JPH076936B2 - Defect inspection method - Google Patents

Defect inspection method

Info

Publication number
JPH076936B2
JPH076936B2 JP24742886A JP24742886A JPH076936B2 JP H076936 B2 JPH076936 B2 JP H076936B2 JP 24742886 A JP24742886 A JP 24742886A JP 24742886 A JP24742886 A JP 24742886A JP H076936 B2 JPH076936 B2 JP H076936B2
Authority
JP
Japan
Prior art keywords
potential difference
crack
terminals
terminal
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24742886A
Other languages
Japanese (ja)
Other versions
JPS63101742A (en
Inventor
眞琴 林
正広 大高
明輔 成瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24742886A priority Critical patent/JPH076936B2/en
Priority to EP87906780A priority patent/EP0289615B1/en
Priority to PCT/JP1987/000789 priority patent/WO1988002857A1/en
Priority to US07/235,683 priority patent/US4914378A/en
Priority to DE3751702T priority patent/DE3751702T2/en
Publication of JPS63101742A publication Critical patent/JPS63101742A/en
Publication of JPH076936B2 publication Critical patent/JPH076936B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は金属構造部材に発生したき裂の形状を検出する
き裂検出技術に係り、特に配管内面の表面き裂の形状を
管外面からオンラインで精度よく検出するのに好適な装
置に関する。
Description: TECHNICAL FIELD The present invention relates to a crack detection technique for detecting the shape of a crack generated in a metal structural member, and in particular, the shape of a surface crack on the inner surface of a pipe from the outer surface of the pipe. The present invention relates to a device suitable for accurate detection online.

〔従来技術〕[Prior art]

従来のき裂検出方法としては超音波深傷法がある。超音
波深傷法にも種々あり、端部ピークエコー法、開口合成
法、ホログラフイ法などがある。それぞれ特徴を有して
いるが、き裂の検出で特に重要なき裂先端からのエコー
が得られないことがあり、その場合き裂の形状を判定で
きないという欠点があつた。また、運転中は配管周辺に
断熱材が巻いてあるため探触子を走査することができな
いため検出することは不可能である。本発明に関連した
ポテンシヤル法によるき裂形状検出については、特開昭
58−215545き裂検出装置(三菱重工業)があるが、き裂
の有無が定性的に判定できるだけで形状を検出すること
は不可能である。
As a conventional crack detection method, there is an ultrasonic deep scratch method. There are various ultrasonic deep wound methods, such as an edge peak echo method, an aperture synthesis method, and a holography method. Although each has its own characteristics, there are some cases in which an especially important echo from the crack tip cannot be obtained in crack detection, and in that case, the shape of the crack cannot be determined. In addition, since the heat insulating material is wound around the pipe during operation, the probe cannot be scanned, and therefore cannot be detected. The crack shape detection by the potential method related to the present invention is described in
58-215545 There is a crack detector (Mitsubishi Heavy Industries), but it is not possible to detect the shape because it can qualitatively judge the presence of cracks.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上記従来技術は、超音波法の場合き裂先端近傍からの反
射エコーが得られない、あるいは運転中は探触子を設置
できないという物理的な問題があり、ポテンシャル法の
場合、き裂周辺に生じる特異な電場の乱れや給電端子周
辺での電位降下の影響を正確に把握していなかったため
に、き裂形状を精度良く検出することができなかった。
The above-mentioned conventional technique has a physical problem that a reflection echo from the vicinity of the crack tip cannot be obtained in the case of the ultrasonic method, or the probe cannot be installed during operation, and in the case of the potential method, the probe is not surrounded by the crack. It was not possible to detect the crack shape with high accuracy because the influence of the turbulence of the peculiar electric field that occurs and the potential drop around the power supply terminal was not accurately grasped.

本発明の目的は、ポテンシャル法を用いて、配管内面に
生じた欠陥の位置と形状を精度良く検出する欠陥検査方
法を提供することにある。
An object of the present invention is to provide a defect inspection method that uses the potential method to accurately detect the position and shape of a defect generated on the inner surface of a pipe.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、配管表面に相互に離間した1組の給電端子
対により直流電流を供給し、該給電端子対の間において
1組又は複数組の電位差測定端子対により電位差を測定
して、該電位差から欠陥を検出する方法において、前記
配管表面に給電端子と電位差測定端子を兼用する端子を
マトリクス状に配置し、配管の軸方向に並んだ1組の端
子列と、これに対して180度離れて前記端子列に向い合
う1組の端子列との間に直流電流を供給し、該直流電流
を供給する端子間に配置され周方向に隣合う端子間に電
位差を測定し、該電位差の分布から前記配管の欠陥の位
置と形状を検出することを特徴とする欠陥検査方法を使
用することにより達成される。
The above-mentioned object is to supply a direct current to a surface of a pipe by a pair of power supply terminal pairs separated from each other, measure a potential difference between the power supply terminal pairs by one or a plurality of potential difference measurement terminal pairs, In the method for detecting a defect from the above, terminals having a power supply terminal and a potential difference measurement terminal are arranged in a matrix on the surface of the pipe, and a set of terminal rows arranged in the axial direction of the pipe and 180 degrees apart from this. A direct current between the pair of terminal rows facing the terminal row, and measuring the potential difference between adjacent terminals arranged in the circumferential direction between the terminals supplying the direct current, and the distribution of the potential difference. To detect the position and shape of the defect in the pipe.

〔作用〕[Action]

本発明によれば、配管表面にマトリクス状に配置した端
子のうち、配管の軸方向に並んだ1組の端子列と、これ
に対して180度離れて前記端子列に向い合う1組の端子
列との間に直流電流を供給し、該直流電流を供給する端
子間に配置され周方向に隣合う端子間の電位差を測定す
ることにより、給電端子周辺での電位降下に伴う不均一
電場の影響を低減できるので、均一電場のもとで欠陥の
位置と形状を精度良く検出することができる。
According to the present invention, among the terminals arranged in a matrix on the surface of the pipe, one set of terminals arranged in the axial direction of the pipe and one set of terminals facing the terminal row 180 degrees apart from this By supplying a direct current between the column and the terminal, which is arranged between the terminals for supplying the direct current and measuring the potential difference between adjacent terminals in the circumferential direction, a non-uniform electric field due to the potential drop around the power supply terminal is generated. Since the influence can be reduced, the position and shape of the defect can be accurately detected under the uniform electric field.

〔発明の実施例〕Example of Invention

以下、本発明の一実施例を説明する。第1図は本発明の
配管のき裂監視装置の一実施例を示すもので、第2図は
配管のき裂監視装置の制御・測定・演算システムの系統
図である。3はコンピユータ、4はデータやプログラム
を記憶させるためのハードデイスク等の外部記憶装置、
2はCRTである。コンピユータ3はインターフエース5
やGP−IBインターフエース6を介して計測装置を制御し
たり、測定値を取り込んで処理し、結果を出力する。第
1図において配管1の、特に溶接部19の周辺には軸方
向、および周方向共に等間隔で直流電流供給用と電位差
測定用を兼用した端子20がスポツト溶接等により取り付
けてある。端子20は通常は耐酸化性材料であるSUS304や
SUS316、あるいはNi等の細線を使用する。端子20は第1
図には示してないが、保温材の内側に設けた通路を通し
て保温材の外に導き、1本のケーブル21に纒めて測定装
置に接続される。この場合、端子20は配線途中で配管1
や端子同士とは絶縁されていなければならないので、短
い碍子管の仲を通すとか、端子表面を絶縁物で被覆しな
ければならない。端子20を保温材の外側で束ねて1本の
ケーブル内に収めても良いが、保温材の外側では温度が
低いので、通常の多芯ケーブルと接続した方が良い。な
お、端子20は全て給電端子切り換え用マルチプレクサー
9と2個の電位差測定端子切り換え用マルチプレクサー
10,11の3個のマルチプレクサーに接続される。
An embodiment of the present invention will be described below. FIG. 1 shows an embodiment of a pipe crack monitoring device of the present invention, and FIG. 2 is a system diagram of a control / measurement / arithmetic system of the pipe crack monitoring device. 3 is a computer, 4 is an external storage device such as a hard disk for storing data and programs,
2 is a CRT. Computer 3 is Interface 5
Controls the measurement device via the or GP-IB interface 6 or imports and processes measured values and outputs the results. In FIG. 1, terminals 20 for supplying a DC current and for measuring a potential difference are attached by spot welding or the like at equal intervals both in the axial direction and in the circumferential direction of the pipe 1, particularly around the welded portion 19. Terminal 20 is usually made of SUS304, which is an oxidation resistant material, or
Use a fine wire such as SUS316 or Ni. Terminal 20 is the first
Although not shown in the figure, it is guided to the outside of the heat insulating material through a passage provided inside the heat insulating material, and is wound on one cable 21 and connected to the measuring device. In this case, terminal 20 is pipe 1
Since the terminals and the terminals must be insulated from each other, it is necessary to pass them through a short insulator tube or to cover the surface of the terminals with an insulator. The terminals 20 may be bundled on the outside of the heat insulating material and stored in one cable, but since the temperature is low on the outside of the heat insulating material, it is better to connect with a normal multicore cable. The terminals 20 are all power supply terminal switching multiplexers 9 and two potential difference measurement terminal switching multiplexers.
It is connected to three multiplexers 10 and 11.

複数の安定化直流電源7から供給される直流電流はコン
ピュータ3により、インターフエース5を介して制御さ
れる電流極性変換装置8により、その極性を切り換えら
れてマルチプレクサー9に供給されて、更に電流供給先
が振り分けられて特定の端子20に電流が供給される。多
数の端子20の間の電位差は1台、または2台のマルチプ
レクサー10,11により測定する端子を切り換えられて微
小電位差計12に接続されて測定される。測定された電位
差はGP−IBインターフエース6を介してコンピユータ3
に転送される。コンピユータ3は後述の方法により配管
の軸方向、周方向の電位差分布よりき裂の形状を判定す
る。ここで、マルチプレクサー9,10,11および微小電位
差計12はGP−IBインターフエース6あるいはインターフ
エース5を介してコンピュータ3により制御されるもの
である。
The DC currents supplied from the plurality of stabilized DC power supplies 7 are switched in polarity by the current polarity converter 8 controlled by the computer 3 through the interface 5 and supplied to the multiplexer 9, and further currents are supplied. The supply destination is distributed and the current is supplied to the specific terminal 20. The potential difference between a large number of terminals 20 is measured by switching the terminals to be measured by one or two multiplexers 10 and 11 and connecting to the minute potentiometer 12. The measured potential difference is transferred to the computer 3 via the GP-IB interface 6.
Transferred to. The computer 3 determines the shape of the crack from the potential difference distribution in the axial direction and the circumferential direction of the pipe by the method described later. Here, the multiplexers 9, 10, 11 and the minute potentiometer 12 are controlled by the computer 3 via the GP-IB interface 6 or the interface 5.

第3図には配管外面における端子20の配置の展開図を、
第4図には軸方向断面を示す。一般に原子カプラントや
化学プラントにおける欠陥は応力腐食割れや腐食疲労に
よるものである。応力腐食割れは溶接部近傍の引張残留
応力が存在するところに発生し、腐食疲労は残留応力に
加えて形状が不連続である溶接金属のルート部に発生す
る。そのため、端子20の配置としては溶接部近傍という
ことになる。応力腐食割れは溶接熱影響部の周方向に発
生するが、稀に周方向に対して傾いて発生することがあ
る。本発明のポテンシヤル法による欠陥形状検出におい
てはできれば欠陥に対して垂直に電場を形成し、欠陥を
はさんで電位差分布を測定しなければならない。しか
し、オンラインで端子を固定して電位差分布を測定する
場合、き裂がどの方向に発生するかは予測できないの
で、端子20の配置としては周方向および軸方向の両方向
の電位差分布を測定できるようなものとしなければなら
ない。その1つの方法が第3図,第4図に示した端子配
置である。第3図では端子の位置だけが示してある。前
述のようにき裂は溶接熱影響部付近に発生するので、こ
の領域をカバーするように端子20を軸方向に等間隔で配
置する。同じように周方向にも全周に渡つて端子20を等
間隔で配置する。即ち、端子20をマトリクス状に配置す
る。このとき軸方向の配置においては両端の端子は給電
端子としてしか使用しないので、電場を均一にして測定
するために隣の端子とは配管の板厚以上の間隔を置いて
設置した方が良い。第4図では溶接金属19の上にも端子
20が配置してあるが、溶接金属19にき裂が発生すること
はないので、ここには配置しなくとも良い。また、原子
力プラントの配管の場合、定期検査時に超音波探傷でき
裂が発見されても、き裂が小さい場合には補修されるこ
となく、継続して使用されることがある。破壊力学的手
法によりき裂の進展予測がなされており、き裂が大きく
進展することはないが、しかし、より安全性を高めると
いうことで本方法によりき裂を監視して行く場合にはき
裂の周辺にだけ端子20を配置すれば良い。
FIG. 3 is a development view of the arrangement of the terminals 20 on the outer surface of the pipe,
FIG. 4 shows an axial cross section. Generally, defects in atomic plants and chemical plants are due to stress corrosion cracking and corrosion fatigue. Stress corrosion cracking occurs where there is tensile residual stress near the weld, and corrosion fatigue occurs in the root of the weld metal where the shape is discontinuous in addition to residual stress. Therefore, the arrangement of the terminal 20 is near the welded portion. Although stress corrosion cracking occurs in the circumferential direction of the heat-affected zone of welding, it may occasionally occur inclining to the circumferential direction. In the defect shape detection by the potential method of the present invention, it is necessary to form an electric field perpendicular to the defect and measure the potential difference distribution across the defect. However, when fixing the terminals online and measuring the potential difference distribution, it is not possible to predict in which direction the crack will occur, so the terminal 20 can be arranged to measure the potential difference distribution in both the circumferential and axial directions. Must be One of the methods is the terminal arrangement shown in FIGS. Only the positions of the terminals are shown in FIG. As described above, cracks are generated in the vicinity of the heat-affected zone of welding. Therefore, the terminals 20 are arranged at equal intervals in the axial direction so as to cover this area. Similarly, the terminals 20 are arranged at equal intervals over the entire circumference in the circumferential direction. That is, the terminals 20 are arranged in a matrix. At this time, in the axial arrangement, the terminals at both ends are used only as power supply terminals, and therefore, in order to make the electric field uniform, it is better to install the terminals at a distance equal to or more than the plate thickness of the pipe from the adjacent terminals. In Fig. 4, the terminal is also on the weld metal 19.
Although 20 is arranged, it does not have to be arranged here because a crack does not occur in the weld metal 19. Further, in the case of piping of a nuclear power plant, even if a crack is found by ultrasonic flaw detection during a periodic inspection, if the crack is small, it may be continuously used without being repaired. The crack growth is predicted by the fracture mechanics method, and the crack does not grow significantly.However, the crack is predicted to be more safety in the case of monitoring the crack by this method. It suffices to dispose the terminal 20 only around the crack.

電位差分布測定のフローチヤートを第5図に示す。初め
に、マルチプレクサー9を制御することにより配管の軸
方向の両端の給電専用の端子に直流電流を供給し、配管
の軸方向の電場を形成する。次に、多数の端子間の電位
差の測定である。まず、軸方向に隣り合つた端子間の電
位差をマルチプレクサー10,11により端子を切り換えて
測定する。次に周方向に隣り合つた端子間の電位差を測
定する。軸方向と周方向の電位差を1回測定すると、電
流極性変換装置8により直流電流の極性を切り換えて、
再び軸方向と周方向の電位差を測定する。次に、給電用
のマルチプレクサー9を切り換えて周方向に電場を形成
する。例えば、第6図に周方向の一断面における端子配
列を示したが、初めに180度向いあつたAとCの端子か
ら直流電流を供給する。給電端子の周辺では電位低下が
顕著で、電場が均一でないので、電位差を測定しても意
味がない。そのため、電位差としては第6図に示す例え
ば13 14 15 16 17 18の端子間の電位
差を測定する。次にA,Cの両端子付近の電位差を測定す
るために、A,Cの端子とは90度離れたBとDの端子から
直流電流を供給し、11 12 19 20の端子間の
電位差を測定する。この場合にも供給する直流電流の極
性を変えて、+の電流を流したとき、−の電流を流した
ときの2回測定したものの振幅で評価する。このように
給電端子を切り換えることにより均一な電場における周
方向全体の電位差分布を測定することが可能である。測
定された電位差はGP−IBインターフエース6を通じてコ
ンピユータ3に転送され、データ処理される。電位差分
布測定結果に基づき、き裂の形状を測定し、判定された
き裂の形状をコンピュータ3のCRT画面上に表示すると
共に、プリンタに結果、およびき裂形状のハードコピー
を出力させる。
The flow chart for measuring the potential difference distribution is shown in FIG. First, by controlling the multiplexer 9, a direct current is supplied to the terminals dedicated to power supply at both ends of the pipe in the axial direction to form an electric field in the axial direction of the pipe. Next is the measurement of the potential difference between a large number of terminals. First, the potential difference between the terminals adjacent in the axial direction is measured by switching the terminals by the multiplexers 10 and 11. Next, the potential difference between the terminals adjacent to each other in the circumferential direction is measured. When the potential difference between the axial direction and the circumferential direction is measured once, the polarity of the direct current is switched by the current polarity conversion device 8,
The potential difference between the axial direction and the circumferential direction is measured again. Next, the power supply multiplexer 9 is switched to form an electric field in the circumferential direction. For example, FIG. 6 shows a terminal arrangement in one cross section in the circumferential direction. First, a direct current is supplied from the terminals A and C facing 180 degrees. The potential drop is significant around the power supply terminal, and the electric field is not uniform, so there is no point in measuring the potential difference. Therefore, the potential difference between the terminals 13 14 15 16 17 18 shown in FIG. 6 is measured. Next, in order to measure the potential difference near both terminals A and C, a DC current is supplied from terminals B and D 90 degrees apart from the terminals A and C, and the potential difference between the terminals 11 12 19 20 is measured. taking measurement. Also in this case, the polarity of the direct current to be supplied is changed, and when the positive current is passed and the negative current is passed, the amplitude of two measurements is evaluated. By switching the power supply terminals in this way, it is possible to measure the potential difference distribution in the entire circumferential direction in a uniform electric field. The measured potential difference is transferred to the computer 3 through the GP-IB interface 6 and processed as data. The crack shape is measured based on the potential difference distribution measurement result, the judged crack shape is displayed on the CRT screen of the computer 3, and the printer is made to output the result and a hard copy of the crack shape.

軸方向と周方向の2方向に電流を流す理由は前述した通
りであるが、以下に詳細を記す。今、き裂が配管の軸方
向に平行に入つている場合、軸方向に電流を流しても電
場は軸方向であるので電場はき裂によつて乱されること
はないので、測定される電位差分布はき裂がない場合と
全く同じとなり、き裂はないと判定されてしまうことに
なる。ところが、そのような配管の軸方向のき裂に対し
て周方向に電流を流すと、周方向電場はき裂によつて大
きく乱されるため電位差分布が生じ、その電位差分布の
乱れ方からき裂の大きさを判定することができる。も
し、き裂が配管の軸方向、および周方向の両方向に対し
て傾いて発生した場合には両方向から電流を流して測定
された電位差分布からその傾きを含めて形状を判定する
ことが可能である。
The reason why the current is passed in the two directions of the axial direction and the circumferential direction is as described above, but the details will be described below. Now, if the crack enters parallel to the axial direction of the pipe, the electric field is not disturbed by the crack because the electric field is in the axial direction even if a current is passed in the axial direction, so it is measured. The potential difference distribution is exactly the same as when there is no crack, and it is determined that there is no crack. However, when an electric current is applied in the circumferential direction to an axial crack in such a pipe, the circumferential electric field is greatly disturbed by the crack and a potential difference distribution is generated. The size of can be determined. If the cracks are inclined with respect to both the axial direction and the circumferential direction of the pipe, it is possible to determine the shape including the inclination from the potential difference distribution measured by passing current from both directions. is there.

今、軸方向に電流を流しているとき、き裂が配管に発生
していなければ、測定される電位差は軸方向の端子間の
電位差は一定であり、周方向の端子間の電位差は零であ
る。き裂が周方向に発生すると電流はき裂の先端を迂回
して流れるので、配管の外側の方では電流密度が高くな
り、き裂をはさむ軸方向の端子間の電位差はき裂のない
所の端子間の電位差よりも大きい値を取るようになる。
同時にき裂に平行な方向には電位分布が生じるので、周
方向の端子間の電位差は零より大きくなる。従つて、単
純にはき裂がないところの電位差を基準電位差として電
位差比が1.0よりも大きくなつた端子間の間にき裂があ
ると判断され、き裂の発生位置と形状が電位差分布から
判定することが可能である。また、周方向の電位差が零
より大きい端子間にほぼ平行にき裂があると判断され、
軸方向の隣の端子間の電位差との比較により、上流側の
周方向の端子間の電位差が大きければ、下流側にき裂が
あると判断され、下流側の端子間の電位差が大きけれ
ば、上流側にき裂があると判断される。ただし、もしき
裂が軸方向に対して傾いている場合には電位差比が1よ
りも大きくなつている端子間の中央を結んだ所にき裂が
あると判断される。第7図にき裂位置の判定方法を示
す。第7図で○印は端子20の位置を示し、実線はき裂位
置を示している。軸方向に電場を加えて電位差分布を測
定すると、き裂をはさむ端子間の電位差が最も大きくな
る。その端子間のどの位置にき裂があるかは不明である
から、仮にその中央にあるとすると、□印で示した位置
となる。次に、周方向に電場を加えると同様に◇印の位
置にあると判定される。□印と◇印の両方を結んだ結果
を破線で示した。第7図では2例を示したが、いずれの
場合も実際のき裂位置と電位差分布から判定されるき裂
位置は大略一致する。
Now, when a current is flowing in the axial direction, if there is no crack in the pipe, the measured potential difference is that the potential difference between the terminals in the axial direction is constant, and the potential difference between the terminals in the circumferential direction is zero. is there. When a crack is generated in the circumferential direction, the current flows around the tip of the crack, so the current density becomes higher on the outside of the pipe, and the potential difference between the terminals in the axial direction that sandwiches the crack is where there is no crack. The value becomes larger than the potential difference between the terminals.
At the same time, a potential distribution is generated in the direction parallel to the crack, so that the potential difference between the terminals in the circumferential direction becomes larger than zero. Therefore, it is determined that there is a crack between the terminals whose potential difference ratio is greater than 1.0, using the potential difference where there is no crack as the reference potential difference, and the location and shape of the crack are determined from the potential difference distribution. It is possible to judge. Also, it was determined that there were cracks in parallel between the terminals where the potential difference in the circumferential direction was greater than zero,
By comparison with the potential difference between the adjacent terminals in the axial direction, if the potential difference between the terminals in the circumferential direction on the upstream side is large, it is determined that there is a crack on the downstream side, and if the potential difference between the terminals on the downstream side is large, It is judged that there is a crack on the upstream side. However, if the crack is tilted with respect to the axial direction, it is determined that the crack is present at the position connecting the centers of the terminals where the potential difference ratio is greater than 1. FIG. 7 shows a method of determining the crack position. In FIG. 7, the mark ○ indicates the position of the terminal 20, and the solid line indicates the crack position. When the potential difference distribution is measured by applying an electric field in the axial direction, the potential difference between the terminals that sandwich the crack becomes the largest. Since it is unclear in which position between the terminals the crack exists, if it were in the center, it would be the position indicated by the □ mark. Next, when an electric field is applied in the circumferential direction, it is determined that it is at the position marked with ⋄. The dashed line shows the result of connecting both the □ and ◇ marks. Although two examples are shown in FIG. 7, in both cases, the actual crack position and the crack position determined from the potential difference distribution are substantially the same.

き裂に沿つた電位差分布からのき裂形状決定方法を以下
に示す。表面き裂形状決定法のフローチヤートを第8図
に示す。予め、汎用大型計算機により各種アスペクト
比、例えば、a/c=1.0,0.5,0.25,0.1のき裂について電
場を解析し、き裂と反対側の表面のき裂面に垂直な方向
の電位差分布をコンピユータ3の記憶装置、または外部
記憶装置4に記憶させておく。記憶させる電位差分布の
一例としてアスペクト比a/c=0.5の各き裂深さに対する
電位差分布を第9図に示す。第8図は板厚t=20mmの平
板の中央にき裂がある場合についてFEMによる電場を解
析して得られたものである。板厚tで基準化したき裂の
深さa/tはき裂中央の最深点で0,0.125,0.25,0.375,0.5,
0.625および0.75である。き裂がない(a/t=0)の場合
には電位差はき裂からの距離zに比例する。一方、き裂
がある場合にはき裂から離れるにつれて電位差は段々大
きくなり、ある程度離れると電位差増分はほぼ一定であ
る。これらの電位差分布はn次近似してコンピュータ
3、または外部記憶装置4に記憶させておく。き裂形状
決定に当たつては最初に測定されたき裂周辺の電位差分
布から表面き裂長さ2c*と最大電位差比V/V0maxを求め
る。一例として第10図にFEMで電場を解析して得られた
き裂周辺での電位差比分布を示す。き裂のアスペクト比
はa/c=0.25、最大き裂深さはa=12.5mm(a/t=0.62
5)である。き裂がないところでは電位差はほぼ一定で
あり、そのような箇所の電位差を基準電位差として電位
差比分布を示してある。き裂のあるところでは電位差は
大きくなつており、この部分の電位差分布をn次近似す
る。近似曲線からき裂の最深点に対応する最大の電位差
比V/V0maxを決定する。第10図の場合にはV/V0max=1.30
が得られた。き裂と反対側の表面における電位差分布に
おいてはき裂先端近傍では緩やかに電位差が増えるた
め、き裂の先端を特定することは困難である。種々のア
スペクト比のき裂について電位差分布とき裂先端位置と
の関係を調べた結果、最大電位差比V/V0maxのピークの
約0.15付近にき裂先端があることが分かつた。第10図で
はV/V0max=1.30であるので、V/V0=1+0.3×0.15=1.
045と、4次近似曲線との交点から表面におけるき裂長
さ2c*を求めると、2c=110mが得られる。
The method for determining the crack shape from the potential difference distribution along the crack is shown below. The flow chart of the surface crack shape determination method is shown in FIG. A general-purpose large-scale computer was used in advance to analyze the electric field for cracks with various aspect ratios, for example, a / c = 1.0,0.5,0.25,0.1, and the potential difference distribution in the direction perpendicular to the crack surface on the surface opposite to the crack. Is stored in the storage device of the computer 3 or the external storage device 4. As an example of the potential difference distribution to be stored, FIG. 9 shows the potential difference distribution for each crack depth with an aspect ratio a / c = 0.5. Fig. 8 is obtained by analyzing the electric field by FEM in the case where there is a crack at the center of a flat plate with a plate thickness t = 20 mm. The crack depth a / t normalized by the plate thickness t is 0,0.125,0.25,0.375,0.5, at the deepest point in the center of the crack.
0.625 and 0.75. When there is no crack (a / t = 0), the potential difference is proportional to the distance z from the crack. On the other hand, when there is a crack, the potential difference gradually increases as the distance from the crack increases, and the potential difference increment is almost constant when the distance increases to some extent. These potential difference distributions are approximated to the nth order and stored in the computer 3 or the external storage device 4. In determining the crack shape, the surface crack length 2c * and the maximum potential difference ratio V / V 0 max are determined from the potential difference distribution around the crack measured first. As an example, Fig. 10 shows the potential difference ratio distribution around the crack obtained by analyzing the electric field by FEM. The aspect ratio of the crack is a / c = 0.25, and the maximum crack depth is a = 12.5mm (a / t = 0.62)
5). The potential difference is almost constant where there is no crack, and the potential difference ratio distribution is shown with the potential difference at such a location as the reference potential difference. The potential difference increases at the cracked portion, and the potential difference distribution in this portion is approximated to the nth order. From the approximate curve, the maximum potential difference ratio V / V 0 max corresponding to the deepest point of the crack is determined. In the case of FIG. 10, V / V 0 max = 1.30
was gotten. In the potential difference distribution on the surface opposite to the crack, it is difficult to identify the tip of the crack because the potential difference gradually increases near the tip of the crack. As a result of investigating the relationship between the potential difference distribution and the crack tip position for cracks with various aspect ratios, it was found that the crack tip was located at about 0.15 of the peak of the maximum potential difference ratio V / V 0 max. In FIG. 10, V / V 0 max = 1.30, so V / V 0 = 1 + 0.3 × 0.15 = 1.
When the crack length 2c * on the surface is obtained from the intersection of 045 and the fourth-order approximation curve, 2c = 110 m is obtained.

次に、第9図に示した電位差分布から各種アスペクト比
a/cのき裂に対する電位差比V/V0とき裂深さa/tの関係を
作成するために電位差比V/V0とアスペクト比a/cの関係
を作成する。この場合、FEMによる電場解析では板厚t
=20mmの平板について解析しているので、測定端子間距
離dに対応した測定位置d*における電位差比V/V0とア
スペクト比a/cの関係を作成しなければならない。従つ
て、被測定部材の板厚t*で補正されたd*=d×20/t
*の位置の各き裂深さa/tに対する電位差を求めて電位
差比V/V0とアスペクト比a/cの関係を第11図のように作
成する。電位差比V/V0とアスペクト比a/cの関係は各き
裂深さa/t毎にn次近似してコンピュータ3の記憶装置
4に記憶させる。次に、電位差比V/V0とアスペクト比a/
cの関係を用いてアスペクト比a/c=0.5に対する電位差
比V/V0とき裂深さa/tの関係のマスターカーブを第12図
のように作成する。この場合にも電位差比V/V0とき裂深
さa/tの関係はn次近似、例えば、5次近似する。この
マスターカーブに電位差分布を4次近似して得られた最
大電位差比V/V0maxを代入してき裂深さa*を求める。
次で、板厚補正した表面き裂長さ2c*(=2c×20/t*)
によりき裂のアスペクト比a*/c*を求め、マスターカ
ーブのアスペクト比a/cと比較する。両者が一致してい
なければ、改めて電位差比V/V0とアスペクト比a/cの関
係を用いてアスペクト比a/c=a*/c*に対する電位差
比V/V0とき裂深さa/tの関係のマスターカーブを作成
し、最大電位差比V/V0maxを代入してき裂深さa*を求
める。この作業を両者が一致するまで、例えば、a/cと
a*/c*の差が0.01以下となるまで繰り返す。一致した
ときのアスペクト比に対する電位差比V/V0とき裂深さa/
tの関係のマスターカーブに各測定位置における電位差
比を代入することによりき裂全体の形状を決定するもの
である。この場合電位差比は各測定位置における電位差
比を代入しても良いし、n次近似した電位差比分布を代
入しても良い。
Next, from the potential difference distribution shown in FIG.
In order to create the relationship between the potential difference ratio V / V 0 for a / c crack and the crack depth a / t, the relationship between the potential difference ratio V / V 0 and the aspect ratio a / c is created. In this case, the plate thickness t in the electric field analysis by FEM
Since a flat plate of 20 mm is analyzed, the relationship between the potential difference ratio V / V 0 and the aspect ratio a / c at the measurement position d * corresponding to the distance d between the measurement terminals must be created. Therefore, d * = d × 20 / t corrected by the plate thickness t * of the member to be measured.
Figure 11 shows the relationship between the potential difference ratio V / V 0 and the aspect ratio a / c by finding the potential difference for each crack depth a / t at the * position. The relationship between the potential difference ratio V / V 0 and the aspect ratio a / c is approximated to the nth order for each crack depth a / t and stored in the storage device 4 of the computer 3. Next, the potential difference ratio V / V 0 and the aspect ratio a /
Using the relationship of c, the master curve of the relationship between the aspect ratio a / c = 0.5 and the potential difference ratio V / V 0 and the crack depth a / t is created as shown in FIG. Also in this case, the relationship between the crack depth a / t and the potential difference ratio V / V 0 is approximated by the nth order, for example, the fifth order. The crack depth a * is obtained by substituting the maximum potential difference ratio V / V 0 max obtained by fourth-order approximation of the potential difference distribution into this master curve.
Next, the surface crack length corrected for plate thickness 2c * (= 2c × 20 / t *)
The aspect ratio a * / c * of the crack is calculated by using and is compared with the aspect ratio a / c of the master curve. If no numbers match, again the potential difference ratio V / V 0 and the aspect ratio a = aspect ratio a / c using the relationship / c a * / c potential difference ratio V / V 0 when relative *裂深of a / A master curve of the relationship of t is created, and the maximum potential difference ratio V / V 0 max is substituted to obtain the crack depth a *. This operation is repeated until they match, for example, until the difference between a / c and a * / c * becomes 0.01 or less. Ratio of potential difference to aspect ratio when matched V / V 0 and crack depth a /
The shape of the entire crack is determined by substituting the potential difference ratio at each measurement position into the master curve of the relationship of t. In this case, the potential difference ratio at each measurement position may be substituted for, or the potential difference ratio distribution approximated to the nth order may be substituted for the potential difference ratio.

第10図に示したき裂周辺の電位差分布について具体的に
計算した結果を示す。板厚はt*=20.0mmであり、測定
端子間距離はd=20mmであるので、d*=d×20/t*=
20mmの位置における各アスペクト比の各き裂深さに対す
る電位差を求める。但し、き裂が測定端子の中央に来る
ようにして電位差を測定しているので、z=d*/2=10
mmの位置の電位差を求め、第11図のような電位差比V/V0
とアスペクト比a/cの関係を作成する。これらの関係を
用いて第12図に示すようにアスペクト比a/c=0.5に対す
る電位差比V/V0とき裂深さa/tの関係のマスターカーブ
を作成する。このカーブに最大電位差比V/V0max=1.30
を代入すると、a*/t=0.76となり、a*=15.2mmが得
られる。2c*=110mmよりき裂のアスペクト比はa*/c
*=15.2/55=0.276となる。そこで、次にa/c=0.276に
対するマスターカーブを作成してき裂深さを求めると、
a*=12.86mmが得られ、a*/c*=0.234となる。再
び、a/c=0.234に対するマスターカーブを作成してき裂
深さを求めると、a*=12.4mmが得られ、a*/c*=0.
225となり、更に、a/c=0.225に対するマスターカーブ
を作成してき裂深さを求めると、a*=12.3mmが得ら
れ、a*/c*=0.224となり、アスペクト比がほぼ一致
する。このようにして求めた表面き裂形状と解析で使用
したき裂形状との対応を第13図に示す。表面のき裂先端
近傍の精度は多少悪いが、そこを除けば非常に良く一致
している。
Fig. 10 shows the results of concrete calculation of the potential difference distribution around the crack shown in Fig. 10. Since the plate thickness is t * = 20.0 mm and the distance between the measuring terminals is d = 20 mm, d * = d × 20 / t * =
The electric potential difference for each crack depth of each aspect ratio at the position of 20 mm is obtained. However, since the potential difference is measured with the crack at the center of the measuring terminal, z = d * / 2 = 10
Calculate the potential difference at the position of mm and calculate the potential difference ratio V / V 0 as shown in Fig. 11.
And the aspect ratio a / c. Using these relationships, as shown in Fig. 12, a master curve of the relationship between the aspect ratio a / c = 0.5 and the potential difference ratio V / V 0 and the crack depth a / t is created. The maximum potential difference ratio V / V 0 max = 1.30 on this curve
Substituting for, a * / t = 0.76 and a * = 15.2 mm is obtained. Aspect ratio of crack is a * / c from 2c * = 110mm
* = 15.2 / 55 = 0.276. So, if you next create a master curve for a / c = 0.276 and find the crack depth,
A * = 12.86 mm is obtained, and a * / c * = 0.234. Again, when a master curve for a / c = 0.234 is created and the crack depth is obtained, a * = 12.4 mm is obtained, and a * / c * = 0.
When the crack depth is calculated by creating a master curve for a / c = 0.225, a * = 12.3 mm is obtained, and a * / c * = 0.224, and the aspect ratios are almost the same. Fig. 13 shows the correspondence between the surface crack shape obtained in this way and the crack shape used in the analysis. The accuracy near the crack tip on the surface is somewhat poor, but except for that, the agreement is very good.

ただし、上述の方法ではき裂が電場に対して垂直にある
場合に適用できるものであつて、第7図のように傾いて
いるき裂に対してはそのまま適用できない。そのような
場合には第7図の□印と◇印の各点の座標点を最小自乗
法により直線近似して垂直方向に対する角度を求めると
共に、両端座標からき裂長さ2c*を求める。この時、き
裂の法線方向と電場方向とのなす角度をΘとすると、電
位差比V/V0′はき裂が電場に対して直角にあるときの電
位差比V/V0よりも小さくなり、第一次近似としてはV/
V0′=V/V0・cosΘとなる。従つて、上述の方法でき裂
形状を求める場合には測定された電位差比V/V0′をΘで
補正してV/V0=V/V0′/cosΘにより評価することが必要
である。ただし、Θが45゜を超えると精度が悪くなるの
で、Θが45゜よりも小さい方の電場についての測定値を
使つて判定する方が良い。
However, the above method can be applied when the crack is perpendicular to the electric field, and cannot be applied as it is to the crack that is inclined as shown in FIG. In such a case, the coordinate points of the points □ and ◇ in Fig. 7 are linearly approximated by the method of least squares to obtain the angle with respect to the vertical direction, and the crack length 2c * is obtained from the coordinates at both ends. At this time, if the angle between the normal direction of the crack and the electric field direction is Θ, the potential difference ratio V / V 0 ′ is smaller than the potential difference ratio V / V 0 when the crack is perpendicular to the electric field. Therefore, the first approximation is V /
V 0 ′ = V / V 0 · cos Θ. Therefore, when the crack shape is obtained by the above method, it is necessary to correct the measured potential difference ratio V / V 0 ′ with Θ and evaluate it with V / V 0 = V / V 0 ′ / cos Θ. . However, if Θ exceeds 45 °, the accuracy will deteriorate, so it is better to use the measured value for the electric field where Θ is smaller than 45 °.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明の欠陥検査方法によれば、給
電端子周辺での電位降下に伴う不均一電場の影響を低減
できるので、均一電場のもとで欠陥の位置と形状を精度
良く検出することができ、検査の信頼性を向上すると共
に、配管の健全性を高める効果もある。
As described above, according to the defect inspection method of the present invention, it is possible to reduce the influence of the non-uniform electric field due to the potential drop around the power supply terminal, so that the position and shape of the defect can be accurately detected under the uniform electric field. Therefore, the reliability of the inspection is improved and the soundness of the pipe is enhanced.

【図面の簡単な説明】 第1図は本発明による配管のき裂監視装置の外観図、第
2図は第1図のき裂監視装置のシステム系統図、第3図
と第4図は第1図の装置の端子の配置を示す図、第5図
は本発明による電位差分布測定のフローチヤート図、第
6図は本発明による周方向の電位差分布測定の場合の給
電端子と測定端子の位置を示す図、第7図は本発明によ
るき裂位置の判定方法を示す図、第8図は本発明による
き裂形状の判定方法のフローチヤート、第9図は本発明
のFEMで得られたき裂部材のき裂と反対側の表面におけ
る電位差分布の一例を示すグラフ図、第10図は本発明の
FEMで得られたき裂部材のき裂と反対側の表面における
き裂周辺の電位差分布グラフ図、第11図は本発明による
電位差比とアスペクト比の関係の一例を示すグラフ図、
第12図は本発明による電位差比とき裂深さの関係を示す
グラフ図、第13図は本発明による解析に使用したき裂形
状と判定されたき裂形状との比較を示す図である。 1……配管、2……CRT、3……コンピユータ、4……
外部記憶装置、5……インターフエース、6……GP−IB
インターフエース、7……直流電源、8……電流極性変
換装置、9……給電端子切り換え用マルチプレクサー、
10,11……測定端子切り換え用マルチプレクサー、12…
…微小電位差計、19……溶接金属、20……端子、21……
ケーブル。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an external view of a crack monitoring apparatus for pipes according to the present invention, FIG. 2 is a system diagram of the crack monitoring apparatus of FIG. 1, and FIGS. FIG. 1 is a diagram showing the arrangement of terminals of the apparatus, FIG. 5 is a flow chart of the potential difference distribution measurement according to the present invention, and FIG. 6 is the position of the power supply terminal and the measurement terminal in the circumferential potential difference distribution measurement according to the present invention. Fig. 7 is a diagram showing a crack position determining method according to the present invention, Fig. 8 is a flow chart of the crack shape determining method according to the present invention, and Fig. 9 is a flow chart obtained by the FEM of the present invention. Graph showing an example of the potential difference distribution on the surface of the crack member opposite to the crack, Fig. 10 of the present invention
Potential difference distribution graph around the crack on the surface opposite to the crack of the crack member obtained by FEM, FIG. 11 is a graph showing an example of the relationship between the potential difference ratio and the aspect ratio according to the present invention,
FIG. 12 is a graph showing the relationship between the potential difference ratio and the crack depth according to the present invention, and FIG. 13 is a diagram showing a comparison between the crack shape used in the analysis according to the present invention and the determined crack shape. 1 ... Piping, 2 ... CRT, 3 ... Computer, 4 ...
External storage device, 5 ... interface, 6 ... GP-IB
Interface, 7 ... DC power supply, 8 ... Current polarity converter, 9 ... Multiplexer for switching power supply terminals,
10,11 …… Mux for switching measurement terminals, 12…
… Micro potentiometer, 19 …… Weld metal, 20 …… Terminal, 21 ……
cable.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】配管表面に相互に離間した1組の給電端子
対により直流電流を供給し、該給電端子対の間において
1組又は複数組の電位差測定端子対により電位差を測定
して、該電位差から欠陥を検出する方法において、 前記配管表面に給電端子と電位差測定端子を兼用する端
子をマトリクス状に配置し、 配管の軸方向に並んだ1組の端子列と、これに対して18
0度離れて前記端子列に向い合う1組の端子列との間に
直流電流を供給し、 該直流電流を供給する端子間に配置され周方向に隣合う
端子間の電位差を測定し、 該電位差の分布から前記配管の欠陥の位置と形状を検出
することを特徴とする欠陥検査方法。
1. A direct current is supplied to a surface of a pipe by a pair of power supply terminal pairs spaced apart from each other, and a potential difference is measured between the power supply terminal pairs by one or a plurality of potential difference measurement terminal pairs, In the method of detecting a defect from a potential difference, a terminal which also serves as a power supply terminal and a potential difference measurement terminal is arranged in a matrix on the surface of the pipe, and a set of terminal rows arranged in the axial direction of the pipe is provided.
A direct current is supplied to a set of terminal rows facing the terminal row at a distance of 0 degree, and a potential difference between terminals adjacent to each other arranged in the circumferential direction arranged between the terminals for supplying the direct current is measured, A defect inspection method comprising detecting the position and shape of the defect in the pipe from the distribution of the potential difference.
【請求項2】特許請求の範囲第1項記載の方法におい
て、 前記直流電流を供給する端子の位置を周方向に移動さ
せ、マトリクス状に配置した全ての端子について、前記
電位差を測定することを特徴とする欠陥検査方法。
2. The method according to claim 1, wherein the position of the terminal for supplying the DC current is moved in the circumferential direction, and the potential difference is measured for all terminals arranged in a matrix. Characteristic defect inspection method.
【請求項3】特許請求の範囲第1項または第2項に記載
の方法において、 前記電位差の測定に加えて、 軸方向の両端に配置した周方向に並んだ端子列の間に直
流電流を供給し、該端子列の間に配置され軸方向に隣合
う端子間の電位差も測定し、 該電位差の分布も用いて前記欠陥の位置と形状を検出す
ることを特徴とする欠陥検査方法。
3. The method according to claim 1 or 2, wherein, in addition to the measurement of the potential difference, a direct current is applied between circumferentially arranged terminal rows arranged at both ends in the axial direction. A defect inspection method comprising: supplying and measuring the potential difference between terminals arranged between the terminal rows and adjacent in the axial direction, and detecting the position and shape of the defect also by using the distribution of the potential difference.
【請求項4】特許請求の範囲第1項乃至第3項の何れか
に記載の方法において、 前記供給する直流電流の向きを逆向きにして測定した前
記電位差の分布も用いて前記配管の欠陥の位置と形状を
検出することを特徴とする欠陥検査方法。
4. The method according to any one of claims 1 to 3, wherein the distribution of the potential difference measured by reversing the direction of the supplied DC current is also used to detect defects in the pipe. A defect inspection method characterized by detecting the position and shape of the defect.
JP24742886A 1986-10-20 1986-10-20 Defect inspection method Expired - Lifetime JPH076936B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP24742886A JPH076936B2 (en) 1986-10-20 1986-10-20 Defect inspection method
EP87906780A EP0289615B1 (en) 1986-10-20 1987-10-16 Surface defect inspection method and surface defect inspection apparatus
PCT/JP1987/000789 WO1988002857A1 (en) 1986-10-20 1987-10-16 Surface defect inspection method and surface defect inspection apparatus
US07/235,683 US4914378A (en) 1986-10-20 1987-10-16 Method and apparatus for inspecting surface defects
DE3751702T DE3751702T2 (en) 1986-10-20 1987-10-16 METHOD AND APPARATUS FOR EXAMINING SURFACE DEFECTS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24742886A JPH076936B2 (en) 1986-10-20 1986-10-20 Defect inspection method

Publications (2)

Publication Number Publication Date
JPS63101742A JPS63101742A (en) 1988-05-06
JPH076936B2 true JPH076936B2 (en) 1995-01-30

Family

ID=17163291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24742886A Expired - Lifetime JPH076936B2 (en) 1986-10-20 1986-10-20 Defect inspection method

Country Status (1)

Country Link
JP (1) JPH076936B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057448A (en) * 2005-08-26 2007-03-08 Hitachi Ltd Flaw monitoring device
JP2012112837A (en) * 2010-11-25 2012-06-14 Jfe Steel Corp Method and device for inspecting crack of pipe weld zone

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308544A (en) * 2004-04-21 2005-11-04 Tokyo Electric Power Co Inc:The Crack development monitoring device and method by potential difference method
JP2007003235A (en) * 2005-06-21 2007-01-11 Atlus:Kk Non-destructive inspection method of change in wall thickness of measuring target
JP4831298B2 (en) * 2005-08-31 2011-12-07 電子磁気工業株式会社 Hardening depth measuring device
JP2008083038A (en) * 2006-08-30 2008-04-10 Atlus:Kk Method of detecting damage of structure made of conductive material
JP6173880B2 (en) * 2013-10-28 2017-08-02 三菱日立パワーシステムズ株式会社 Damage determination apparatus and damage determination method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007057448A (en) * 2005-08-26 2007-03-08 Hitachi Ltd Flaw monitoring device
JP2012112837A (en) * 2010-11-25 2012-06-14 Jfe Steel Corp Method and device for inspecting crack of pipe weld zone

Also Published As

Publication number Publication date
JPS63101742A (en) 1988-05-06

Similar Documents

Publication Publication Date Title
US4914378A (en) Method and apparatus for inspecting surface defects
EP2691736B1 (en) Profiling tool for determining material thickness for inspection sites having complex topography
US6734670B2 (en) Determining a surface profile of an object
JPH076936B2 (en) Defect inspection method
LeTessier et al. Sizing of cracks using the alternating current field measurement technique
WO2000012962A1 (en) Method for strain deformation
Lysenko et al. Analysis of normative documentation on the use of array eddy current probes
JP2008020323A (en) Crack shape identifying method and system
Yee et al. A reversing direct current potential drop system for detecting and sizing fatigue cracks along weld toes
Singh et al. Eddy current measurement system evaluation for corrosion depth determination on cast aluminum aircraft structure
KR101510003B1 (en) The Coordinate Measurement Apparatus for Pressure Vessel Nozzle Weld
JPH1068716A (en) Manual ultrasonic flaw detection skill training device
Tada et al. Experimental study of three-dimensional identification of surface crack by means of direct-current electrical potential difference method of multiple-point measurement type
Shkatov et al. Depth measurement of closely spaced surface cracks by the electric potential method
Richard et al. Advanced software tools for design and implementation of phased array UT inspection techniques on complex components
Moles et al. Customized Ultrasonic Systems for Gas Pipeline Girth Weld Inspections
JPH01110248A (en) Defect monitor for inner surface of piping
JP2006118902A (en) Flaw height evaluation method by eddy current flaw detection method
KR20230109220A (en) Calibration method of focus length for test device
JPH02245649A (en) Non-destructive inspection by potential difference method
Marsac et al. Towards a model for predicting the macrostructure of multipass GTAW weld of austenitic stainless steel
Dalichow et al. Crack depth measurements in stainless steel pipes-methods and reliability
JPH0545142B2 (en)
Lebowitz Evaluation of an automated ultrasonic scanner
Cohn et al. Nonintrusive inspection for flow-accelerated corrosion detection