized at a temperature in the range of 800 ° C. or higher, preferably 1000 to 2500 ° C. to give a thick glassy carbon material. To get

【0015】[0015]

【作用】厚肉形状を有するガラス状カーボン材の製造が
困難な理由は、原料となる熱硬化性樹脂液を成形する段
階で組織内部に内在するポア残留率が高くなることに主
因がある。すなわち、熱硬化性樹脂の硬化反応は分解縮
合反応による前駆体ガスや縮合水の発生を伴いながら進
行するが、成形材料が厚肉状になるに従って組織中心部
のガスあるいは縮合水は外部に拡散し難くなり、内部に
ポアーとなって残留する。残留するポアが多いと焼成炭
化工程においてポアに吸蔵されている気体が熱膨張を起
こしたり、炭化収縮でポア自体に物理的応力が集中する
結果、組織の密度低下、材質の膨れ、亀裂または破損を
招く。
The reason why it is difficult to manufacture a glassy carbon material having a thick shape is mainly due to a high residual rate of pores inside the tissue at the stage of molding the thermosetting resin liquid as a raw material. That is, the curing reaction of the thermosetting resin proceeds while generating precursor gas and condensed water by the decomposition condensation reaction, but as the molding material becomes thicker, the gas or condensed water in the center of the tissue diffuses to the outside. It becomes difficult to do, and remains as a pore inside. If there are many remaining pores, the gas stored in the pores will undergo thermal expansion during the firing and carbonization process, or physical stress will be concentrated on the pores themselves due to carbonization contraction, resulting in a decrease in tissue density, material swelling, cracking or damage. Invite.

【0016】したがって、このような現象を避けるため
には、前駆体ガスや縮合水の発生源となる原料成分を可
及的に少なくし、焼成時の炭素収率を高める必要があ
る。この意味で熱硬化性樹脂液にカーボン粉末を添加混
合する複合原料系は有利となるが、この種の固体原料は
樹脂液中に均一分散させることは困難となるうえ、混合
分散させる際に空気の巻き込みを避けることができず、
ポア発生の原因となる。また、ガラス状カーボンとは異
質のカーボン組織が介在することにより組織性状が不均
質となる。
Therefore, in order to avoid such a phenomenon, it is necessary to reduce the raw material components that are the source of the precursor gas and the condensed water as much as possible, and increase the carbon yield during firing. In this sense, a composite raw material system in which carbon powder is added and mixed with a thermosetting resin liquid is advantageous, but it is difficult to uniformly disperse this kind of solid raw material in the resin liquid, and at the time of mixing and dispersing it I can not avoid the involvement of
It may cause pores. In addition, the presence of a carbon structure different from that of glassy carbon makes the texture property non-uniform.

【0017】本発明で熱硬化性樹脂液に添加するカーボ
ンクラスターは、分子状カーボンにより構成された極め
て微細な粒子であり、かつ樹脂液や有機溶媒に溶解する
ため撹拌混合により容易に均一相の複合原料系が形成さ
れる。したがって、添加混合に際して空気を巻き込む等
の現象を伴うことなしに原料系の炭化収率を効果的に増
大させることができる。このような作用により、焼成炭
化時に材質欠陥を招くことなしに、均質緻密な組織構造
を有する厚肉形状のガラス状カーボン材の効率的な製造
が可能となる。具体的には、材質の嵩密度1.50g/cc
以上、内在ポア径10μm 以下、ポアー含有率5%以
下、曲げ強度1200kgf/cm2 以上の特性を備える厚さ
7mm程度の厚肉状ガラス状カーボン材を得ることができ
る。
The carbon clusters to be added to the thermosetting resin solution in the present invention are extremely fine particles composed of molecular carbon, and since they dissolve in the resin solution or the organic solvent, they can be easily mixed in a homogeneous phase by stirring and mixing. A composite raw material system is formed. Therefore, the carbonization yield of the raw material system can be effectively increased without involving a phenomenon such as entrainment of air during the addition and mixing. By such an action, it becomes possible to efficiently manufacture a thick glassy carbon material having a homogeneous and dense structure structure without causing material defects during firing and carbonization. Specifically, the bulk density of the material is 1.50 g / cc
As described above, it is possible to obtain a thick glassy carbon material having a thickness of about 7 mm, which has characteristics of an internal pore diameter of 10 μm or less, a pore content of 5% or less, and a bending strength of 1200 kgf / cm 2 or more.

【0018】[0018]

【実施例】【Example】

実施例1〜3、比較例1〜2 減圧蒸留により精製したフェノールおよびホルマリンを
常法に従って付加縮合反応させ、フェノール樹脂初期縮
合物(液状樹脂)を調製した。ついで、該フェノール樹
脂初期縮合物に所定量のカーボンクラスターを添加し、
撹拌操作によって溶解混合させた。この混合物をポリプ
ロピレン製のバットに流し込んで真空デシケータに入
れ、10torr以下の減圧下で脱気処理をおこなったの
ち、所定酸素濃度に調節された清浄系内の電気オーブン
に移して100℃の温度により硬化処理した。成形され
た樹脂前駆体は、縦横100mm、厚さ8mmの板状体であ
った。
Examples 1 to 3 and Comparative Examples 1 to 2 Phenol and formalin purified by vacuum distillation were subjected to an addition condensation reaction according to a conventional method to prepare a phenol resin initial condensate (liquid resin). Then, a predetermined amount of carbon clusters is added to the phenol resin initial condensate,
The mixture was dissolved and mixed by a stirring operation. This mixture was poured into a polypropylene vat, put in a vacuum desiccator, deaerated under a reduced pressure of 10 torr or less, and then transferred to an electric oven in a cleaning system adjusted to a predetermined oxygen concentration and heated at a temperature of 100 ° C. Hardened. The molded resin precursor was a plate having a length and width of 100 mm and a thickness of 8 mm.

【0019】ついで、前駆体の両面を不純物5ppm 未満
の高純度黒鉛板〔東海カーボン(株)製、G347SS〕
で挟み付け、同じく高純度黒鉛ヒーター〔東海カーボン
(株)製、G151ASS 〕を設置したパッキングレスの
加熱炉〔東海高熱工業(株)製、TP150〕にセット
し、炉内雰囲気を不純物10ppm 未満の高純度アルゴン
ガスで保持しながら2000℃まで加熱して焼成炭化処
理を施し、縦横80mm、厚さ7mmのガラス状カーボン材
を得た。このようにして製造されたガラス状カーボン材
の肉厚、各種特性および炭化焼成時の歩留をフェノール
樹脂初期縮合物に対するカーボンクラスターの添加量
(表1には「Cクラスター量」と表示)と対比させて表
1に示した。なお、比較のためにカーボンクラスターを
添加せず(比較例1)、またカーボンクラスターに代え
て粒度100メッシュの黒鉛粉末を添加(比較例2)
し、その他の条件は実施例と同様して製造したガラス状
カーボン材の特性および焼成炭化歩留率についても表1
に併載した。
Next, a high-purity graphite plate having impurities of less than 5 ppm on both sides of the precursor [G347SS manufactured by Tokai Carbon Co., Ltd.]
Sandwiched between them, and set in a packingless heating furnace (TP150 manufactured by Tokai High-Temperature Industry Co., Ltd.) with a high-purity graphite heater [G151ASS manufactured by Tokai Carbon Co., Ltd.] set, and the atmosphere in the furnace containing less than 10 ppm of impurities. A glassy carbon material having a length and width of 80 mm and a thickness of 7 mm was obtained by heating to 2000 ° C. while carrying out high-purity argon gas and heating and carbonizing. The thickness of the glassy carbon material produced in this manner, various characteristics, and the yield at the time of carbonization and firing were defined as the addition amount of carbon clusters to the phenol resin initial condensation product (indicated as "C cluster amount" in Table 1). The comparison is shown in Table 1. For comparison, no carbon clusters were added (Comparative Example 1), and graphite powder having a particle size of 100 mesh was added instead of the carbon clusters (Comparative Example 2).
However, other conditions are also shown in Table 1 regarding the characteristics and the firing carbonization yield of the glassy carbon material manufactured in the same manner as in the example.
It was also published in.

【0020】[0020]

【表1】 [Table 1]

【0021】表1の結果から、実施例1〜3ではいずれ
も厚さ7mmの厚肉形状でありながら実質的にポアや組織
欠陥のない均質緻密で高強度のガラス状カーボン材が製
品歩留よく製造されている。これに対し、カーボンクラ
スターを添加していない比較例1では材質特性および製
品歩留ともに大幅に低下し、また黒鉛粉末を添加した比
較例2では製品歩留は良好であったが、組織内部のポア
が多くなって均質緻密性が減退することが認められた。
From the results shown in Table 1, in each of Examples 1 to 3, the glassy carbon material having a uniform thickness and a thickness of 7 mm and substantially dense and high strength with substantially no pores or structure defects was obtained. Well manufactured. On the other hand, in Comparative Example 1 in which no carbon cluster was added, both the material properties and the product yield were significantly reduced, and in Comparative Example 2 in which graphite powder was added, the product yield was good, but It was confirmed that the number of pores increased and the homogeneity and compactness decreased.

【0022】[0022]

【発明の効果】以上のとおり、本発明によれば熱硬化性
樹脂液に分子カーボンで構成されたカーボンクラスター
を添加した複合原料系を用いることにより、均質緻密組
織を備える厚さ6mmを越える厚肉形状のガラス状カーボ
ン材を優れた製品歩留で製造することが可能となる。し
たがって、厚肉で高材質特性が要求される用途向け部材
を対象とするガラス状カーボン材の製造技術として極め
て有用性である。
As described above, according to the present invention, by using a composite raw material system in which carbon clusters composed of molecular carbon are added to a thermosetting resin liquid, a thickness of more than 6 mm having a homogeneous dense structure can be obtained. It becomes possible to manufacture a meat-like glassy carbon material with an excellent product yield. Therefore, it is extremely useful as a technique for producing a glassy carbon material for a member for use that is thick and requires high material characteristics.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 炭素化によりガラス状カーボンに転化す
る熱硬化性樹脂液にカーボンクラスターをそのままもし
くは有機溶媒に溶解した状態で混合し、混合物を成形硬
化したのち、非酸化性雰囲気中で800℃以上の温度に
加熱して焼成炭化処理することを特徴とするガラス状カ
ーボン材の製造方法。
1. A thermosetting resin liquid which is converted into glassy carbon by carbonization is mixed with a carbon cluster as it is or in a state of being dissolved in an organic solvent, and the mixture is molded and cured, and then 800 ° C. in a non-oxidizing atmosphere. A method for producing a glassy carbon material, which comprises heating to the above temperature and carrying out a firing carbonization treatment.
JP24628593A 1993-09-06 1993-09-06 Method for producing glassy carbon material Expired - Fee Related JP3543980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24628593A JP3543980B2 (en) 1993-09-06 1993-09-06 Method for producing glassy carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24628593A JP3543980B2 (en) 1993-09-06 1993-09-06 Method for producing glassy carbon material

Publications (2)

Publication Number Publication Date
JPH0769729A true JPH0769729A (en) 1995-03-14
JP3543980B2 JP3543980B2 (en) 2004-07-21

Family

ID=17146277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24628593A Expired - Fee Related JP3543980B2 (en) 1993-09-06 1993-09-06 Method for producing glassy carbon material

Country Status (1)

Country Link
JP (1) JP3543980B2 (en)

Also Published As

Publication number Publication date
JP3543980B2 (en) 2004-07-21

Similar Documents

Publication Publication Date Title
EP1761475B1 (en) A process for the manufacturing of dense silicon carbide
JPS6228109B2 (en)
JPH08143364A (en) Production of fiber reinforced silicon carbide composite ceramic molded body
JPH1017382A (en) Production of silicon carbide formed body
JPH0769729A (en) Production of vitreous carbonaceous material
JPH0848509A (en) Production of carbonaceous porous body
JP3342515B2 (en) Method for producing thick glassy carbon material
JP3434538B2 (en) Method for producing glassy carbon material
JPH0359033B2 (en)
JP2617147B2 (en) Method for producing high-density high-purity glassy carbon material
JP2001130963A (en) Method for producing isotropic high-density carbon material
JP2777903B2 (en) Heat-resistant and corrosion-resistant inorganic material and method for producing the same
JP2000103686A (en) Production of carbon fiber reinforced carbon composite material
JPH08222357A (en) Manufacture of carbon heating element
JPH10167826A (en) Production of vitreous carbon material
JP2623026B2 (en) Method for producing high-purity glassy carbon material
JPH0769730A (en) Production of vitreous carbonaceous material
JPH10251061A (en) Boron-containing vitreous carbon material and its production
JPH0718013B2 (en) Method for producing glassy carbon coating
JP2000026177A (en) Production of silicon-silicon carbide ceramics
JP2006248807A (en) Silicon carbide sintered compact having silicon carbide surface rich layer
JPH07300307A (en) Production of glassy carbon material
JP3543529B2 (en) Method for producing silicon carbide ceramics
JPH04362062A (en) Production of glassy carbon material
JPH06104591B2 (en) Method for manufacturing thin plate carbonaceous compact

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees