JPH02143158A - Material deterioration detecting method - Google Patents

Material deterioration detecting method

Info

Publication number
JPH02143158A
JPH02143158A JP63296048A JP29604888A JPH02143158A JP H02143158 A JPH02143158 A JP H02143158A JP 63296048 A JP63296048 A JP 63296048A JP 29604888 A JP29604888 A JP 29604888A JP H02143158 A JPH02143158 A JP H02143158A
Authority
JP
Japan
Prior art keywords
deterioration
oscillator
detectors
ultrasonic
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63296048A
Other languages
Japanese (ja)
Inventor
Hiroshige Itou
伊藤 洋茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63296048A priority Critical patent/JPH02143158A/en
Publication of JPH02143158A publication Critical patent/JPH02143158A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To find the degree of deterioration in a material quantitatively by determining the position by finding the ultrasonic wave attenuation factor of an extremely small element by using an ultrasonic wave oscillator and detectors which are installed opposite each other across a measurement position. CONSTITUTION:A probe 8 is swung to move a cylinder 9 straight in parallel to a measured surface and the external shape of the measured surface is found from the swing angle of the probe 8 and the displacement position of the cylinder 9 and stored in a measuring instrument 5. The ultrasonic wave oscillator 2 and detectors 3 are installed across the measurement position and the installation position is known from the external shape information in the device 5. The oscillator 2 sends an ultrasonic wave of constant intensity and the opposite detectors 3 detect it. The detected intensity is the product of ultrasonic wave intensity values attenuated in extremely small elements determined by the positions of the oscillator and detectors. The oscillator is shifted in position and (n) detected intensity values are measured by the N detectors to find the attenuation factor R of each extremely small element, thereby calculating creep damage from the attenuation factor and also diagnose the life.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、蒸気タービンなどの高温部品の経時的劣化度
を計測し、寿命診断を行う材料劣化検出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a material deterioration detection method for measuring the degree of deterioration over time of high-temperature parts such as a steam turbine and diagnosing their lifespan.

(従来の技術) 一般にタービン用ロータ、ケーシング、配管など高温・
高応力下で使用される金属材料は長時間使用されると材
質劣化が生じ、その結果、き裂や変形、最終的には破壊
が発生する。このような構造物の安全性、信頼性を確保
するためには、使用中における金属材料の材質劣化を経
時的に検出して交換時期を明らかにする必要がある。
(Conventional technology) Generally, turbine rotors, casings, piping, etc.
When metal materials are used under high stress for long periods of time, they deteriorate, resulting in cracks, deformation, and ultimately destruction. In order to ensure the safety and reliability of such structures, it is necessary to detect the deterioration of metal materials over time during use to determine when to replace them.

金属の材質劣化の検出方法としては、従来から実機部品
から試験片を切り出して破壊試験を行う方法があるが、
この方法では実機部材を削ることになるため、劣化程度
を経時的に検出することは困難である。
The conventional method for detecting metal material deterioration is to cut test pieces from actual machine parts and conduct destructive tests.
Since this method involves cutting the actual machine parts, it is difficult to detect the degree of deterioration over time.

非破壊的に劣化を検出する方法としては、例えば特開昭
56−113360号公報や「低合金鋼のクリープ損傷
の非破壊的診断に関する基礎検討」(材料、第33巻3
71号、137ページ)などが知られている。この方法
は第5図に示すように、実機部材の劣化とくにクリープ
損傷と電気抵抗率の変化として311定する方法で、材
料11に給電端子12と計測端子13を取りつけ、電位
差計81哩値から劣化度を計測する方法である。しかし
、これらの寸法では、第6図に示すように、電気抵抗比
率の変化ΔRρがクリープ損傷φ。と必ずしも1対1の
関係なく、φcく0.5までは直線的に増大しているが
、 φc>O,Sでは逆に減少する傾向となっている。
Examples of methods for nondestructively detecting deterioration include Japanese Patent Application Laid-Open No. 113360/1983 and "Basic Study on Nondestructive Diagnosis of Creep Damage in Low Alloy Steel" (Materials, Vol. 33, 3).
No. 71, page 137). As shown in Fig. 5, this method is a method that determines the deterioration of actual machine parts, especially creep damage, and changes in electrical resistivity. This is a method to measure the degree of deterioration. However, with these dimensions, as shown in FIG. 6, the change in electrical resistance ratio ΔRρ is the creep damage φ. Although there is not necessarily a one-to-one relationship with φc and increases linearly up to 0.5, it tends to decrease when φc>O,S.

この関係を補正するために加熱のみをうける材料の計測
値を併用する方法を提案されているが、いずれの方法に
おいても計測部材の全体平均または表面近傍のみの平均
的劣化度を計測して、寿命診断を行うため、計測精度は
低く、信頼性、安全性の確保のためには不十分である。
In order to correct this relationship, a method has been proposed that uses measured values of materials that are only subjected to heating, but in either method, the overall average of the measurement member or the average degree of deterioration only near the surface is measured. The measurement accuracy is low because it performs a lifespan diagnosis, and is insufficient to ensure reliability and safety.

(発明が解決しようとする課り 上記のように、従来の高温部品の劣化計測方法では、破
壊的針81g法によってのみ部材内部の劣化度を精度よ
く計測でき、非破壊的計測法では表層や平均的な劣化度
の計測しか行なえず1部材内部の位置を確定した計測は
不可能である。
(Issues to be Solved by the Invention As mentioned above, in the conventional deterioration measurement method for high-temperature parts, the degree of deterioration inside the member can be accurately measured only by the destructive needle 81g method, while the non-destructive measurement method It is only possible to measure the average degree of deterioration, and it is impossible to measure the position inside one member.

しかしながら、品温部材の材質劣化は内部と表面で一様
ではなく、温度及び応力的に各部位は異なった履歴を受
けるため、高湿部材全体の寿命診断を行うためには、各
部位の精度よい劣化度の検出が不可欠である。
However, the material deterioration of high-temperature parts is not uniform between the inside and the surface, and each part receives a different history of temperature and stress. Good detection of the degree of deterioration is essential.

また近年の知見としては、クリープ損傷に伴い発生する
ボイドは応力集中部の表面より、むしろ表面から数ll
l1内部に入った部分に多く見い出されるなどの事例も
あり1部材内部の劣化度検出の重要性を示している。さ
らに従来から、蒸気タービンケーシング等の鋳鋼部品で
は鋳肌が残存する部分で脱炭という材質変化を示すが、
従来方法では脱炭層を除いてはじめて劣化計測が可能に
なるなどの問題点がある。
In addition, recent findings indicate that voids that occur due to creep damage are located several liters from the surface, rather than from the surface of the stress concentration area.
There are also cases where a large amount of deterioration is found in the parts inside l1, which shows the importance of detecting the degree of deterioration inside a single member. Furthermore, conventionally, cast steel parts such as steam turbine casings exhibit a material change called decarburization in areas where the casting surface remains.
Conventional methods have problems such as being able to measure deterioration only after removing the decarburized layer.

本発明はかかる従来の事情に対処してなされたもので、
高温部品の内部の劣化を位置を確定して検出し、部品の
寿命診断を行う材料劣化検出方法を提供することにある
The present invention has been made in response to such conventional circumstances,
It is an object of the present invention to provide a material deterioration detection method for determining the position and detecting deterioration inside a high-temperature component and diagnosing the life of the component.

〔発明の構成〕[Structure of the invention]

(111題を解決するための手段) 本発明は予じめ被検体の外形寸法を計測して記憶させて
おき、その計測結果にもとずいて被検体に、超音波発信
子と検出子とをtfli!!L、超音波検出子から被検
体に送られた超音波の減衰率から材料劣化度合を決定す
るものである。
(Means for Solving Problem 111) The present invention measures and stores the external dimensions of a subject in advance, and then attaches an ultrasonic transmitter and a detector to the subject based on the measurement results. tfli! ! L. The degree of material deterioration is determined from the attenuation rate of the ultrasonic waves sent from the ultrasonic detector to the subject.

(作  用) 本発明では、計測部位の外形形状を正確に」り定して超
音波発振子や超音波検出子の設置位置が精度よく得られ
るようにする。
(Function) In the present invention, the external shape of the measurement site is determined accurately so that the installation positions of the ultrasonic oscillator and the ultrasonic detector can be obtained with high precision.

次に計測部位をはさんで超音波発振子と超音波検出子を
対面位置に設置する。超音波発振子から出される超長波
は高温部材内部を透過する間にその強度を弱め、透過距
離や材質に依存して、検出子で得られる超長波の強度が
決まる。超音波発振子は微小距離づつ移動して、多数回
の計測を行う。
Next, the ultrasonic oscillator and ultrasonic detector are placed facing each other across the measurement site. The ultralong wave emitted from the ultrasonic oscillator weakens its intensity while passing through the high-temperature member, and the intensity of the ultralong wave obtained by the detector is determined depending on the transmission distance and material. The ultrasonic oscillator moves by small distances and performs multiple measurements.

検出子で得られるその間の計測値はそれぞれの超音波通
過経路上にある各部位の超音波減衰率の積となり、逆に
材料内部の各部位の超音波減衰率はこれらの方程式の解
として求めることができる。
The measured value obtained by the detector is the product of the ultrasonic attenuation coefficients of each part on each ultrasonic path, and conversely, the ultrasonic attenuation coefficient of each part inside the material is found as a solution of these equations. be able to.

実験室的に超音波減衰率と材料劣化度1例えばクリープ
損傷φ。とけ1対1の関数関係があるため、各部位の超
音波減衰率からクリープ損傷φ。
In the laboratory, ultrasonic attenuation rate and material deterioration degree 1, for example, creep damage φ. Since there is a one-to-one functional relationship with melting, creep damage φ can be calculated from the ultrasonic attenuation rate of each part.

を求めることができ1部材内部のクリープ損傷φCを寿
命分布してとらえることができる。
can be obtained, and the creep damage φC inside one member can be understood as a lifetime distribution.

(実 施 例) 以下、本発明の一実施例を第1図〜第4図に基づいて説
明する。
(Example) Hereinafter, one example of the present invention will be described based on FIGS. 1 to 4.

@1図は本発明の一実施例の要部であり、高温部品等の
被検体1に計測装置を取りつけ、非破壊的劣化度の計測
を行っている状態を示している。
Figure @1 shows a main part of an embodiment of the present invention, and shows a state in which a measurement device is attached to a test object 1 such as a high-temperature component, and the degree of deterioration is measured non-destructively.

すなわち、被検体1の計測部位を囲む対面に超音波発振
子2及び検出子3を設置する。超音波発振子2と検出子
3はこれら制御し、超音波強度の計測を行う超長波域減
衰率計測装置4と接続している。また、減衰率計測装置
4は計測部位の外形形状を予め記憶している外形針41
g装置5とも接続しており、超音波発振子2や検出子3
の設置位置を正確に求めて、発振子2と各検出子3の相
互距離・や超音波の透過経路が精度よく求められるよう
になっている。減衰率計測装置4は劣化度検出器6と連
動して、各部位の超音波減衰率から劣化度例えばクリー
プ損傷φ。を算出する。得られた劣化度損傷分布は劣化
度検出器6と接続した表示器7に損傷分布として表示し
、計測部位の寿命診断を行う。
That is, the ultrasonic oscillator 2 and the detector 3 are installed on opposite sides surrounding the measurement site of the subject 1 . The ultrasonic oscillator 2 and the detector 3 are connected to an ultralong wave range attenuation rate measuring device 4 that controls them and measures the intensity of the ultrasonic waves. The attenuation rate measuring device 4 also uses an external shape needle 41 that stores the external shape of the measurement site in advance.
It is also connected to the g device 5, and the ultrasonic oscillator 2 and detector 3
By accurately determining the installation position of the oscillator 2 and each detector 3, the mutual distance between the oscillator 2 and each detector 3 and the transmission path of the ultrasonic waves can be determined with high accuracy. The attenuation rate measuring device 4 works in conjunction with the deterioration degree detector 6 to determine the degree of deterioration, such as creep damage φ, from the ultrasonic attenuation rate of each part. Calculate. The obtained deterioration degree damage distribution is displayed as a damage distribution on a display 7 connected to the deterioration degree detector 6, and the lifespan of the measured portion is diagnosed.

第2図は劣化度計測の前に実施する外形計測における構
成を示す。計測部位の超音波発振子2や検出子3を設置
する面に沿って動く触針子8と、これを計測面方向に直
動させるシリンダー9より成る外形検出器りは外形計測
器コントローラ10により制御され、同時に触針子8と
シリンダー9の動きから求められる計測部位の外形形状
のデータを得るため外形計測装置5に接続されている。
FIG. 2 shows the configuration for measuring the external shape before measuring the degree of deterioration. The external shape detector consists of a stylus 8 that moves along the surface on which the ultrasonic oscillator 2 and detector 3 of the measurement site are installed, and a cylinder 9 that moves the stylus directly in the direction of the measurement surface, and is controlled by the external measuring device controller 10. At the same time, it is connected to the external shape measuring device 5 in order to obtain data on the external shape of the measurement site determined from the movements of the stylus 8 and the cylinder 9.

次に本実施例の作用を説明する。Next, the operation of this embodiment will be explained.

まず、計測部位の外形形状を正確に得るため。First, to accurately obtain the external shape of the measurement site.

外形計測を行う、第2図において、触針子8は支持部分
を支点として揺動動作し、また触針子8の支持部分全体
はシリンダー9により直進動作するため、シリンダー9
を計測面にほぼ平行に直進させることにより触針子8の
振れ角度およびシリンダ−9変位量から計測面の外形形
状が求められる。
In FIG. 2, in which the external shape is measured, the stylus 8 swings around the supporting part, and the entire supporting part of the stylus 8 moves straight by the cylinder 9, so the cylinder 9
The outer shape of the measurement surface can be determined from the deflection angle of the stylus 8 and the amount of displacement of the cylinder 9 by moving the probe straight approximately parallel to the measurement surface.

シリンダー9の動作は外形計測器コントローラ10が制
御し、得られた外形形状の信号データは外形計測装置5
に蓄えられる。
The operation of the cylinder 9 is controlled by the external shape measuring device controller 10, and the obtained external shape signal data is sent to the external shape measuring device 5.
is stored in

次に計測部位をはさんで対画する位置に超音波発振子2
と検出子3を設置する。超音波検出子3は単体でも計測
は可能であるが、この場合検出子3を移動させなければ
ならず、この際、設置面の性状の差異により、誤差を生
じやすいため複数個の検出子3を固定して設置する方が
精度のよい値が得られる。超音波発振子2と検出子3の
設置位置は外形計測装置!!5の外形形状データを用い
て、正確に得ることができる。超音波発振子2より一定
強度の超音波を発振して対面する複数個の超音波検出子
3で部材内部を透過し強度の減衰した超音波を検出する
。検出部位を仮想的に縦横多数に分割した微小要素の集
合体とすると、各検出子3の得た超音波の強度は発振子
2と検出子3の位置から決定される複数個の微小要素内
で減衰される超音波強度の積となる。すなわちi番目の
検出子の検出強度Si、超音波発振子の強度s0. J
番目の微小要素の減衰率Rjとすると、N個の検出子か
ら以下のN個の式が得られる。
Next, place the ultrasonic oscillator 2 at the opposite position across the measurement site.
and detector 3 is installed. Although it is possible to measure with a single ultrasonic detector 3, in this case the detector 3 must be moved, and in this case, errors are likely to occur due to differences in the properties of the installation surface, so multiple detectors 3 are used. A more accurate value can be obtained by installing it in a fixed manner. The installation position of the ultrasonic oscillator 2 and detector 3 is the external measurement device! ! It can be accurately obtained using the external shape data of No. 5. An ultrasonic oscillator 2 emits ultrasonic waves with a constant intensity, and a plurality of facing ultrasonic detectors 3 detect ultrasonic waves whose intensity has attenuated after passing through the inside of the member. Assuming that the detection site is a collection of microelements virtually divided into many vertical and horizontal sections, the intensity of the ultrasonic waves obtained by each detector 3 is determined from the positions of the oscillator 2 and the detector 3 within the plurality of microelements. It is the product of the ultrasonic intensity attenuated by . That is, the detection intensity Si of the i-th detector, the intensity s0 of the ultrasonic oscillator. J
Assuming that the attenuation rate of the th minute element is Rj, the following N equations are obtained from N detectors.

5i=S0x  (Rjx・−xhl       [
i = 1− N )発振子の位置を移動してn個の計
測を行なえばn×N個の式が得られ、これらの式から逆
に各微小要素の減衰率Rj、・・・R,を求めることが
できる。
5i=S0x (Rjx・-xhl [
i = 1-N) By moving the position of the oscillator and performing n measurements, n×N equations are obtained, and from these equations, the attenuation rate Rj,...R, can be found.

実験室的に材料の劣化度、例えばクリープ損傷と超音波
減衰率との間には第3図に示すように1対1の関数関係
が成り立っているため、各微小要素の減衰率計測結果か
ら直接クリープ損傷の算出が可能となる。
In the laboratory, there is a one-to-one functional relationship between the degree of material deterioration, such as creep damage, and the ultrasonic attenuation rate, as shown in Figure 3. Direct calculation of creep damage becomes possible.

この結果は材料劣化度の分布図として、第4図に示すよ
うな計測部位における等クリープ損傷分布図を描くこと
ができ5部材の損傷状態を把握し、寿命診断も可能とな
る。
From this result, it is possible to draw an equal creep damage distribution map at the measurement site as shown in FIG. 4 as a distribution map of the degree of material deterioration, thereby understanding the damage state of the five members and making it possible to diagnose the service life.

高温部品等の被検体は多くの場合、製造時に欠陥を生ず
ることがあるが、これらの欠陥は母材と比べ超音波減衰
特性が異なるため、材料劣化に伴う減衰率の変化を明確
にとらえるには被検体の使用初期状態から計測を行い、
欠陥部位を母材部位と区別して経時的に一定期間毎に計
測を行うことが必要である。
Test objects such as high-temperature parts often have defects during manufacturing, but these defects have different ultrasonic attenuation characteristics compared to the base material, so it is difficult to clearly understand changes in attenuation rate due to material deterioration. Measures the test object from the initial state of use,
It is necessary to distinguish the defect site from the base material site and perform measurements at regular intervals over time.

したがって、本実施例によれば、高温で使用される部材
の経時的な劣化を超音波を用いて非破壊的に、かつ内部
の位置を確定して計測することができ、従来の試験片を
採取して破壊的に劣化度を計測する方法に比べても、短
時間でかつ精度のよい寿命診断が行なえる。
Therefore, according to this example, it is possible to non-destructively measure the deterioration of a member used at high temperatures by determining the internal position using ultrasonic waves. Compared to the method of taking samples and destructively measuring the degree of deterioration, lifespan diagnosis can be performed in a shorter time and with higher accuracy.

また、他の実施例としては超音波の減衰率の特性を用い
る代りに、超音波速度の劣化度依存性を用いる方法であ
り、超音波発振子2から発振される超音波の検出子3に
到達する時間を計測して、超音波発振子2と検出子3の
距離や通過する微小要素から同様に、各微小要素内の音
速を求め、さらに劣化度を算出することができる。
Another embodiment is a method that uses the dependence of the ultrasonic velocity on the degree of deterioration instead of using the characteristic of the attenuation rate of the ultrasonic wave, and the ultrasonic wave oscillated from the ultrasonic oscillator 2 is applied to the detector 3. By measuring the arrival time and similarly determining the sound speed within each microelement from the distance between the ultrasonic oscillator 2 and the detector 3 and the microelements passing through, it is possible to further calculate the degree of deterioration.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、高温使用部材の経時的な
材質劣化を計測するため計測部位をはさむ対面位置に設
置した超音波発振子及び検出子を用いて、計測部位内の
微小要素の超音波減衰率を求め、これから実験室内に得
た劣化度の関係から計測部位内の各位置における劣化度
を非破壊的に計測する方法で、従来の破壊的試験法に比
べても短時間で精度のよう計測ができ、また従来の非破
壊的方法では不可能であった材料内部の劣化程度を位置
を確定して定量的に求めることができるなど1本発明に
よる効果は大きい。さらに部品の初期状態から計測する
ことにより欠陥位置、大きさの計測も同時に可能となる
As explained above, the present invention uses an ultrasonic oscillator and a detector placed opposite each other to sandwich the measurement area in order to measure the material deterioration over time of components used at high temperatures. This method non-destructively measures the degree of deterioration at each position within the measurement area based on the relationship between the degree of deterioration obtained in the laboratory by determining the acoustic attenuation rate, and is faster and more accurate than conventional destructive testing methods. The present invention has great effects, such as being able to measure and quantitatively determine the degree of deterioration inside a material by determining its position, which was impossible with conventional non-destructive methods. Furthermore, by measuring from the initial state of the part, it is also possible to measure the defect position and size at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る劣化検出装置の一実施例を示す概
略図、第2図は第1図の外形計測装置の挙動を説明する
図、第3図は超音波減衰率とクリープ損傷の関係を示す
グラフ、第4図は劣化度検出結果をクリープ損傷分布図
として表示した図。 第5図は従来の非破壊的劣化検出結果の一例を示す図で
、第6図は従来の非破壊的劣化検出結果の一例を示すグ
ラフである。 1・・・被検体。 3・・・検出子、 5・・・外形計測装置。 7・・・表示器。 2・・・超音波発信子、 4・・・減衰率計測装置、 6・・・劣化度検出器、 代理人 弁理士 則 近 憲 佑 同  第子丸 健 クツ−7°ず一イ品 図
Fig. 1 is a schematic diagram showing an embodiment of the deterioration detection device according to the present invention, Fig. 2 is a diagram explaining the behavior of the external shape measuring device shown in Fig. 1, and Fig. 3 is a diagram showing the ultrasonic attenuation rate and creep damage. A graph showing the relationship, FIG. 4 is a diagram displaying the deterioration degree detection results as a creep damage distribution map. FIG. 5 is a diagram showing an example of a conventional non-destructive deterioration detection result, and FIG. 6 is a graph showing an example of a conventional non-destructive deterioration detection result. 1... Subject. 3...Detector, 5...Outline measuring device. 7...Display device. 2...Ultrasonic transmitter, 4...Attenuation rate measuring device, 6...Degradation degree detector, Agent Patent attorney Rule Yudo Chika Nori Daishimaru Ken shoes - 7° Zuichi product diagram

Claims (1)

【特許請求の範囲】[Claims] 予じめ被検体の外形寸法を計測して記憶させておき、そ
の計測結果にもとずいて被検体に、超音波発信子と検出
子とを設置し、超音波発信子から被検体に送られた超音
波の減衰率から材料劣化度合を決定することを特徴とす
る材料劣化検出方法。
The external dimensions of the object to be examined are measured and memorized in advance, and based on the measurement results, an ultrasound transmitter and a detector are installed on the object, and the ultrasonic waves are transmitted from the ultrasound transmitter to the object. A method for detecting material deterioration, characterized in that the degree of material deterioration is determined from the attenuation rate of ultrasonic waves.
JP63296048A 1988-11-25 1988-11-25 Material deterioration detecting method Pending JPH02143158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63296048A JPH02143158A (en) 1988-11-25 1988-11-25 Material deterioration detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63296048A JPH02143158A (en) 1988-11-25 1988-11-25 Material deterioration detecting method

Publications (1)

Publication Number Publication Date
JPH02143158A true JPH02143158A (en) 1990-06-01

Family

ID=17828426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63296048A Pending JPH02143158A (en) 1988-11-25 1988-11-25 Material deterioration detecting method

Country Status (1)

Country Link
JP (1) JPH02143158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204432A (en) * 2008-02-27 2009-09-10 Mitsubishi Heavy Ind Ltd Evaluation method of creep damage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009204432A (en) * 2008-02-27 2009-09-10 Mitsubishi Heavy Ind Ltd Evaluation method of creep damage

Similar Documents

Publication Publication Date Title
US5140264A (en) Method for non-destructively assessing the condition of a turbine blade using eddy current probes inserted within cooling holes
JPH0352908B2 (en)
JP2005315892A (en) Method for ultrasonically inspecting aerofoil
Rummel et al. The detection of fatigue cracks by nondestructive testing methods
US20130111999A1 (en) Method and device for non-destructive material testing by means of ultrasound
EP1517138B1 (en) Method and apparatus for acoustic thermography inspection
JPH0621783B2 (en) Fatigue / remaining life evaluation method for machine parts
JP2010500591A (en) Inspection method of microstructure of welded joint
KR20010038725A (en) Method for non-destructive testing of concrete structure
Zippel et al. Crack measurement in steel plates using TOFD method
JP4371364B2 (en) Automatic ultrasonic flaw detector and automatic ultrasonic flaw detection method for thick structure
JPH02143158A (en) Material deterioration detecting method
JP2002148244A (en) Concrete structure examining and diagnosing method
Urayama et al. Implementation of electromagnetic acoustic resonance in pipe inspection
KR100983674B1 (en) Apparatus for the automatic ultrasonic probe index point and refracted angle
JPH058778B2 (en)
JPS5826550B2 (en) Ultrasonic flaw detection method and device using two probes
JP6109061B2 (en) Inspection method for remaining life of welded parts of heat-resistant materials
EP1564551A1 (en) Non-destructive method for the detection of creep damage in ferromagnetic parts with a device consisting of an eddy current coil and a hall sensor
JP2002162390A (en) Method and device for ultrasonic wave inspection
RU2653955C1 (en) Method for determining voltage supply and coordinates in heat-affected zones of pipelines by the method for measuring velocity of passage of ultrasonic wave
Jimmy et al. Identifying discontinuities of 6״ carbon steel pipe using advanced ultrasonic techniques
JPS6093955A (en) Ultrasonic inspection apparatus
Mohamad et al. Concrete-Defect Detection Using New Ultrasonic Array
JPH01110248A (en) Defect monitor for inner surface of piping