JPH01110248A - Defect monitor for inner surface of piping - Google Patents

Defect monitor for inner surface of piping

Info

Publication number
JPH01110248A
JPH01110248A JP26627487A JP26627487A JPH01110248A JP H01110248 A JPH01110248 A JP H01110248A JP 26627487 A JP26627487 A JP 26627487A JP 26627487 A JP26627487 A JP 26627487A JP H01110248 A JPH01110248 A JP H01110248A
Authority
JP
Japan
Prior art keywords
piping
potential difference
potential
cracking
probes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26627487A
Other languages
Japanese (ja)
Inventor
Tadayoshi Endo
遠藤 忠良
Hiroshi Kanezaki
宏 金崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP26627487A priority Critical patent/JPH01110248A/en
Publication of JPH01110248A publication Critical patent/JPH01110248A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To estimate the shape of a cracking easily, by a method wherein a plurality of probes for measuring a potential difference are provided at inspecting points on a surface at a specified internal and a potential on the surface of a piping is measured in a time sharing manner to calculate a potential distribution pattern near the points. CONSTITUTION:A constant current source unit 7 is connected being mounted over a part 6 to be inspected of a piping 5 while multiple-point probes 1 are disposed on the surface thereof. Signals of the probes 1 are applied to a multiple point potential difference measuring memory 2 to measure potentials of the probe 1 in a time sharing manner and the results are stored together with the position thereof. A cracking identifier 3 in which a potential distribution is numerically analyzed beforehand when the piping 5 has a defect receives an input of information from the multiple point potential difference measuring memory 2 to estimate geometric dimensions of a cracking [depth (a), length 2c and the like] by computation and the results are stored. A safety analyzer 4 previously receives an input of information such as a time-series change in the temperature T and pressure P of metal of a piping, a relationship among quality of material and temperature and a destruction dynamic parameter and material and dimensional specifications of the piping and computes a destruction dynamic parameter based upon the information from the cracking identifier 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 原子カプラント、ボイラ、タービン、化学プラント等の
各種配管に適用される配管内面の欠陥監視装置に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a defect monitoring device for the inner surface of piping, which is applied to various types of piping such as atomic couplants, boilers, turbines, and chemical plants.

〔従来の技術〕[Conventional technology]

従来配管内面に存在する欠陥(き裂、又は減肉)を検出
するには対象位置に対して超音波探傷な外面から行なう
か、又は、管内面にプローブを入れ超音波探傷を行った
り、内面欠陥に直接磁粉又は液体浸透探傷な行な5方法
がとられて来た。
Conventionally, to detect defects (cracks or thinning) on the inner surface of a pipe, ultrasonic flaw detection is performed on the target position from the outer surface, or a probe is inserted into the inner surface of the pipe and ultrasonic flaw detection is performed on the inner surface. Five methods have been used to perform magnetic particle or liquid penetrant testing directly on defects.

又、電位差によるき製形状推定は、き裂の存在する面に
おいてき裂をまたぐようにプローブを配置して、三次元
的欠陥形状を推定するために行われており、あ(までき
裂が存在することを知った上で行5方法として用いられ
て来た。
Furthermore, estimating the shape of a forging by potential difference is performed in order to estimate the three-dimensional defect shape by arranging a probe to straddle the crack on the surface where the crack exists. It has been used as a row 5 method since its existence was known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の方法には次のような問題点があった。 The above conventional method has the following problems.

(1)  従来の方法の内、超音波探傷法は対象部位を
接触子で全面的に探って欠陥の有無を知る方法で高温・
高圧で作動中の配管に対し常時監視には用いることがで
きない。
(1) Among the conventional methods, ultrasonic flaw detection is a method that detects the presence or absence of defects by exploring the entire target area with a contactor, and is used at high temperatures and
It cannot be used for constant monitoring of piping operating at high pressure.

(2)  磁粉又は液体浸透探傷による欠陥検出は、配
管内面の欠陥存在部位が直接目視出来る状態の時にのみ
有効で配管が作動中には用いることができない。
(2) Defect detection using magnetic powder or liquid penetrant testing is effective only when the defective area on the inner surface of the pipe can be directly observed and cannot be used while the pipe is in operation.

(3)電気抵抗又は電位差法による欠陥検出の従来の方
法は、き裂が開口している面において、き裂が存在する
ことを知った上で、き裂をはさむ2点にプローブをつけ
、これらの電気抵抗、電位差を測定することにより、三
次元的き製形状を推定する方法である。この方法ではき
裂の存在を認知することが前提となっており、不特定の
位置に発生する配管内面の欠陥を外面から常時監視する
ことはできない。
(3) The conventional method of defect detection using electrical resistance or potentiometric method is to know that a crack exists on the surface where the crack is open, and then attach probes to two points that sandwich the crack. This is a method for estimating the three-dimensional manufactured shape by measuring these electrical resistances and potential differences. This method relies on recognizing the presence of cracks, and cannot constantly monitor defects on the inner surface of the pipe that occur at unspecified locations from the outside.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点を解決するため次の手段を講する。 The present invention takes the following measures to solve the above problems.

すなわち、配管の検査個所の表面に所定の間隔で配設さ
れた複数の電位差測定用のプローブと、同複数の電位差
測定用のプローブの出力を入力する複数点電位差測定記
憶装置と、同複数点電位差測定記憶装置の出力を入力す
るき裂同定装置と、同き裂同定装置の出力を入力する安
全解析装置とを設ける。
That is, a plurality of potential difference measurement probes arranged at predetermined intervals on the surface of the piping inspection point, a multi-point potential difference measurement storage device that inputs the outputs of the same plurality of potential difference measurement probes, and a multi-point potential difference measurement storage device that inputs the outputs of the same plurality of potential difference measurement probes; A crack identification device that inputs the output of the potential difference measurement storage device and a safety analysis device that inputs the output of the crack identification device are provided.

〔作 用〕 上記の手段により配管表面の電位が時系列的に計測算出
される。配管内面にき裂が発生するとその部分の電位が
変化するので、その附近の電位分布パターンが算出され
る。この電位分布ノぞターンからき裂の形状が推定され
る。
[Function] By the above means, the potential on the surface of the pipe is measured and calculated in time series. When a crack occurs on the inner surface of the pipe, the potential at that part changes, so the potential distribution pattern in the vicinity is calculated. The shape of the crack can be estimated from this potential distribution nozzle turn.

次に破壊力学パラメータが算出され、不安定破壊評価及
びき裂伝は速度評価演算が行われ出力される。このよう
にして作動中に発生する高温高圧配管内面のき裂が表面
の計測によりただちに検出されるとともに、容易に不安
定破壊評価及びき裂伝は速度評価が可能となる。
Next, fracture mechanics parameters are calculated, and unstable fracture evaluation and crack propagation are subjected to speed evaluation calculations and output. In this way, cracks on the inner surface of the high-temperature, high-pressure pipe that occur during operation can be immediately detected by surface measurement, and unstable fracture evaluation and crack propagation speed can be easily evaluated.

〔実施例〕〔Example〕

本発明の一実施例を第1図ないし第4図により説明する
。第1図に示すように配管5.5′の被検配設し、同プ
ローブ1の出力を複数点電位差測定記憶装置2に入力し
、同複数点電位差測定記憶装置2の出力をき裂同定装置
3に入力し、更に同き裂同定装置3の出力を安全性解析
装置4に入力する。
An embodiment of the present invention will be described with reference to FIGS. 1 to 4. As shown in Fig. 1, the piping 5.5' is arranged to be tested, the output of the probe 1 is input to the multi-point potential difference measurement storage device 2, and the output of the multi-point potential difference measurement storage device 2 is used for crack identification. Furthermore, the output of the crack identification device 3 is input to the safety analysis device 4.

以上の構成において1通常、高温・高圧用の配管5,5
′の欠陥発生部位は、はとんど溶接線6,6′であるの
で、第1図に示すように被検査部とじては溶接線6,6
′をはさむ狭い領域をとる。
In the above configuration, 1. Normally, high temperature/high pressure piping 5, 5
Since the defect occurrence area of ' is mostly the weld lines 6 and 6', the inspected parts are mainly the weld lines 6 and 6 as shown in Fig.
Take a narrow region between ′.

この領域に所定の間隔で取付けられた複数点プローブ1
から複数点電位差測定記憶装置2は信号を受け、各プロ
ーブ1の電位を時系列的に測定しその位置とともに記憶
しておく。その概念を第1図(a)に示す。なお各電位
の測定は2例えば第2図に示すように、複数点プローブ
1の各プローブP(i、j)(第2図では1=1〜4.
j=1〜6)の矢印で示す位置間の電位差Δに’(A’
、m)(1=o〜3゜m=1〜6)が所定のシーケンス
で測定され、演算処理され各プローブ点の初期値以後の
時系列電位Δ)i:(t、x、y)が求められる(第1
図(a))。
Multiple point probes 1 installed at predetermined intervals in this area
The multi-point potential difference measurement/memory device 2 receives the signal, measures the potential of each probe 1 in time series, and stores it together with its position. The concept is shown in FIG. 1(a). Note that each potential is measured at two points, for example, as shown in FIG. 2, each probe P(i, j) of a multi-point probe 1 (1=1 to 4 in FIG. 2).
'(A') for the potential difference Δ between the positions indicated by the arrows of
, m) (1=o~3゜m=1~6) are measured in a predetermined sequence and processed to calculate the time series potential Δ)i: (t, x, y) after the initial value of each probe point. required (first
Figure (a)).

例えば、成る時間t□での各プローブ点のY方向の電位
として、第3図(a)に示すように電流源装置7が接続
されているとすると、欠陥dがない場合。
For example, if the current source device 7 is connected as shown in FIG. 3(a), the potential in the Y direction of each probe point at time t□ is determined when there is no defect d.

第3図(1))の点線aが得られる。又欠陥dがある場
合、同図の実線すが得られる。
A dotted line a in FIG. 3(1)) is obtained. If there is a defect d, a solid line in the figure is obtained.

配管5,5′の内面に欠陥が発生すると電位に変化が起
るので、(1)式で表される各プローブの位置(J、m
)のその時(1)の電位の変化が算出される。
If a defect occurs on the inner surface of the pipes 5, 5', the potential will change, so the position of each probe (J, m
) at that time (1) is calculated.

Δv(t、zsm) =ΔE(t、zsm)−ΔE(o
J、m)  ・・(1)電位の変化Δv(t、zsm)
が所定の値以上になったとき、その附近の位置(x、y
)の電位ΔE(t、x、y) が算出されるとともに記
憶される。その概念を第1図(b)に示す。
Δv(t, zsm) = ΔE(t, zsm) − ΔE(o
J, m) ... (1) Change in potential Δv (t, zsm)
exceeds a predetermined value, the nearby position (x, y
) is calculated and stored. The concept is shown in FIG. 1(b).

き裂同定装置3では、前もって、配管5,5′に欠陥(
形状各種)がある場合の電位分布を数値解析(解析手法
は境界要素法又は有限要素法等)により求められた情報
が予め入力されている。これらの電位ΔEと位置との関
係の基準関数並びに欠陥形状の情報と、前記複数点電位
差測定記憶装置2からの情報とを入力して駁者の情報よ
り、第4図(a)に示すような各座標位置(X、7)の
電位の変化Δv(ts”、y)が演算され出力される。
The crack identification device 3 detects defects (
Information obtained by numerical analysis (the analysis method is the boundary element method, finite element method, etc.) of the potential distribution when there are various shapes) is input in advance. By inputting the reference function of the relationship between the potential ΔE and the position, the information on the defect shape, and the information from the multi-point potential difference measurement storage device 2, and using the information from the operator, as shown in FIG. 4(a), The potential change Δv(ts'', y) at each coordinate position (X, 7) is calculated and output.

この出力は欠陥dがある場合、第4図(b)に示すよう
なものとなる。なお同図(c)は比較のために無欠陥の
場合を示す。更にこの出力と、前者の情報、即ち電位Δ
Eと位置(x、y)との関係の基準関数並びに欠陥形状
の情報とが演算比較され、き製形状寸法(深さa。
If there is a defect d, this output will be as shown in FIG. 4(b). For comparison, FIG. 6(c) shows a case with no defects. Furthermore, this output and the former information, that is, the potential Δ
A reference function of the relationship between E and position (x, y) and information on the defect shape are calculated and compared, and the dimensions of the forged shape (depth a.

長さ20等)が推定演算され記憶される。一方。(length 20, etc.) is estimated and stored. on the other hand.

時系列的なこれら過去の情報よりき裂の変化速度が推定
演算される。
The rate of change of cracks is estimated and calculated from this past information in time series.

安全性解析装置4では、予め配管5,5′のメタルの温
度(T)と圧力(P)の時系列変化、材質、温前記き裂
同定装置3からの情報から(2)式で表される破壊力学
パラメータK又はJが時系列的に演算算出され出力され
る。
The safety analysis device 4 uses the time-series changes in the temperature (T) and pressure (P) of the metal of the pipes 5, 5', the material, and the information from the temperature crack identification device 3 to express the equation (2) in advance. The fracture mechanics parameter K or J is calculated and output in time series.

K(又はJ)=f(P、a、a/2c、a/l)   
 −・−・−(2)ただし、a:き裂深さ 2C:き裂長さ t:配管肉厚 更に不安定破壊評価及びき裂伝は速度評価の演算が次の
ように行われる。即ち1時間的に変化する破壊力学パラ
メータK又はJは、予め入力されている所定値と比較さ
れ、所定値以上になった時警報表示が出力される。
K (or J) = f (P, a, a/2c, a/l)
-・-・-(2) However, a: Crack depth 2C: Crack length t: Pipe wall thickness In addition, calculations for unstable fracture evaluation and crack propagation speed evaluation are performed as follows. That is, the fracture mechanics parameter K or J, which changes hourly, is compared with a predetermined value that has been input in advance, and when it exceeds the predetermined value, an alarm display is output.

このようにして高温高圧配管の内面のき裂発生が容易に
検出されるとともに不安定破壊評価及びき裂伝は速度評
価が可能となる。
In this way, the occurrence of cracks on the inner surface of high-temperature, high-pressure piping can be easily detected, and unstable fracture evaluation and crack propagation speed can be evaluated.

〔発明の効果〕〔Effect of the invention〕

本発明は次の効果を奏する。 The present invention has the following effects.

(1)原子カプラントを始め、各種プラント配管の経年
的劣化の監視は非常に重要視されつつあり。
(1) Monitoring of aging deterioration of various plant piping, including nuclear couplants, is becoming very important.

本発明により安全性の連続監視が出来、事故の未然防止
が可能である。
According to the present invention, safety can be continuously monitored and accidents can be prevented.

(2)  不特定の位置に発生する配管内面の欠陥を。(2) Defects on the inner surface of piping that occur at unspecified locations.

配管作動中に、外面から常時監視できる。Can be constantly monitored from the outside while the piping is in operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のブロック線図、第2図は同
実施例のプローブの配置と電位差計測部の説明図、第3
図は同実施例のY方向に沿っての電位分布説明図で、同
図(a)はプローブの配置及び欠陥位置等の関係図、同
図(b)は(a)に対応する電位分布図、第4図は同実
施例のx、y面での電分布説明図で、同図(a)はプロ
ーブの配置及び欠陥位置の関係図、同図(b)は欠陥が
ある場合の電位の変化の分布図、同図(C)は無欠陥の
場合の電位の変化の分布図である。 図中 1:電位差測定用複数点プローブ(配管外面に溶接固定
)2:複数点電位差測定記憶装置 3:き裂同定装置   4:安全性解析装置5.5’:
配管本体   6,6′:溶接線7:定電流源装置  
 a:欠陥がある場合b:大欠陥ない場合  d:欠陥
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is an explanatory diagram of the arrangement of probes and the potential difference measuring section of the same embodiment, and FIG.
The figure is an explanatory diagram of the potential distribution along the Y direction of the same example. Figure (a) is a diagram showing the relationship between the probe arrangement and defect position, etc., and Figure (b) is a potential distribution diagram corresponding to (a). , Figure 4 is an explanatory diagram of the electric potential distribution in the x and y planes of the same example. Figure (a) is a diagram showing the relationship between the probe arrangement and defect position, and Figure 4 (b) is a diagram of the potential when there is a defect. A distribution diagram of changes. FIG. 3(C) is a distribution diagram of changes in potential in the case of no defects. In the figure: 1: Multi-point potential difference measurement probe (fixed by welding to the outer surface of the pipe) 2: Multi-point potential difference measurement storage device 3: Crack identification device 4: Safety analysis device 5.5':
Piping body 6, 6': Welding line 7: Constant current source device
a: If there is a defect b: If there is no major defect d: Defect

Claims (1)

【特許請求の範囲】[Claims]  配管の検査個所の表面に所定の間隔で配設された複数
の電位差測定用のプローブと、同複数の電位差測定用プ
ローブの出力を入力する複数点電位差測定記憶装置と、
同複数点電位差測定記憶装置の出力を入力するき裂同定
装置と、同き裂同定装置の出力を入力する安全解析装置
とを備えてなることを特徴とする配管内面の欠陥監視装
置。
a plurality of potential difference measurement probes arranged at predetermined intervals on the surface of a piping inspection location; a multi-point potential difference measurement storage device into which the outputs of the plurality of potential difference measurement probes are input;
A defect monitoring device for an inner surface of a pipe, comprising: a crack identification device that inputs the output of the multi-point potential difference measurement and storage device; and a safety analysis device that inputs the output of the crack identification device.
JP26627487A 1987-10-23 1987-10-23 Defect monitor for inner surface of piping Pending JPH01110248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26627487A JPH01110248A (en) 1987-10-23 1987-10-23 Defect monitor for inner surface of piping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26627487A JPH01110248A (en) 1987-10-23 1987-10-23 Defect monitor for inner surface of piping

Publications (1)

Publication Number Publication Date
JPH01110248A true JPH01110248A (en) 1989-04-26

Family

ID=17428686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26627487A Pending JPH01110248A (en) 1987-10-23 1987-10-23 Defect monitor for inner surface of piping

Country Status (1)

Country Link
JP (1) JPH01110248A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308544A (en) * 2004-04-21 2005-11-04 Tokyo Electric Power Co Inc:The Crack development monitoring device and method by potential difference method
WO2007088913A1 (en) * 2006-01-31 2007-08-09 National University Corporation Okayama University Damage detecting device or and damage detection method
JP2015087125A (en) * 2013-10-28 2015-05-07 三菱日立パワーシステムズ株式会社 Damage determination device and damage determination method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308544A (en) * 2004-04-21 2005-11-04 Tokyo Electric Power Co Inc:The Crack development monitoring device and method by potential difference method
WO2007088913A1 (en) * 2006-01-31 2007-08-09 National University Corporation Okayama University Damage detecting device or and damage detection method
JP2007205801A (en) * 2006-01-31 2007-08-16 Okayama Univ Damage detector and damage detection method
US8374803B2 (en) 2006-01-31 2013-02-12 National University Corporation Okayama University Damage detection apparatus, damage detection method and recording medium
JP2015087125A (en) * 2013-10-28 2015-05-07 三菱日立パワーシステムズ株式会社 Damage determination device and damage determination method

Similar Documents

Publication Publication Date Title
US9176096B2 (en) Apparatus and method for metallic constructions assessment
US8091427B2 (en) Nondestructive inspection apparatus and nondestructive inspection method using guided wave
JP4455343B2 (en) Wall thickness monitoring
CN111656182B (en) Method for inspecting plant equipment
JP3639958B2 (en) Quantitative nondestructive evaluation method of cracks
JPH01110248A (en) Defect monitor for inner surface of piping
JPS63101742A (en) Defect inspection
KR20150036972A (en) Casting nondestructive inspection system and inspection method thereof using an electromagnetic induction sensor
RU2585796C1 (en) Method for quality control of articles
Singh et al. Eddy current measurement system evaluation for corrosion depth determination on cast aluminum aircraft structure
CN109916997A (en) A kind of petroleum pipeline on-line measuring device
CN116008161A (en) Pipeline corrosion detection and evaluation method
JPS5850456A (en) Detection of crack
KR20150065649A (en) Casting nondestructive inspection system and inspection method thereof using an electromagnetic induction sensor
Oppermann et al. An improved potential drop method for measuring and monitoring defects in metallic structures
Lloyd et al. Crack growth monitoring in harsh environments by electrical potential measurements
CN116305708A (en) Nondestructive detection method and system for height of pipeline girth weld defect
Cohn et al. Nonintrusive inspection for flow-accelerated corrosion detection
RU2499255C1 (en) Method to detect inner exfoliation of pipe walls
Shkatov et al. Depth measurement of closely spaced surface cracks by the electric potential method
JPH02245649A (en) Non-destructive inspection by potential difference method
JPH02212753A (en) Flaw detection
CN111896618A (en) Method for detecting and evaluating internal defects of wellhead device
JPH02143158A (en) Material deterioration detecting method
JPH04138398A (en) System for diagnosing water quality