JPH0769646A - Production of palladium powder - Google Patents

Production of palladium powder

Info

Publication number
JPH0769646A
JPH0769646A JP5213917A JP21391793A JPH0769646A JP H0769646 A JPH0769646 A JP H0769646A JP 5213917 A JP5213917 A JP 5213917A JP 21391793 A JP21391793 A JP 21391793A JP H0769646 A JPH0769646 A JP H0769646A
Authority
JP
Japan
Prior art keywords
palladium
solution
powder
aqueous solution
palladium powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5213917A
Other languages
Japanese (ja)
Inventor
Naoki Ishiyama
直希 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP5213917A priority Critical patent/JPH0769646A/en
Publication of JPH0769646A publication Critical patent/JPH0769646A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Ceramic Capacitors (AREA)

Abstract

PURPOSE:To produce palladium powder as starting material for palladium paste used for forming an internal electrode of a laminated ceramic capacitor especially as powder less liable to expansion and shrinkage at the time of firing. CONSTITUTION:An aq. soln. of a palladium-ammonium complex salt adjusted to <=pH3 is mixed with an aq. soln. of a hydrazine compd. adjusted to <=pH3 at <=50 deg.C and the resulting mixture is heated to >=50 deg.C to deposit palladium powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、パラジウム粉末を用い
た導電ペースト、特に積層セラミックコンデンサー(以
下MLCCと略記する)の内部電極形成に用いられるパ
ラジウムペーストの構成成分であるパラジウム粉末の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a conductive paste using palladium powder, particularly a palladium powder which is a constituent of a palladium paste used for forming internal electrodes of a laminated ceramic capacitor (hereinafter abbreviated as MLCC). .

【0002】[0002]

【従来の技術】電子部品の軽薄短小化が進み、チップ部
品であるMLCCも小型化、高容量化の進歩がますます
要求されている。MLCCの小型化と高容量化のもっと
も効果的な手段は内部電極と誘電体層を薄くして多層化
をはかることである。MLCCはチタン酸バリウム(B
aTiO3 )等で代表される誘電体粉末とポリビニルブ
チラール等の有機バインダーからなる誘電体グリーンシ
ートに、パラジウムペーストを印刷し、乾燥して、内部
パラジウム電極が交互に重なるように積層し熱圧着した
後に、切断し、脱バインダーと、内部電極と誘電体を焼
結させるために約1300℃程度の温度で焼成され、つ
いで銀等の外部電極を形成して製造される。パラジウム
ペーストは、電極形成成分としてのパラジウム粉末と、
セルロース系樹脂やアクリル系樹脂、溶剤としてトリメ
チルベンゼン、タービネオール等の有機バインダー成分
からなり、スリーロールミルによって混練し混合分散す
ることにより製造される。
2. Description of the Related Art As electronic parts become lighter, thinner, shorter and smaller, MLCCs, which are chip parts, are required to be smaller and have higher capacities. The most effective means for downsizing and increasing the capacity of the MLCC is to reduce the thickness of the internal electrodes and the dielectric layer to achieve a multilayer structure. MLCC is barium titanate (B
aTiO 3 ), etc., and a dielectric green sheet made of an organic binder such as polyvinyl butyral, etc., with a palladium paste printed, dried, and laminated so that internal palladium electrodes are alternately laminated and thermocompression bonded. After that, it is cut and fired at a temperature of about 1300 ° C. to sinter the binder and the internal electrode and the dielectric, and then form an external electrode such as silver to manufacture. Palladium paste, palladium powder as an electrode forming component,
It is made of a cellulose resin, an acrylic resin, an organic binder component such as trimethylbenzene or terbineol as a solvent, and is kneaded and mixed and dispersed by a three-roll mill.

【0003】パラジウム粉末の製造法は種々の方法が知
られており、特にパラジウム塩の水溶液にヒドラジン等
の還元剤を作用させてパラジウム粉末を析出させる湿式
還元法はコスト、反応装置の簡便さから広く用いられて
いる方法である。例えば、特開平3−277706号公
報にはテトラアンミンパラジウム塩水溶液とヒドラジン
化合物水溶液との組み合わせが、特開平1−22570
8号公報には硝酸パラジウム水溶液とL−アスコルビン
酸塩類水溶液との組み合わせが開示されている。これら
の方法で作られたパラジウム粉末を用い、定速昇温で室
温から1000℃まで熱重量測定(TG−DTA)を行
うと、焼成過程で約300℃以上でPdOが生成し始
め、約700℃でパラジウムのほぼ100%がPdOに
相変化し、約820℃以上で再び金属パラジウム相に戻
ることが確認できる。また空気中500℃の定温下にお
ける時間当たりの酸化率変化をTG測定した結果による
と、パラジウム粉末は酸化が時間とともに急激に進行す
ることが確認できる。これは、パラジウムは熱力学的に
大気中約820℃以下ではPdOが安定相であり、約8
20℃以上では金属パラジウムが安定相であるためであ
る。しかるにパラジウムペーストは、従来のパラジウム
粉末が酸化に対し敏感なために、MLCC製造焼成過程
内に構成成分であるパラジウム粉末の酸化と還元によ
り、理論上15%の体積膨張、収縮を起こす。このよう
なパラジウムの酸化による急激な体積変化と、並びにパ
ラジウムペーストのバインダー成分である高分子樹脂の
燃焼による急激な発熱が内部パラジウム電極と誘電体層
の界面で起こることが原因となって熱膨張差による応力
を引き起こし、界面で剥離、ふくれ、それによるクラッ
クが生じるものと考えられている。この欠陥をデラミネ
ーションと呼ぶ。特にMLCCの多層化を実現するに当
たってデラミネーションが大きな問題となっており、従
来の酸化に対して敏感なパラジウム粉末をMLCC用の
パラジウムペーストとして用いた場合、MLCC製造工
程中で、デラミネーションが生じやすくなり、内部電極
の多層化、薄層化が困難となる。そのため、酸化に対し
て敏感なパラジウム粉末が、パラジウムペースト原料と
して求められている。
Various methods are known for producing palladium powder. Particularly, the wet reduction method in which a reducing agent such as hydrazine is caused to act on an aqueous solution of a palladium salt to precipitate the palladium powder is costly and has a simple reactor. This is a widely used method. For example, JP-A-3-277706 discloses a combination of an aqueous solution of tetraammine palladium salt and an aqueous solution of a hydrazine compound, and JP-A-1-22570.
No. 8 discloses a combination of a palladium nitrate aqueous solution and an L-ascorbate aqueous solution. When the thermogravimetric measurement (TG-DTA) is performed from room temperature to 1000 ° C. at a constant temperature increase using the palladium powder produced by these methods, PdO starts to be generated at about 300 ° C. or higher during the firing process, and about 700 ° C. It can be confirmed that at 100 ° C., almost 100% of the palladium undergoes a phase change to PdO and returns to the metallic palladium phase again at about 820 ° C. or higher. Further, according to the result of TG measurement of the change in the oxidation rate per hour under the constant temperature of 500 ° C. in air, it can be confirmed that the oxidation of the palladium powder rapidly progresses with time. PdO is a thermodynamically stable phase of PdO at about 820 ° C. or lower in the atmosphere.
This is because metallic palladium is a stable phase at 20 ° C or higher. However, since the conventional palladium powder is sensitive to oxidation, the palladium paste theoretically causes a volume expansion and contraction of 15% due to the oxidation and reduction of the palladium powder as a constituent component during the MLCC production firing process. Such a rapid volume change due to the oxidation of palladium and a rapid heat generation due to the combustion of the polymer resin, which is the binder component of the palladium paste, occur at the interface between the internal palladium electrode and the dielectric layer, causing thermal expansion. It is considered that the stress caused by the difference causes peeling, swelling, and cracking at the interface. This defect is called delamination. In particular, delamination has become a big problem in realizing multi-layered MLCCs. When conventional palladium powder which is sensitive to oxidation is used as a palladium paste for MLCC, delamination occurs in the MLCC manufacturing process. It becomes easy, and it becomes difficult to make the internal electrodes multi-layered and thin. Therefore, palladium powder which is sensitive to oxidation is required as a raw material for palladium paste.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記の問題点
を解決するためになされたものであり、焼成に伴なって
おこる酸化膨張、還元収縮が少ないという特徴を持ち、
パラジウムペースト原料として使用可能なパラジウム粉
末の製造方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is characterized in that the oxidative expansion and reduction shrinkage that accompany firing are small.
The present invention provides a method for producing palladium powder that can be used as a raw material for palladium paste.

【0005】[0005]

【課題を解決するための手段】本発明は、上記パラジウ
ム粉末を得るための製造方法として、パラジウムアンモ
ニウム錯塩の水溶液に無機酸を添加してpHを3以下に
調節した酸性水溶液とヒドラジン化合物水溶液に無機酸
を添加してpHを3以下に調節した酸性水溶液を50℃
以下で混合し、ついでこの混合溶液を50℃以上に加熱
してパラジウム粉末を析出させる点に特徴がある。
The present invention provides a method for producing the above-mentioned palladium powder, which comprises adding an inorganic acid to an aqueous solution of a palladium ammonium complex salt to adjust the pH to 3 or less and to prepare an acidic aqueous solution and a hydrazine compound aqueous solution. Add an inorganic acid to adjust the pH to 3 or less and use an acidic aqueous solution at 50 ° C.
It is characterized in that they are mixed below, and then the mixed solution is heated to 50 ° C. or higher to precipitate palladium powder.

【0006】又、本発明は前記の方法において、混合溶
液がパラジウム塩を0.01〜0.2mol/l含む溶
液である点に特徴がある。
Further, the present invention is characterized in that the mixed solution in the above method is a solution containing a palladium salt in an amount of 0.01 to 0.2 mol / l.

【0007】又、本発明は前記の方法において、パラジ
ウムアンモニウム錯塩とヒドラジン化合物とのモル比が
1〜10である点に特徴がある。
Further, the present invention is characterized in that the molar ratio of the palladium ammonium complex salt to the hydrazine compound is 1 to 10 in the above method.

【0008】[0008]

【作用】本発明人は種々実験検討を行なった結果、パラ
ジウムアンモニウム錯塩の水溶液に無機酸を添加してp
Hを3以下に調節した酸性水溶液とヒドラジン化合物水
溶液に無機酸を添加してpHを3以下に調節した酸性水
溶液を50℃以下で混合して、還元剤と被還元試薬を最
初から均一に混合した状態にし、ついでこの混合溶液を
50℃以上に加熱することでパラジウムが均一に還元析
出されることを見いだし、さらには析出時の反応温度が
比較的高いために比較的形の揃った、かつ結晶性が良く
酸化が少ないという特徴の持った粒子を得ることを見出
したものである。この方法はまた従来の湿式還元法すな
わち還元剤をパラジウム塩に(またはその逆)添加する
方法では局所的に濃度勾配が生じたり、全体的に不均一
に反応が進行するといった欠点を補う効果も奏する。
As a result of various experimental studies, the present inventor added an inorganic acid to an aqueous solution of a palladium ammonium complex salt and added p
An acidic aqueous solution in which H is adjusted to 3 or less and an acidic aqueous solution in which an inorganic acid is added to the hydrazine compound aqueous solution to adjust the pH to 3 or less are mixed at 50 ° C. or less to uniformly mix the reducing agent and the to-be-reduced reagent from the beginning. Then, it was found that palladium was uniformly reduced and precipitated by heating the mixed solution to 50 ° C. or higher, and the reaction temperature at the time of precipitation was relatively high. The inventors have found that particles having good crystallinity and little oxidation can be obtained. This method also has the effect of compensating for the drawbacks such as a local concentration gradient or a non-uniform reaction progressing in the conventional wet reduction method, that is, a method of adding a reducing agent to a palladium salt (or vice versa). Play.

【0009】本発明では還元剤としてヒドラジン化合物
を使用する。ヒドラジン化合物としてはヒドラジン一水
和物、塩酸ヒドラジン、硫酸ヒドラジン等が挙げられ
る。取扱いの容易さや還元剤コストの面を考えるならば
ヒドラジン−水和物を用いることが好ましい。これらの
還元剤に純水を加えて水溶液とし、これに無機酸を添加
して酸性還元剤水溶液を調製する。塩酸ヒドラジン、硫
酸ヒドラジンを使用するなら所定のpH値になっていれ
ば無機酸を加えなくとも良い。この溶液をA溶液とす
る。前記還元剤は1種のみ用いてもよく、併用しても良
い。
In the present invention, a hydrazine compound is used as a reducing agent. Examples of the hydrazine compound include hydrazine monohydrate, hydrazine hydrochloride and hydrazine sulfate. Considering the ease of handling and the cost of the reducing agent, it is preferable to use hydrazine hydrate. Pure water is added to these reducing agents to form an aqueous solution, and an inorganic acid is added to this to prepare an acidic reducing agent aqueous solution. If hydrazine hydrochloride or hydrazine sulfate is used, it is not necessary to add an inorganic acid as long as it has a predetermined pH value. This solution is called solution A. The reducing agents may be used alone or in combination.

【0010】パラジウム塩は、Pd(NH3 2
2 、Pd(NH3 2 Br2 、Pd(NH3
2 2 、Pd(NH3 2 (NO3 2 等のアンモニウ
ム錯塩を使用する。これらの塩の一種または数種を無機
酸水に溶解しパラジウム塩の酸性水溶液とする。これを
B溶液とする。無機酸は塩酸、硫酸、硝酸等一種のみま
たは併用して用いて良い。
The palladium salt is Pd (NH 3 ) 2 C
l 2 , Pd (NH 3 ) 2 Br 2 , Pd (NH 3 )
2 Ammonium complex salts such as 2 I 2 and Pd (NH 3 ) 2 (NO 3 ) 2 are used. One or several kinds of these salts are dissolved in inorganic acid water to prepare an acidic aqueous solution of palladium salt. This is designated as solution B. As the inorganic acid, hydrochloric acid, sulfuric acid, nitric acid or the like may be used alone or in combination.

【0011】A溶液とB溶液のpHを3以下になるよう
に調節し、室温で両溶液を混合する。この理由は、室温
でA溶液とB溶液のpH値を無機酸で調節したのち両溶
液を混合したときに還元反応が起こらなくなるpH領域
を検討した結果、両溶液のpHをともに3以下にするこ
とでそれが可能となったことによる。それ以上のpH値
では混合により還元反応が起こるために不適当であり安
定な混合溶液を作るためにはなるべく低いpH値、好ま
しくは1〜2に設定する。またA溶液とB溶液の混合
は、混合しても反応が起こらない程度の温度、実験の結
果では50℃以下、好ましくは30℃以下で行う。50
℃以上の温度では、混合すると還元反応が起こるため、
最初から均一に還元剤と被還元試薬を混合した状態にで
きない。
The pH of solution A and solution B is adjusted to 3 or less, and both solutions are mixed at room temperature. The reason for this is that after adjusting the pH values of solution A and solution B at room temperature with an inorganic acid and then examining the pH range in which no reduction reaction occurs when both solutions are mixed, the pH of both solutions is set to 3 or less. It is possible because of that. If the pH value is higher than the above value, the reduction reaction is caused by mixing, which is unsuitable, and the pH value is set as low as possible, preferably 1 to 2, in order to prepare a stable mixed solution. The solution A and the solution B are mixed at a temperature at which a reaction does not occur even if they are mixed, which is 50 ° C. or less, preferably 30 ° C. or less as a result of the experiment. Fifty
At temperatures above ℃, reduction reaction occurs when mixed,
The reducing agent and the reagent to be reduced cannot be uniformly mixed from the beginning.

【0012】次に、この混合溶液を攪拌機等を用いて攪
はんしながら90℃〜100℃に設定した恒温槽または
恒温浴中に保持する。攪拌機の回転数は特に限定しない
が、回転数が高くなるにつれ粒子径は小さくかつ粒度分
布が広くなる傾向があるため、通常100rpm前後で
行うのが好ましい。この混合溶液は徐々に液温が上昇
し、50℃以上の液温となったときに還元剤の還元作用
が次第に起こり、ゆっくりとパラジウムが析出されるこ
とが目視により確認される。
Next, this mixed solution is held in a constant temperature bath or a constant temperature bath set at 90 ° C. to 100 ° C. with stirring using a stirrer or the like. The number of revolutions of the stirrer is not particularly limited, but as the number of revolutions increases, the particle size tends to become smaller and the particle size distribution tends to broaden, so that it is usually preferable to perform the rotation at about 100 rpm. It is visually confirmed that the liquid temperature of this mixed solution gradually rises, and when the liquid temperature reaches 50 ° C. or higher, the reducing action of the reducing agent gradually occurs and palladium is slowly deposited.

【0013】ここでパラジウムアンモニウム錯塩の濃度
は、全体の反応溶液(A+B)中におけるパラジウム濃
度が0.01〜0.2mol/lになるようにB溶液を
調製する。パラジウム濃度が0.01mol/lよりも
低いと粒子が小さくなりすぎまた操業上収量が低くなる
ため、また0.2mol/lより高くなると粒子同士が
凝集した不均一なパラジウム粒子となるためである。好
ましくは0.05〜0.1mol/lの範囲が良い。
Here, the concentration of the palladium ammonium complex salt is adjusted so that the palladium concentration in the entire reaction solution (A + B) is 0.01 to 0.2 mol / l. This is because if the palladium concentration is lower than 0.01 mol / l, the particles become too small and the yield becomes low in operation, and if it is higher than 0.2 mol / l, the particles become non-uniform palladium particles. . The range of 0.05 to 0.1 mol / l is preferable.

【0014】ヒドラジン化合物とパラジウムアンモニウ
ム錯体の反応のモル比N2 4 /Pdは1から10の範
囲に設定する。モル比が10より大きくしても得られる
パラジウム粉末の酸化特性の効果は変わらず、還元剤コ
ストのみ掛かる。またモル比が1以下では還元反応が遅
く、凝集粉となりやすい。
The molar ratio N 2 H 4 / Pd of the reaction between the hydrazine compound and the palladium ammonium complex is set in the range of 1 to 10. Even if the molar ratio is larger than 10, the effect of the oxidizing property of the obtained palladium powder does not change and only the reducing agent cost is required. Further, when the molar ratio is 1 or less, the reduction reaction is slow and the powder tends to be aggregated.

【0015】液温が上昇し反応が開始すると反応溶液は
ゆっくりと鶯色をへて黒濁し、窒素ガスによる発泡が生
じる。その後反応溶液からガスの放出がなくなり、得ら
れたパラジウム粉末が沈降し反応溶液が透明になるまで
反応を続ける。次に還元析出したパラジウム粉末を回収
するために重力沈降や吸引ろ過等の一般に用いられる方
法により固液分離を行ない、固液分離したパラジウム粉
末は水を用いて洗浄し粉末に付着したイオン、反応溶液
を除去し、乾燥して水分を除去する。乾燥の雰囲気は真
空中、不活性雰囲気中、大気中のいずれでもよく乾燥温
度も室温から90℃位の温度で乾燥させる。このように
して得られたパラジウム粉末は、焼成に伴って起こるパ
ラジウムの酸化の速度が従来の湿式合成法により作られ
たものに比べて遅いという特徴をもち、かつ得られる粒
子の粒径の範囲が0.5から1.5μmであるためパラ
ジウムペースト原料として使用することができる。
When the liquid temperature rises and the reaction starts, the reaction solution slowly becomes turbid in color and becomes cloudy, and foaming by nitrogen gas occurs. After that, the reaction solution is no longer released of gas, and the reaction is continued until the obtained palladium powder precipitates and the reaction solution becomes transparent. Next, solid-liquid separation is performed by a commonly used method such as gravity settling or suction filtration to recover the reduced and precipitated palladium powder, and the solid-liquid separated palladium powder is washed with water to remove the ions, reactions Remove the solution and dry to remove water. The drying atmosphere may be any of vacuum, inert atmosphere and air, and the drying temperature is from room temperature to about 90 ° C. The palladium powder thus obtained is characterized in that the rate of oxidation of palladium that accompanies calcination is slower than that produced by the conventional wet synthesis method, and the particle size range of the obtained particles is Since it is 0.5 to 1.5 μm, it can be used as a raw material for palladium paste.

【0016】[0016]

【実施例】以下実施例をもって本発明を具体的に説明す
る。 実施例1,2(実験 No.1,2) 反応溶液(A+B)中のパラジウム濃度を0.1mol
/lになるよう、モル比N2 4 /Pdが1,10、と
なるように以下に記す操作で室温にて反応溶液を調整し
た。まず、ヒドラジン−水和物の各5.11g,51.
1gにそれぞれ塩酸水、純水を加えて液量を500ml
とし、pHを1に設定した(A溶液)。次に、1.3m
ol/lのPd(NH3 4 Cl2 アンモニア水溶液
(NH3 3.6mol/l)を用い、この溶液の77.
6mlに塩酸水を加えて液量を500mlとしpHを1
に調整した(B溶液)。するとB溶液から微細な、Pd
(NH3 2 Cl2 塩が析出沈澱した。室温でA溶液と
B溶液を混合し、90℃に保持した恒温浴にいれ100
rpmで攪拌した。保持してから約15分で液温が50
℃に達し、実施例1では60℃を過ぎてから、実施例2
では55℃を過ぎてから次第に反応溶液に変化が見え始
め、約30分で反応溶液が黒化しPdが析出した。攪拌
は析出から30分間続行した。
EXAMPLES The present invention will be specifically described with reference to the following examples. Examples 1 and 2 (Experiment No. 1 and 2) The palladium concentration in the reaction solution (A + B) was 0.1 mol.
The reaction solution was adjusted at room temperature by the following operations so that the molar ratio N 2 H 4 / Pd was 1,10 so that the ratio became 1 / l. First, 5.11 g each of hydrazine-hydrate, 51.
Hydrochloric acid water and pure water are added to 1 g to bring the total volume to 500 ml.
And the pH was set to 1 (solution A). Next, 1.3m
77% of this solution was used using an aqueous solution of Pd (NH 3 ) 4 Cl 2 ammonia (NH 3 3.6 mol / l) at 1 / l.
Hydrochloric acid was added to 6 ml to bring the volume to 500 ml, and the pH was adjusted to 1
Was adjusted to (B solution). Then, from the B solution, fine Pd
The (NH 3 ) 2 Cl 2 salt was precipitated. Mix solution A and solution B at room temperature and put in a constant temperature bath maintained at 90 ° C for 100
Stir at rpm. The liquid temperature becomes 50 in about 15 minutes after holding.
C., reaching 60 ° C. in Example 1, and then Example 2
Then, after passing 55 ° C., a change in the reaction solution gradually started to appear, and the reaction solution became black and Pd was precipitated in about 30 minutes. Stirring was continued for 30 minutes after precipitation.

【0017】得られたパラジウム粉末は重力沈降法によ
り回収し、純水で3回洗浄し熱風乾燥器で80℃で乾燥
した。得られたPd粉末の評価は次のように行った。粒
径は窒素ガスの吸着法による比表面積計により比表面積
値を測定し、式(1)から平均粒子径(BET径)を算
出した。 平均粒子径(μm)=6÷(12.03 (g/cm3) ×比表面積(m2/g)) (1)
The obtained palladium powder was recovered by gravity settling, washed with pure water three times, and dried at 80 ° C. in a hot air dryer. The obtained Pd powder was evaluated as follows. For the particle size, the specific surface area value was measured by a specific surface area meter according to the nitrogen gas adsorption method, and the average particle size (BET size) was calculated from the formula (1). Average particle size (μm) = 6 ÷ (12.03 (g / cm 3 ) × specific surface area (m 2 / g)) (1)

【0018】酸化率の評価は、熱分析装置(TG−DT
A)を用い、パラジウム粉20mgをアルミナセルにい
れ装置にセットし、窒素パージ下で500℃まで4mi
n.で急速昇温し、その後炉の温度を500℃に保持し
たまま空気(200ml/min.)に切り替え、酸化
重量の変化を測定し、空気に切り換えてから200mi
n.後の酸化率を式(2)より算出し比較した。 酸化率(%)=(W−W0 )÷(W0 ×0.15)×100 (2) 式(2)でW0 ;初期重量(約20mg)、W;200
分間500℃で保持した後の重量、である。
The oxidation rate is evaluated by a thermal analyzer (TG-DT).
Using A), 20 mg of palladium powder was placed in an alumina cell and set in an apparatus.
n. Then, the temperature of the furnace is maintained at 500 ° C, and then the air is switched to air (200 ml / min.), The change in the oxidation weight is measured, and the air is switched to 200 mi.
n. The subsequent oxidation rate was calculated from equation (2) and compared. Oxidation rate (%) = (W−W 0 ) ÷ (W 0 × 0.15) × 100 (2) W 0 in the formula (2); initial weight (about 20 mg), W; 200
Weight after holding at 500 ° C. for minutes.

【0019】デラミネーション発生頻度試験は次のよう
に行った。実施例2で得られたPd粉末を用い、有機バ
インダーとしてエチルセルロース、テルビネオールを用
い、希釈剤として芳香族系炭化水素を用い、パラジウム
粉末/有機バインダー/希釈剤(重量比)を50/34
/16としてパラジウムペーストを作製した。このパラ
ジウムペーストを用い、5×3mmの30層積層コンデ
ンサーを各20個試作した。そして内部電極が観察でき
るまで研磨しデラミネーションの発生状況を光学顕微鏡
で観察した。用いた誘電体シートはチタン酸バリウム系
セラミックスで構成され、一層の厚みは30μmであ
る。以上の結果を表1、表2に示す。
The delamination occurrence frequency test was conducted as follows. The Pd powder obtained in Example 2 was used, ethyl cellulose and terbineol were used as the organic binder, aromatic hydrocarbon was used as the diluent, and the palladium powder / organic binder / diluent (weight ratio) was 50/34.
A palladium paste was prepared as / 16. Using this palladium paste, 20 30-layer multilayer capacitors each having a size of 5 × 3 mm were manufactured. Then, polishing was performed until the internal electrodes could be observed, and the occurrence of delamination was observed with an optical microscope. The dielectric sheet used is composed of barium titanate-based ceramics, and the thickness of one layer is 30 μm. The above results are shown in Tables 1 and 2.

【0020】 表 1 実験 Pd濃度 N2 4 /Pd pH 平均粒子径 備考 No. mol/l モル比 (A+B) (μm) ─────────────────────────────────── 1 0.1 1 1.0 0.9 実 2 0.1 10 1.0 0.6 3 0.1 2.5 1.1 0.8 施 4 0.2 2.5 1.1 1.4 5 0.05 2.5 1.0 0.5 例 6 0.1 2.5 2.1 0.5 ─────────────────────────────────── 7 0.1 2.5 (10〜10.5) 0.6 比較例Table 1 Experiment Pd concentration N 2 H 4 / Pd pH Average particle size Remark No. mol / l Molar ratio (A + B) (μm) ──────────────────── ───────────────── 1 0.1 1 1.0 0.9 Actual 2 0.1 10 1.0 1.0 0.6 3 0.1 0.1 2.5 1.1 0.8 Application 4 0.2 2.5 1.1 1.1 1.4 5 0.05 2.5 1.0 0.5 Example 6 0.1 2.5 2.1 0.5 0.5 ─────── ───────────────────────────── 7 0.1 2.5 (10 to 10.5) 0.6 Comparative example

【0021】 表 2 実験 No. 酸化率% デラミネーション頻度 備 考 ─────────────────────────────────── 1 20 −− 実 2 23 1/20 (5%) 3 20 0/20 (0%) 施 4 16 −− 5 25 −− 例 6 27 −− ─────────────────────────────────── 7 45 9/20(45%) 比較例Table 2 Experiment No. Oxidation rate% Delamination frequency Remark ─────────────────────────────────── ─ 1 20 − − Actual 2 23 1/20 (5%) 3 20 0/20 (0%) Application 4 16 − − 525 − − Example 6 27 −− ───────────── ─────────────────────── 7 45 9/20 (45%) Comparative example

【0022】実施例3〜5(実験 No.3〜5) 反応溶液(A+B)中のパラジウム濃度を0.1、0.
2、0.05mol/lになるよう、モル比N2 4
Pdが2.5となるように以下に記す操作で反応溶液を
調整した。実施例1,2と同じPd(NH3 4 Cl2
アンモニア水溶液の各77.6、155.3、38.8
mlに塩酸水を加えて液量を500mlとしpHを1に
調整した(B溶液)。また、ヒドラジン−水和物12.
8gに塩酸水、純水を加えて液量を500mlとし、p
Hを1に設定した(A溶液)。室温でA溶液とB溶液を
混合し、90℃に保持した恒温浴にいれ100rpmで
攪拌したところ、実施例3,4では60℃を過ぎてか
ら、実施例5では70℃を過ぎてから次第に反応溶液に
変化が見え始め、次第に反応溶液が黒化し、パラジウム
粉が析出した。攪拌を、パラジウム粉の析出からそのま
ま30分間続行し、その後の操作は実施例1と同様に行
なった。評価は実施例1と同様に行い、デラミネーショ
ン試験は実施例3で得られた粉末について行なった。以
上の結果を表1,表2に示す。
Examples 3 to 5 (Experiment Nos. 3 to 5) The palladium concentration in the reaction solution (A + B) was 0.1, 0.
2 , molar ratio N 2 H 4 /
The reaction solution was adjusted by the following operations so that Pd was 2.5. Same as Examples 1 and 2 Pd (NH 3 ) 4 Cl 2
Aqueous ammonia solution 77.6, 155.3 and 38.8, respectively
Hydrochloric acid water was added to ml to make the volume 500 ml and the pH was adjusted to 1 (solution B). Also, hydrazine hydrate 12.
Hydrochloric acid water and pure water were added to 8 g to make the liquid volume 500 ml, and p
H was set to 1 (Solution A). The solution A and the solution B were mixed at room temperature and placed in a constant temperature bath maintained at 90 ° C. and stirred at 100 rpm. In Examples 3 and 4, after passing 60 ° C., in Example 5, after passing 70 ° C., gradually. A change began to appear in the reaction solution, the reaction solution gradually became black, and palladium powder was deposited. Stirring was continued for 30 minutes as it was after the deposition of the palladium powder, and the operations thereafter were performed in the same manner as in Example 1. The evaluation was performed in the same manner as in Example 1, and the delamination test was performed on the powder obtained in Example 3. The above results are shown in Tables 1 and 2.

【0023】実施例6(実験 No.6) 反応溶液(A+B)中のパラジウム濃度が0.1mol
/lになるよう、モル比N2 4 /Pdが2.5となる
ように、実施例1,2と同じPd(NH3 4Cl2
液77.6mlに塩酸水を加えて液量を500mlとし
pHを2に調整したB溶液と、ヒドラジン−水和物1
2.8gに塩酸水、純水を加えて液量を500mlと
し、pHを2に設定したA溶液を室温で混合し、90℃
に保持した恒温浴にいれ100rpmで攪拌したとこ
ろ、52℃を過ぎてから次第に反応溶液が黒化し、パラ
ジウム粉が析出した。攪拌をパラジウム粉の析出からそ
のまま30分間続行し、その後の操作は実施例1と同様
に行なった。評価は実施例1と同様に行い、デラミネー
ション試験は実施例3で得られた粉末について行なっ
た。以上の結果を表1,表2に示す。
Example 6 (Experiment No. 6) The palladium concentration in the reaction solution (A + B) was 0.1 mol.
/ L so that the molar ratio N 2 H 4 / Pd is 2.5, hydrochloric acid water is added to 77.6 ml of the same Pd (NH 3 ) 4 Cl 2 solution as in Examples 1 and 2 to obtain a liquid volume. Solution of which pH was adjusted to 2 with 500 ml and hydrazine hydrate 1
Hydrochloric acid water and pure water were added to 2.8 g to make the liquid volume 500 ml, and the A solution whose pH was set to 2 was mixed at room temperature to 90 ° C.
When the mixture was placed in a constant temperature bath maintained at 100 rpm and stirred at 100 rpm, the reaction solution gradually became black after 52 ° C. and palladium powder was deposited. Stirring was continued for 30 minutes from the precipitation of palladium powder, and the subsequent operation was performed in the same manner as in Example 1. The evaluation was performed in the same manner as in Example 1, and the delamination test was performed on the powder obtained in Example 3. The above results are shown in Tables 1 and 2.

【0024】比較例1(実験 No.7) 反応溶液(A+B)中のパラジウム濃度を0.1mol
/lになるよう、モル比N2 4 /Pdが2.5となる
ように、上記Pd(NH3 4 Cl2 溶液77.6ml
に純水を加えて液量を500mlにしたB溶液と、ヒド
ラジン−水和物12.8gに純水を加えて液量を500
mlとしたA溶液を用意し、両者とも60℃に加熱し
た。ここで、A溶液、B溶液のpHは酸を添加していな
いので両者とも10〜10.5の範囲であった。回転数
100rpmで攪拌したA溶液にB溶液を約5秒かけて
直接添加したところB溶液を添加してすぐに激しく発泡
が起こり、反応溶液は黒濁した。攪拌は添加終了時から
30分間続行し、その後の操作は実施例1と同様に行な
った。評価とデラミネーション試験は実施例1と同様に
行った。以上の結果を表1,表2に示す。
Comparative Example 1 (Experiment No. 7) The palladium concentration in the reaction solution (A + B) was 0.1 mol.
/ L such that the molar ratio N 2 H 4 / Pd is 2.5, and 77.6 ml of the above Pd (NH 3 ) 4 Cl 2 solution
Pure water was added to the solution B to make the volume 500 ml, and pure water was added to 12.8 g of hydrazine hydrate to make the volume 500.
A solution A made up in ml was prepared, and both were heated to 60 ° C. Here, the pH of the solutions A and B was in the range of 10 to 10.5 because no acid was added. When the B solution was directly added to the A solution stirred at a rotation speed of 100 rpm for about 5 seconds, violent foaming occurred immediately after the B solution was added and the reaction solution became black turbid. The stirring was continued for 30 minutes from the end of the addition, and the operations thereafter were performed in the same manner as in Example 1. The evaluation and the delamination test were performed in the same manner as in Example 1. The above results are shown in Tables 1 and 2.

【0025】[0025]

【発明の効果】以上の結果から、本発明によって得られ
たパラジウム粉末は、焼成に伴って起こるパラジウムの
酸化の速度が遅いという特徴があるために、この粉末を
MLCC内部電極用パラジウムペーストとして用いた場
合にMLCCの最大の欠陥である内部パラジウム電極と
誘電体層の界面で生じるデラミネーションを防止する効
果がある。
From the above results, the palladium powder obtained according to the present invention is characterized in that the rate of oxidation of palladium which accompanies calcination is slow. Therefore, this powder is used as a palladium paste for MLCC internal electrodes. In this case, it is effective in preventing delamination which is the largest defect of MLCC at the interface between the internal palladium electrode and the dielectric layer.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 パラジウムアンモニウム錯塩の水溶液に
無機酸を添加してpHを3以下に調節した酸性水溶液と
ヒドラジン化合物水溶液に無機酸を添加してpHを3以
下に調節した酸性水溶液を50℃以下で混合し、ついで
この混合溶液を50℃以上に加熱してパラジウム粉末を
析出させることを特徴とするパラジウム粉末の製造方
法。
1. An acidic aqueous solution in which an inorganic acid is added to an aqueous solution of a palladium ammonium complex salt to adjust the pH to 3 or less, and an acidic aqueous solution in which an inorganic acid is added to an hydrazine compound aqueous solution to adjust the pH to 3 or less is 50 ° C. or less. And then heating the mixed solution to 50 ° C. or higher to precipitate the palladium powder.
【請求項2】 混合溶液がパラジウム塩を0.01〜
0.2mol/l含む溶液である請求項1記載のパラジ
ウム粉末の製造方法。
2. The mixed solution comprises 0.01 to about palladium salt.
The method for producing palladium powder according to claim 1, which is a solution containing 0.2 mol / l.
【請求項3】 パラジウムアンモニウム錯塩とヒドラジ
ン化合物とのモル比が1〜10である請求項1記載のパ
ラジウム粉末の製造方法。
3. The method for producing a palladium powder according to claim 1, wherein the molar ratio of the palladium ammonium complex salt to the hydrazine compound is 1 to 10.
JP5213917A 1993-08-30 1993-08-30 Production of palladium powder Pending JPH0769646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5213917A JPH0769646A (en) 1993-08-30 1993-08-30 Production of palladium powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5213917A JPH0769646A (en) 1993-08-30 1993-08-30 Production of palladium powder

Publications (1)

Publication Number Publication Date
JPH0769646A true JPH0769646A (en) 1995-03-14

Family

ID=16647183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5213917A Pending JPH0769646A (en) 1993-08-30 1993-08-30 Production of palladium powder

Country Status (1)

Country Link
JP (1) JPH0769646A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083233A1 (en) * 2013-12-03 2015-06-11 田中貴金属工業株式会社 Method for collecting palladium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015083233A1 (en) * 2013-12-03 2015-06-11 田中貴金属工業株式会社 Method for collecting palladium

Similar Documents

Publication Publication Date Title
JP3780405B2 (en) Fine barium titanate powder, calcium-modified fine barium titanate powder, and method for producing the same
CN105601273B (en) Method for producing barium titanate-based powder and laminated ceramic capacitor
US4939108A (en) Process for producing dielectric ceramic composition with high dielectric constant, low dissipation factor and flat TC characteristics
JP3302627B2 (en) Manufacturing method of ceramic powder
JP3947118B2 (en) Surface-treated metal ultrafine powder, method for producing the same, conductive metal paste, and multilayer ceramic capacitor
JPS61275164A (en) Dielectric ceramic composition having high permittivity and flat tc properties
JPH0135044B2 (en)
JP2004323866A (en) Method for manufacturing nickel powder, and nickel powder
JP3783678B2 (en) Method for producing raw material powder for dielectric ceramic, dielectric ceramic and multilayer ceramic capacitor
JP2003002748A (en) Method for producing powdery ceramic raw material, powdery ceramic raw material, dielectric ceramic and multilayer ceramic electronic parts
JPH0551610A (en) Production of fine nickel powder
KR101539851B1 (en) Perovskite powder, manufacturing method thereof and paste composition for internal electrode comprising the same
JPH0769646A (en) Production of palladium powder
JP5410124B2 (en) Method for manufacturing dielectric material
JP2006188469A (en) Method for producing barium titanyl oxalate powder and method for producing titanium perovskite type ceramic raw material powder
JPH0543921A (en) Production of nickel fine powder
KR20090095492A (en) Method for producing perovskite-typed barium titanate powder
JPH0210089B2 (en)
JPS5939725A (en) Manufacture of dielectric powder for thick film
JPH0210091B2 (en)
JPH07278620A (en) Production of palladium powder
JP7438867B2 (en) Me element-substituted organic acid barium titanyl, method for producing the same, and method for producing titanium-based perovskite ceramic raw material powder
JPH07216413A (en) Production of palladium powder
JP3145514B2 (en) Conductive paste for internal electrodes of multilayer ceramic capacitors
WO2021010368A1 (en) Me ELEMENT-SUBSTITUTED ORGANIC ACID TITANYL BARIUM, METHOD FOR PRODUCING SAME, AND METHOD FOR PRODUCING TITANIUM-BASED PEROVSKITE-TYPE CERAMIC RAW MATERIAL POWDER