JPH0769380B2 - Fault location method - Google Patents

Fault location method

Info

Publication number
JPH0769380B2
JPH0769380B2 JP3360088A JP3360088A JPH0769380B2 JP H0769380 B2 JPH0769380 B2 JP H0769380B2 JP 3360088 A JP3360088 A JP 3360088A JP 3360088 A JP3360088 A JP 3360088A JP H0769380 B2 JPH0769380 B2 JP H0769380B2
Authority
JP
Japan
Prior art keywords
zero
substation
power
phase
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3360088A
Other languages
Japanese (ja)
Other versions
JPH01207674A (en
Inventor
勲 千原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3360088A priority Critical patent/JPH0769380B2/en
Publication of JPH01207674A publication Critical patent/JPH01207674A/en
Publication of JPH0769380B2 publication Critical patent/JPH0769380B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、系統に1線地絡故障が生じた場合に、系統に
生ずる零相電流及び零相電圧に応じて故障点を特定する
故障点標定方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention is a fault for identifying a fault point according to a zero-phase current and a zero-phase voltage generated in a system when a one-line ground fault occurs in the system. Regarding point orientation method.

(従来の技術) 従来、並行2回線による送電系統における故障点の標定
は、系統の電源端変電所に設けた故障点評定装置により
各回線を流れる零相電流を検出し、これらの地に基づき
故障点を特定する故障点標定方法が採用されている。
(Prior Art) Conventionally, the fault point in a transmission system with two parallel lines is detected by detecting a zero-phase current flowing through each line by a fault point evaluation device provided at the substation at the power source end of the system and based on these points. A fault point locating method for identifying a fault point is adopted.

第5図は、従来の標定方法を説明するための3端子系統
図である。図中、1は中性点接地抵抗2により接地され
た三相交流電源であり、この電源1からの出力電圧は、
電源端変電所Aにて昇圧された後、2回線送電線により
非電源端変電所Cに送電される。これらの2回線送電線
では、系統の中間において他の送電線が分岐され、この
分岐送電線は前記2回線系統から短距離地点に設置され
た中間変電所Bに接続されている。また、電源端変電所
Aの各回線の負荷側には、各回線から零相電流を取り込
む故障点標定装置FL1が設けられている。
FIG. 5 is a three-terminal system diagram for explaining the conventional orientation method. In the figure, 1 is a three-phase AC power source grounded by a neutral point grounding resistor 2, and the output voltage from this power source 1 is
After being boosted at the power source end substation A, power is transmitted to the non-power end substation C by the two-line power transmission line. In these two-line transmission lines, another transmission line is branched in the middle of the system, and this branch transmission line is connected to an intermediate substation B installed at a short distance from the two-line system. Further, on the load side of each line of the power source substation A, a fault point locator FL1 that takes in a zero-phase current from each line is provided.

いま、第5図中、電源端変電所Aと中間変電所Bとの間
の第1回線上の点G2で1線地絡故障が発生した場合、同
図に示すように、健全回線(第2回線)を電源端変電所
Aから中間変電所Bに向けて零相電流02が、また、故
障回線を電源端変電所Aから故障点G2に向けて零相電流
01が、更に、中間変電所Bから故障点G2に向けて前記
零相電流02が流れる。このとき、標定装置FL1は零相
電流01及び02を計測する。
Now, in FIG. 5, when a one-line ground fault occurs at the point G 2 on the first line between the power source substation A and the intermediate substation B, as shown in the same figure, as shown in FIG. Zero-phase current 02 from the power line end substation A to the intermediate substation B, and zero-phase current from the power line substation A to the fault point G 2
01 , and further, the zero-phase current 02 flows from the intermediate substation B toward the fault point G 2 . At this time, the orientation device FL1 measures the zero-phase currents 01 and 02 .

そして、故障点の特定は、第6図の簡易等価回路により
算出することができる。同図に示すように、電源端変電
所Aと中間変電所Bとの距離を単位長1として中間変電
所Bから故障点G2までの距離(標定値)をlとし、線
路の零相インピーダンスを単位距離あたりとする
と、0102、lとの間には、 (1−l01(1+l02 なる関係があるので、標定値lは、 となり、故障点G2が標定できることになる。
Then, the specification of the failure point can be calculated by the simple equivalent circuit of FIG. As shown in the figure, the unit length is 1 as the distance between the power source end substation A and the intermediate substation B, and the distance from the intermediate substation B to the fault point G 2 (reference value) is l 2 and the zero phase of the line Assuming that the impedance is 0 per unit distance, there is a relation of 0 (1-l 2 ) 01 = 0 (1 + l 2 ) 02 between 01 , 02 , l 2 and 0 , so the orientation value l 2 is Therefore, the fault point G 2 can be located.

(発明が解決しようとする課題) ところが、第7図に示すように中間変電所Bと非電源端
変電所Cとの間の点G1において1線地絡故障が発生した
場合には、電源端変電所Aと中間変電所Bとの間におい
ては故障回線及び健全回線上を電源端変電所Aから中間
変電所Bに向けて零相電流01及び02がそれぞれ流
れ、また、中間変電所Bと非電源端変電所Cとの間にお
いては健全回線を中間変電所Bから非電源端変電所Cに
向けて零相電流02が流れ、更に、故障回線を中間変電
所Bから故障点G1に向けて零相電流01が、非電源端変
電所Cから故障点G1に向けて前記零相電流02が流れ
る。このとき、標定装置FL1は、前述した電源端変電所
Aと中間変電所Bとの間での地絡故障の場合と同様に電
源端変電所Aにおける零相電流01及び02を計測する
ことになる。
(Problems to be solved by the invention) However, as shown in FIG. 7, when a 1-line ground fault occurs at a point G 1 between the intermediate substation B and the non-power-source substation C, the Between the end substation A and the intermediate substation B, zero-phase currents 01 and 02 flow from the power end substation A to the intermediate substation B on the fault line and the healthy line, respectively, and the intermediate substation B And the non-power-source substation C, a zero-phase current 02 flows from the intermediate substation B to the non-power-end substation C in a sound line, and the fault line G from the intermediate substation B to the fault point G 1 in toward the zero-phase current 01, the zero-phase current 02 flows from the non-power end substation C to fault point G 1. At this time, the orienting device FL1 measures the zero-phase currents 01 and 02 at the power-source substation A as in the case of the ground fault between the power-source substation A and the intermediate substation B described above. Become.

ところが、標定装置FL1から見た系統の零相インピーダ
ンスは中間変電所Bにおいて系統が閉じられているた
め、故障回線、健全回線とも等しくなるので、常に、0102 となる。
However, since the zero-phase impedance of the system viewed from the locator FL1 is the same in the fault line and the healthy line because the system is closed in the intermediate substation B, 01 = 02 is always obtained.

したがって、故障点G1の位置を零相電流01及び02
基づき標定装置FL1により測定する場合には、非電源端
変電所Cと中間変電所Bとの間の距離を単位長1とし、
中間変電所Bから故障点G1までの距離をlとすると、 となり、常に、ほぼ100%の標定結果しか得られず、標
定装置FL1による故障点の標定ができないという不都合
があった。
Therefore, when the position of the fault point G 1 is measured by the locator FL1 based on the zero-phase currents 01 and 02 , the distance between the non-power end substation C and the intermediate substation B is set to unit length 1,
If the distance from the intermediate substation B to the fault point G 1 is l 1 , Therefore, there is always a problem that the orientation result of almost 100% is obtained, and the orientation of the failure point cannot be determined by the orientation device FL1.

本発明は上記問題点を解決するために提案されたもの
で、その目的とするところは、並行2回線系統の電源端
変電所Aと非電源端変電所Cとの間に中間変電所Bを有
する3端子系統において、中間変電所Bと非電源端変電
所Cとの間で1線地絡故障が発生しても、正確な故障点
の標定を行うことが可能な故障点標定方法を提供するこ
とにある。
The present invention has been proposed in order to solve the above problems, and an object thereof is to provide an intermediate substation B between a power source end substation A and a non-power end substation C of a parallel two-line system. Provided is a fault point locating method capable of accurately locating a fault point even if a one-line ground fault occurs between the intermediate substation B and the non-power source substation C in the three-terminal system To do.

(課題を解決するための手段) 上記課題を解決するため、本発明においては、非電源端
変電所において系統から零相電流及び零相電圧を取り込
み、前記零相電圧と系統の電源相電圧との比である零相
電圧発生率を算出し、この零相電圧発生率と、前記零相
電流と、予め整定された完全地絡時の零相電流である最
大零相電流とに基づき、 なる式により、非電源端変電所から中間変電所までの距
離と非電源端変電所から故障点までの距離との比を演算
して1線地絡故障点を特定することを特徴とする。
(Means for Solving the Problems) In order to solve the above problems, in the present invention, a zero-phase current and a zero-phase voltage are taken from a grid in a non-power-source substation, and the zero-phase voltage and the power-supply phase voltage of the grid Calculate the zero-phase voltage generation rate that is the ratio of, the zero-phase voltage generation rate, the zero-phase current, and based on the maximum zero-phase current that is the zero-phase current at the time of complete ground fault pre-set, The one-line ground fault point is specified by calculating the ratio of the distance from the non-power source substation to the intermediate substation and the distance from the non-power source substation to the fault point.

(作用) 系統の中間変電所と非電源端変電所との間で1線地絡故
障が発生した場合、故障回線については零相電流が中間
変電所から故障点に向けて流れ込むほか、健全回線を中
間変電所から非電源端変電所に向けて流れる零相電流が
前記非電源端変電所を介して故障点に流れ込む。なお、
地絡点においては零相電圧が発生するが、非電源端変電
所においてこの零相電圧を近似測定する。
(Operation) When a one-line ground fault occurs between the intermediate substation and the non-power-end substation of the grid, zero-phase current flows from the intermediate substation toward the fault point and a healthy line A zero-phase current flowing from the intermediate substation toward the non-power-source substation flows into the fault point through the non-power-end substation. In addition,
A zero-phase voltage is generated at the ground fault point, but this zero-phase voltage is approximately measured at the non-power source substation.

ここで、非電源端変電所に設けた故障点標定装置は前記
零相電流と、零相電圧とを取り込み、標定演算部におい
て前記零相電圧と電源相電圧との比である零相電圧発生
率を算出するとともに、この零相電圧発生率と前記零相
電流、及び系統における固有の値であって予め整定可能
な完全地絡時の故障電流である最大零相電流とから所定
の演算を行い、非電源端変電所から中間変電所までの距
離を単位長としたときの非電源端変電所から1線地絡故
障点までの距離を標定し、故障地点を特定する。
Here, the fault point locating device provided in the non-power source substation takes in the zero-phase current and the zero-phase voltage, and generates a zero-phase voltage which is a ratio of the zero-phase voltage and the power-source phase voltage in the orientation calculation section. The rate is calculated, and a predetermined calculation is performed from the zero-phase voltage generation rate, the zero-phase current, and the maximum zero-phase current which is a unique value in the system and which is a fault current at the time of complete ground fault that can be set in advance. Then, when the distance from the non-power-end substation to the intermediate substation is taken as the unit length, the distance from the non-power-end substation to the one-line ground fault point is located and the fault point is specified.

(実施例) 以下、図に沿って本発明の実施例を説明する。(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

まず、第1図は3端子送電系統を示す統計図である。同
図中、1は三相交流電源であり、この電源1は値がReで
ある中性点接地抵抗2により接地されている。この電源
1は電源端変電所Aに接続され、電源端変電所Aからは
2回線の送電線が引き出されている。送電線の終端には
非電源端変電所Cが設けられており、前記電源端変電所
Aとこの非電源端変電所Cとの間には、各回線の対応す
る相を短絡して2回線から他の回線を分岐するための中
間変電所Bが、前記2回線から短距離の地点に設定され
ている。また、非電源端変電所Cには、零相電流及び零
相電圧を検出することにより故障点を標定する故障点標
定装置FL2が設けられている。
First, FIG. 1 is a statistical diagram showing a three-terminal power transmission system. In the figure, 1 is a three-phase AC power supply, and this power supply 1 is grounded by a neutral point grounding resistance 2 whose value is Re. The power source 1 is connected to a power source end substation A, and two power transmission lines are drawn from the power source end substation A. A non-power-end substation C is provided at the end of the power transmission line. Between the power-source substation A and the non-power-end substation C, the corresponding phase of each line is short-circuited to form two lines. An intermediate substation B for branching the other line is set at a short distance from the two lines. Further, the non-power source substation C is provided with a fault point locating device FL2 for locating a fault point by detecting a zero-phase current and a zero-phase voltage.

いま、第1図に示す系統において、中間変電所Bと非電
源端変電所Cとの間の第1回線上の点G1において1線地
絡故障が発生したとする。すると、故障電流(零相電
流)は故障点G1から大地へ、大地から中性点接地抵抗2
を通って電源1の中性点へと流れる。このとき、故障電
流は中性点接地抵抗2を流れる電流NGRで近似され
る。
Now, in the system shown in FIG. 1 , it is assumed that a one-line ground fault occurs at a point G 1 on the first line between the intermediate substation B and the non-power end substation C. Then, the fault current (zero-phase current) is from the fault point G 1 to the ground, and from the ground to the neutral point ground resistance 2
Through to the neutral point of the power supply 1. At this time, the fault current is approximated by the current NGR flowing through the neutral point grounding resistor 2.

ここで、電源端変電所Aと中間変電所Bとの間の故障回
線(第1回線)を流れる零相電流を02、中間変電所B
と非電源端変電所Cとの間の故障回線を中間変電所Bか
ら故障点G1に向かって流れる零相電流を03、中間変電
所Bと非電源端変電所Cとの間の健全回線を流れた後、
故障回線上を非電源端変電所Cから故障点G1に向かって
流れる零相電流を04とする。また、非電源端変電所C
と中間変電所Bとの距離を単位長1としたときの非電源
端変電所Cから故障点までの距離(標定値)をl、系
統の単位距離あたりの零相インピーダンスをとす
る。
Here, the zero-phase current flowing through the fault line (first line) between the power source end substation A and the intermediate substation B is 02 , and the intermediate substation B is
The zero-phase current flowing from the intermediate substation B to the fault point G 1 is the fault line between the intermediate substation B and the non-power end substation C, and the healthy line between the intermediate substation B and the non-power end substation C is 03 . After flowing through
The zero-phase current flowing from the non-power source substation C toward the fault point G 1 on the fault line is designated as 04 . In addition, non-power end substation C
When the unit length is 1 and the distance between the intermediate substation B and the intermediate substation B is l 1 , the distance from the non-power end substation C to the fault point (reference value) is 1 , and the zero-phase impedance per unit distance of the system is 0 .

このとき、零相電流03は、中間変電所Bと故障点G1
の間の故障回線において電圧降下 (1−l03 を生じさせ、零相電流04は、健全回線の中間変電所B
と非電源端変電所Cとの間及び故障回線の非電源端変電
所Cと故障点G1との間において電圧降下 (1+l04 をそれぞれ生じさせるので、 |03|:|04|=(1+l):(1−l) となる。
At this time, the zero-phase current 03 causes a voltage drop (1-l 1) 0 · 03 in the fault line between the intermediate substation B and fault point G 1, the zero-phase current 04, the sound channel intermediate Substation B
Since causes each voltage drop (1 + l 1) 0 · 04 to between the and the non-power end substation C and during fault line with non-power end substation C and fault point G 1, | 03 |: | 04 | = (1 + l 1 ) :( 1−l 1 ).

すなわち、0304,lとの間には、 (1−l03(1+l04…(1) という関係が成立する。That is, the relationship of 0 (1-l 1 ) 03 = 0 (1 + l 1 ) 04 (1) is established between 03 , 04 , and l 1 .

一方、第1図から明らかなように、03040102NGR …(2) なる関係も成立する。On the other hand, as is clear from Fig. 1, the relationship of 03 + 04 = 01 + 02 = NGR (2) holds.

ところで、高抵抗接地系の系統では、中性点接地抵抗2
の値Reが送電線インピーダンスに比べて大きいので、1
線地絡故障時の故障電流NGRは故障点によらず一定値
とみなすことができるため、式(1),(2)により標
定値lは、 で表される。
By the way, in the high resistance grounding system, the neutral point grounding resistance 2
Since the value Re of is larger than the impedance of the transmission line, 1
Since the fault current NGR at the time of the line ground fault can be regarded as a constant value irrespective of the fault point, the orientation value l 1 is calculated by the equations (1) and (2) as follows. It is represented by.

したがって、系統の故障電流NGRを予め算定してお
き、この算定値を整定値としておけば、零相電流04
測定するだけで標定値lを求めることができ、非電源
端変電所Cから故障点G1までの距離を容易に標定できる
ことになる。
Therefore, if the fault current NGR of the system is calculated in advance and this calculated value is used as a set value, the reference value l 1 can be obtained only by measuring the zero-phase current 04. The distance to the fault point G 1 can be easily located.

第2図は、このことをグラフにより示したものであり、
横軸としてlを、縦軸として04の大きさI04をそれ
ぞれとって表してある。
Figure 2 shows this graphically.
The l 1 as a horizontal axis, are expressed as the longitudinal axis 04 of the magnitude I 04 the taking respectively.

さて、実際の系統に生ずる1線地絡故障では、故障点G1
には高インピーダンスの故障点抵抗が存在することがあ
る。これは、送電線が樹木等の高抵抗の物質で不完全地
絡するため、及び鉄塔にも数10オームの抵抗があるから
である。
Now, in the 1-wire ground fault that occurs in the actual system, the fault point G 1
May have a high impedance fault point resistance. This is because the transmission line is incompletely grounded with a high resistance material such as trees, and the steel tower also has a resistance of several tens of ohms.

この故障点抵抗は、中性点接地抵抗2の抵抗地絡Reと同
程度の大きさになることがあり、この場合の故障電流
NGR0304は完全地絡の場合よりも小さくなる。
This fault point resistance may be as large as the resistance ground fault Re of the neutral point grounding resistor 2, and the fault current in this case
NGR , 03 , and 04 are smaller than in the case of complete ground fault.

このような不完全地絡時の零相等価回路を第3図に示
す。ここで、は故障点の零相電圧を、は相電圧
を、Rfは故障点抵抗をそれぞれ表し、送電線インピーダ
ンスは中性点接地抵抗2(Re)に比べて小さいため無視
してある。この等価回路により、故障点G1の零相電圧
は、 =Re・NGR=−RfNGR …(4) となる。また、故障点G1に発生した零相電圧は、非
電源端変電所Cに設けた標定装置FL2により計測される
零相電圧にほぼ等しいとみなすことができる。したがっ
て、系統に不完全地絡が生じた場合、すなわち、故障点
抵抗Rfが存在する場合には、標定値lは、 となる。ここで、零相電圧、零相電流04は計測可
能量であり、Reは既知の一定量であるから、標定距離l
は、式(5)により求めることができる。
FIG. 3 shows a zero-phase equivalent circuit in such an incomplete ground fault. Here, 0 is the zero-phase voltage at the fault point, is the phase voltage, R f is the fault point resistance, and the transmission line impedance is smaller than the neutral point ground resistance 2 (Re), so it is ignored. . With this equivalent circuit, the zero-phase voltage at fault point G 1
0 is a 0 = Re · NGR = -R f · NGR ... (4). Further, the zero-phase voltage 0 generated at the fault point G 1 can be regarded as substantially equal to the zero-phase voltage measured by the locator FL2 provided in the non-power source substation C. Therefore, when an incomplete ground fault occurs in the system, that is, when the fault point resistance R f exists, the orientation value l 1 is Becomes Here, the zero-phase voltage 0 and the zero-phase current 04 are measurable amounts, and Re is a known fixed amount, so the orientation distance l
1 can be obtained by the equation (5).

更に、式(5)の分子及び分母を電源電圧で除算する
と、 となる。
Furthermore, when the numerator and denominator of equation (5) are divided by the power supply voltage, Becomes

ここで、故障点抵抗Rfが0のときの故障点G1を地絡する
最大零相電流をTNGRとし、零相電圧と電源相電圧
との比をη(零相電圧発生率)とすると、式(6)
は、 のように表すことができる。TNGR は、既知の予め整定できる系統において固有の一
定値であり、零相電圧発生率η及び零相電流04は計測
可能量であるので、標定距離lは式(5)の場合と同
様に、式(7)により求めることが可能となる。
Here, TNGR is the maximum zero-phase current that grounds the fault point G 1 when the fault point resistance R f is 0, and the ratio between the zero-phase voltage 0 and the power supply phase voltage is η (zero-phase voltage occurrence rate). Then, formula (6)
Is Can be expressed as TNGR is a constant value peculiar to a known pre- settable system, and the zero-phase voltage generation rate η and the zero-phase current 04 are measurable amounts. Therefore, the orientation distance l 1 is the same as in the case of the equation (5). , (7) can be obtained.

第4図は、式(7)に基づき実現した標定装置FL2のブ
ロック図である。図中、5は非電源端変電所Cに設けた
標定装置FL2の標定演算部であり、この標定演算部5
は、変流器7及び計器用変圧器8を有する計測入力部6
から零相電流04及び零相電圧を入力可能となって
いる。また、この標定演算部6には、予め最大零相電流
TNGRを整定する整定部9が接続されている。
FIG. 4 is a block diagram of the orientation device FL2 realized based on the equation (7). In the figure, 5 is the orientation calculation unit of the orientation device FL2 provided in the non-power source end substation C.
Is a measurement input section 6 having a current transformer 7 and an instrument transformer 8.
Therefore, the zero-phase current 04 and the zero-phase voltage 0 can be input. In addition, the orientation calculation unit 6 has a maximum zero-phase current in advance.
A settling unit 9 for setting TNGR is connected.

この第4図に示した標定装置FL2では、既に明らかなよ
うに、零相電流04、零相電圧及び完全地絡時の故
障電流である最大零相電流TNGRを標定演算部5に取り
込み、前記零相電圧を電源相電圧との比である零
相電圧発生率ηを算出するとともに、この零相電圧発生
率ηと、前記零相電流04及び最大零相電流TNGRとか
ら、式(7)により非電源端変電所Cから中間変電所B
までの距離を単位長としたときの非電源端変電所Cから
1線地絡故障点までの距離lを標定して出力し、故障
点G1を特定するものである。
In the orientation device FL2 shown in FIG. 4, as is already clear, the zero-phase current 04 , the zero-phase voltage 0, and the maximum zero-phase current TNGR , which is the fault current at the time of complete ground fault, are taken into the orientation calculation unit 5, The zero-phase voltage generation rate η which is a ratio of the zero-phase voltage 0 to the power-source phase voltage is calculated, and from the zero-phase voltage generation rate η and the zero-phase current 04 and the maximum zero-phase current TNGR , an expression ( 7) From substation C to intermediate substation B
The distance l 1 from the non-power source substation C to the one-line ground fault point when the distance to is the unit length is determined and output, and the fault point G 1 is specified.

(発明の効果) 以上詳述したように、本発明は、標定距離を演算するた
めに非電源端変電所に標定装置を設け、健全相の零相電
流と地絡故障点の零相電圧に等しい零相電圧とを前記標
定装置に取り込み、前記零相電圧と電源相電圧との比で
ある零相電圧発生率を算出するとともに、この零相電圧
発生率と、前記零相電流及び系統において固有の値とな
る完全地絡時の故障電流である最大零相電流とから故障
点の標定を行うこととしたので、並行2回線系統であっ
て、電源端変電所と非電源端変電所間に前記各回線の対
応する相を短絡して前記各回線から他の回線を分岐する
ための中間変電所を有する3端子送電系統においても、
精度の高い故障点の標定が可能になるという効果があ
る。
(Effects of the Invention) As described in detail above, the present invention provides an orientation device at a non-power-source substation to calculate an orientation distance, and provides a zero-phase current of a healthy phase and a zero-phase voltage of a ground fault point. Taking equal zero-phase voltage into the orientation device, and calculating the zero-phase voltage generation rate that is the ratio of the zero-phase voltage and the power-source phase voltage, the zero-phase voltage generation rate, the zero-phase current and in the system Since it was decided to locate the fault point from the maximum zero-phase current, which is the fault current at the time of complete ground fault, which is a unique value, it was a parallel two-line system and between the power source substation and the non-power source substation. In a three-terminal transmission system having an intermediate substation for short-circuiting the corresponding phase of each line to branch another line from each line,
This has the effect of enabling highly accurate fault location.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例を説明するための3端子送電系
統図、第2図は標定原理を示すグラフ、第3図は不完全
地絡時の零相等価回路図、第4図は本発明を実施するた
めの故障点標定装置のブロック図、第5図は従来技術を
説明するための送電系統図、第6図及び第7図は同じく
零相等価回路図である。 1……三相交流電源、2……中性点接地抵抗 FL2……故障点標定装置 5……標定演算部、6……計測入力部 9……整定部
FIG. 1 is a three-terminal power transmission system diagram for explaining an embodiment of the present invention, FIG. 2 is a graph showing the orientation principle, FIG. 3 is a zero-phase equivalent circuit diagram at the time of incomplete ground fault, and FIG. FIG. 5 is a block diagram of a fault point locating device for carrying out the present invention, FIG. 5 is a power transmission system diagram for explaining a conventional technique, and FIGS. 6 and 7 are also zero-phase equivalent circuit diagrams. 1 ... Three-phase AC power supply, 2 ... Neutral point grounding resistance FL2 ... Fault point locator 5 ... Orientation calculation section, 6 ... Measurement input section 9 ... Setting section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】並行2回線系統であって、電源端変電所と
非電源端変電所との間に、前記各回線の対応する相を短
絡して前記各回線から他の回線を分岐するための中間変
電所を有する3端子送電系統において、 非電源端変電所において系統から零相電流及び零相電圧
を取り込み、前記零相電圧と系統の電源相電圧との比で
ある零相電圧発生率を算出し、 この零相電圧発生率と、前記零相電流と、予め整定され
た完全地絡時の零相電流である最大零相電流とに基づ
き、 なる式により、非電源端変電所から中間変電所までの距
離と非電源端変電所から故障点までの距離との比を演算
して1線地絡故障点を特定することを特徴とする故障点
標定方法。
1. A parallel two-line system for short-circuiting a corresponding phase of each line between a power-source substation and a non-power-end substation to branch another line from each line. In a three-terminal power transmission system having an intermediate substation, the zero-phase current and the zero-phase voltage are taken from the system at the non-power-source substation, and the zero-phase voltage generation rate that is the ratio of the zero-phase voltage and the power-source phase voltage of the system. Based on this zero-phase voltage generation rate, the zero-phase current, and the maximum zero-phase current that is the zero-phase current at the time of a complete ground fault that has been set in advance, The fault characterized by calculating the ratio of the distance from the non-power-source substation to the intermediate substation and the distance from the non-power-source substation to the fault point by the formula Point orientation method.
JP3360088A 1988-02-16 1988-02-16 Fault location method Expired - Lifetime JPH0769380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3360088A JPH0769380B2 (en) 1988-02-16 1988-02-16 Fault location method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3360088A JPH0769380B2 (en) 1988-02-16 1988-02-16 Fault location method

Publications (2)

Publication Number Publication Date
JPH01207674A JPH01207674A (en) 1989-08-21
JPH0769380B2 true JPH0769380B2 (en) 1995-07-31

Family

ID=12390977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3360088A Expired - Lifetime JPH0769380B2 (en) 1988-02-16 1988-02-16 Fault location method

Country Status (1)

Country Link
JP (1) JPH0769380B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279349A (en) * 2011-07-13 2011-12-14 国网电力科学研究院 Low current grounding wire selection method based on residual current variable

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102236061B (en) * 2010-04-23 2014-04-02 安徽合肥瑞德尔电气自动化有限公司 Method for verifying single-phase grounded fault phase of small current grounding system
CN104090209A (en) * 2014-07-02 2014-10-08 国家电网公司 Bus protection method based on parameter identification
CN104062551B (en) * 2014-07-04 2016-08-17 国家电网公司 A kind of non-same famous prime minister's cross-line earth fault method for rapidly positioning of double-circuit line
CN105445614B (en) * 2015-11-06 2018-06-22 深圳供电局有限公司 A kind of method and system of the both-end Travelling Wave Fault Location based on wavelet analysis
CN105606956B (en) * 2015-12-21 2018-02-23 中交机电工程局有限公司 Novel fault register guide in heavy current grounding system
CN105738762A (en) * 2016-02-01 2016-07-06 国网安徽省电力公司 Fault single-end locating method based on Thompson theory arc model

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279349A (en) * 2011-07-13 2011-12-14 国网电力科学研究院 Low current grounding wire selection method based on residual current variable

Also Published As

Publication number Publication date
JPH01207674A (en) 1989-08-21

Similar Documents

Publication Publication Date Title
DE3687451T2 (en) METHOD FOR DETECTING A FAULT IN A POWER PIPE AND DEVICE FOR IMPLEMENTING THE METHOD.
DE3133019C2 (en)
CN101344567B (en) Method for determining location of phase-to-earth fault
US6636823B1 (en) Method and apparatus for motor fault diagnosis
JPH0769380B2 (en) Fault location method
JPH0543447B2 (en)
EP0239268A2 (en) Fault point locating method, fault point resistance measuring method, and impedance to fault point measuring method, and apparatus therefor
JPH0373825B2 (en)
JPH0758308B2 (en) Fault location method for 3-terminal transmission system
JPH10132890A (en) Method and device for locating failure point
JPH0619400B2 (en) Distribution line artificial ground fault tester
JPH08122395A (en) Method for locating fault on multiterminal transmission line
JPH065255B2 (en) Fault location method for power transmission system
JP3319517B2 (en) Fault location device
JPH09304453A (en) Simple measuring equipment and method for impedance of low voltage distribution line
JPH0235952B2 (en) KOSHOTENHYOTEIHOSHIKI
JP2715090B2 (en) Fault location device
JP2003021659A (en) Ground orientation method of looped transmission line
JPH0473755B2 (en)
JPH034940Y2 (en)
JP2895994B2 (en) Fault location method for three-phase cable
JP2612962B2 (en) Insulation measurement error compensator under cable hot line
SU815683A1 (en) Method of determining short-circuiting circuit parameters
JPS62207972A (en) Searching system for fault of distribution line
JPS6340871A (en) Fault point probe system for distribution line